Saxidomus Giganteus Class: Bivalvia; Heterodonta Order: Veneroida Beefsteak Clam, Butter, Or Washington Clam Family: Veneridae

Total Page:16

File Type:pdf, Size:1020Kb

Saxidomus Giganteus Class: Bivalvia; Heterodonta Order: Veneroida Beefsteak Clam, Butter, Or Washington Clam Family: Veneridae Phylum: Mollusca Saxidomus giganteus Class: Bivalvia; Heterodonta Order: Veneroida Beefsteak clam, butter, or Washington clam Family: Veneridae Taxonomy: Originally described as Shell: The shell is oval in shape (Coan and Venerupis gigantea, other synonyms include Carlton 1975), and the posterior is truncate conflicts of taxonomic genus-species gender (Keen and Coan 1974). agreement, as Saxidomus is feminine (article Interior: The valves are similar in 31.2, ICZN): S. gigantea (e.g., Paul et al. shape. The inner ventral margin is smooth 1976; Robinson and Breese, 1982; Bendell 2014), as well as Venus maxima. (Keen and Coan 1974), and the inner surface is white and porcelaneous. The muscle scars Description are dark and subequal in size. The pallial line Size: Adults average 10 cm in length (Paul et is continuous (but broken by a sinus), not a al. 1976; Kozloff 1993). series of scars (Fig. 3). The flesh is often Color: Shell exterior is whitish, but can also reddish, hence one common name, the have patches of blackish discoloration; beefsteak clam. juvenile exterior is sometimes tan in color Exterior: Exterior sculpture is with (Kozloff 1993). The shell interior is also white. raised concentric growth lines and grooves, General Morphology: Bivalve mollusks are with no radial lines (Fig. 1). The valves are bilaterally symmetrical with two lateral valves very similar, the shell is thick, heavy, and or shells that are hinged dorsally and deep (Fig. 2). The most prominent lines surround a mantle, head, foot and viscera representing periods of slowed growth (see Plate 393B, Coan and Valentich-Scott (Kozloff 1993). The valves gape only slightly 2007). ). The Veneroida is a large and at posterior end (gape less than 1/4 shell diverse bivalve heterodont order that is width) (Kozloff 1993). Individuals can retract characterized by well-developed hinge teeth. their siphon, but not feet. The shell There are 22 local families, and members of microstructure was described for many the Veneridae have three cardinal teeth on veneroid clams by Shimamoto (1986), where each valve (see Fig 302, Kozloff 1993; Plate Saxidomus species were characterized by a 396H, Coan and Valentich-Scott 2007) (Fig. Type I shell composed of both composite 4). prismatic and crossed lamellar structure Body: (Shimamoto 1986). Color: Hinge: The hinge is very thick, heavy, Interior: The ligament is completely and is posterior and external. There are three external, ad is seated on a long, massive cardinal hinge teeth, flanked by a long lateral nymph, or chondrophore (Fig. 4). The body tooth in each valve (Fig. 4). tissue is rubbery and is “superb for chowder” Eyes: (Kozloff 1993). Maximal systolic pressure Foot: was recorded for Tresus capax (see Siphons: description in this guide) to be 13 cm H20, Burrow: Inhabits burrows up to 30 cm deep which is higher than 11 cm H20 recorded for (Kozloff 1993). The burrow opening is Saxidomus giganteus (Florey and Cahill recognizable by a cigar-shaped or deflated 1977). figure eight-shaped hole that is 1.2–2 cm long Exterior: (Jacobson 1975). Byssus: Gills: Possible Misidentifications Veneroida is a large bivalve order, characterized by well-developed hinge teeth, Hiebert, T.C. 2015. Saxidomus giganteus. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12919 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] including most heterodonts. The family not extend into Oregon. (S. nuttalli is the only Veneridae is characterized by a hinge without Saxidomus in Humboldt Bay, however). lateral teeth, ligament that is entirely external, Saxidomus nuttalli, referred to as the “money radial ribs on shell exterior, and three cardinal clam” because of its representation as teeth on each shell valve. There are 12–16 currency for Californian native American species reported locally in this family within tribes (Ricketts and Calvin 1952), resembles the genera Nutricola, Saxidomus, and S. giganteus, but is larger (ironically, 12.7 Leukoma, with two species in each, and compared to 7.6 cm) and has more prominent Gemma gemma), Irusella lamellifera), growth lines and a shell that is purplish at the Tivelatultorum, Venerupis philippinarum, siphonal end ((Ricketts and Calvin 1952; Mercenaria mercenaria, Callithaca tenerrima, Kozloff 1993). Saxidomus nuttalli is more each with a single species represented common in the southern end of its locally. distribution, while S. giganteus is more Nutricola species are small, with shells common north (Ricketts and Calvin 1952). usually less than 10 mm in length. Gemma Panopea generosa, the deep- gemma also has a small shell, but it is burrowing geoduck, is quadrate, and gapes triangular in shape compared to Nutricola widely. Tresus capax, the gaper clam, (family species with elongate or oval shells. Tivela Mactridae, see description in this guide), is stultorum also has a triangular shell, but also quadrate, fairly smooth with chalky white individuals are larger than G. gemma and shell exterior. The truncated posterior gapes have a smooth shell surface with shiny moderately, its ligament is partly internal, the periostracum. cardinal teeth are "A" shaped, and the shell The remaining species have shells has a dark, eroded partial covering. larger than 10 mm in length. Some species have shell sculpturing that is dominated by Ecological Information commarginal ribs with fine radial ridges and Range: Type locality is not specified (see Orr others have shells that have radial ridges with et al. 2013). Known range includes the inconspicuous, or not predominating, Aleutian Islands, Alaska to Monterey, commarginal ribs. Of those in the former California; S. giganteus is rare in the southern category, I. lamellifera has widely spaced range. commarginal lamellae and a shell that is short Local Distribution: Locally occurs in bays compared to M. mercenaria and C. tenerrima. and estuaries, rarely on open coast or inlets The two latter species have elongated shells, with oceanic influence (Packard 1918). no anterior lateral teeth and valves that do not Common from Alaska to San Francisco Bay, gape. Saxidomus species also have an California, but rare south of Humboldt bay, elongate shell, when compared to I. California (Kozloff 1993). lamellifera, but they possess anterior lateral Habitat: Occurs in mud or sand (Coan and teeth and valves that are separated by a Carlton 1975), gravelly beaches (Puget narrow gape, posteriorly. Saxidomus nuttalli Sound, Washington). “Clam gardens”, and S. giganteus can be differentiated as the created adjacent to intertidal rock walls former species has an elongate and thinner constructed by human populations in the shell as well as a narrow escutcheon (not Holocene, have four times as many S. present in S. giganteus). The shell giganteus and twice as many P. staminea sculpturing in S. giganteus also appears (see description in this guide) individuals as smooth as the commarginal ribs are thin, low non-walled beaches, and transplanted and tightly spaced, while the opposite is true juveniles of the latter species also grow faster for S. nuttalli. Its shell is more elongate, the (1.7 times faster) in clam gardens (Groesbeck ribs heavier, rougher and more conspicuous et al. 2014). (Coan and Carlton 1975) and the interior is Salinity: Occurs in sites with average yearly often marked posteriorly with purple. salinity is 29 (range 24–32, Puget Sound, Saxidomus nuttalli, the larger, more southern Washington Goong and Chew 2001). species, is found in California in the same Temperature: Individuals prefer temperate- habitat as S. giganteus, but apparently does cold waters (see Range). Hiebert, T.C. 2015. Saxidomus giganteus. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. Tidal Level: Individuals most commonly begins 30 minutes later; trochophore larvae collected from just under the sediment develop after 24 hours, which become bivalve surface, but also found up to 30 cm deep. veliger larvae 24 hours later (18˚C, see Fig. 1, Associates: Occasionally infested with Breese and Phibbs 1970). immature specimens of commensal pea crab Larva: Bivalve development generally Pinnixa littoralis, but usually free of symbiotic proceeds from external fertilization via or parasitic associates (Ricketts and Calvin broadcast spawning through a ciliated 1971). Co-occurs with other clams, Tapes trochophore stage to a veliger larva. Bivalve philippinarum and Protothaca staminea as veligers are characterized by a ciliated velum well as the shore crab, Hemigrapsus that is used for swimming, feeding and (Nickerson 1977; Goong and Chew 2001). respiration. The veliger larva is also found in Protothaca staminea and S. giganteus co- many gastropod larvae, but the larvae in the occur on Kiket Island, Washington, where the two groups can be recognized by shell greatest diversity and richness of other morphology (i.e. snail-like versus clam-like). marine invertebrates are found (Houghton In bivalves, the initial shelled-larva is called a 1977). Co-occurs with other clams (e.g., D-stage or straight-hinge veliger due to the Tresus capax and T. nuttallii, Gillispie and “D” shaped shell. This initial shell is called a Bourne 2004; Sanguinolaria nuttallii, Peterson prodissoconch I and is followed by a and Andre 1980), and the presence of the prodissoconch II, or shell that is subsequently latter species is negatively effected by S. added to the initial shell zone (see Fig. 1, nuttallii (Peterson and Andre 1980). Caddy 1969). Finally, shell secreted following Abundance: “The most abundant clam of the metamorphosis is simply referred to as the Northwest" (Ricketts and Calvin 1971), dissoconch (see Fig.
Recommended publications
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • Geoducks—A Compendium
    34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A.
    [Show full text]
  • Morphological Variations of the Shell of the Bivalve Lucina Pectinata
    I S S N 2 3 47-6 8 9 3 Volume 10 Number2 Journal of Advances in Biology Morphological variations of the shell of the bivalve Lucina pectinata (Gmelin, 1791) Emma MODESTIN PhD of Biogeography, zoology and Ecology University of the French Antilles, UMR AREA DEV ABSTRACT In Martinique, the species Lucina pectinata (Gmelin, 1791) is called "mud clam, white clam or mangrove clam" by bivalve fishermen depending on the harvesting environment. Indeed, the individuals collected have differences as regards the shape and colour of the shell. The hypothesis is that the shape of the shell of L. pectinata (P. pectinatus) shows significant variations from one population to another. This paper intends to verify this hypothesis by means of a simple morphometric study. The comparison of the shape of the shell of individuals from different populations was done based on samples taken at four different sites. The standard measurements (length (L), width or thickness (E - épaisseur) and height (H)) were taken and the morphometric indices (L/H; L/E; E/H) were established. These indices of shape differ significantly among the various populations. This intraspecific polymorphism of the shape of the shell of P. pectinatus could be related to the nature of the sediment (granulometry, density, hardness) and/or the predation. The shells are significantly more elongated in a loose muddy sediment than in a hard muddy sediment or one rich in clay. They are significantly more convex in brackish environments and this is probably due to the presence of more specialised predators or of more muddy sediments. Keywords Lucina pectinata, bivalve, polymorphism of shape of shell, ecology, mangrove swamp, French Antilles.
    [Show full text]
  • Venerupis Philippinarum)
    INVESTIGATING THE COLLECTIVE EFFECT OF TWO OCEAN ACIDIFICATION ADAPTATION STRATEGIES ON JUVENILE CLAMS (VENERUPIS PHILIPPINARUM) Courtney M. Greiner A Swinomish Indian Tribal Community Contribution SWIN-CR-2017-01 September 2017 La Conner, WA 98257 Investigating the collective effect of two ocean acidification adaptation strategies on juvenile clams (Venerupis philippinarum) Courtney M. Greiner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Marine Affairs University of Washington 2017 Committee: Terrie Klinger Jennifer Ruesink Program Authorized to Offer Degree: School of Marine and Environmental Affairs ©Copyright 2017 Courtney M. Greiner University of Washington Abstract Investigating the collective effect of two ocean acidification adaptation strategies on juvenile clams (Venerupis philippinarum) Courtney M. Greiner Chair of Supervisory Committee: Dr. Terrie Klinger School of Marine and Environmental Affairs Anthropogenic CO2 emissions have altered Earth’s climate system at an unprecedented rate, causing global climate change and ocean acidification. Surface ocean pH has increased by 26% since the industrial era and is predicted to increase another 100% by 2100. Additional stress from abrupt changes in carbonate chemistry in conjunction with other natural and anthropogenic impacts may push populations over critical thresholds. Bivalves are particularly vulnerable to the impacts of acidification during early life-history stages. Two substrate additives, shell hash and macrophytes, have been proposed as potential ocean acidification adaptation strategies for bivalves but there is limited research into their effectiveness. This study uses a split plot design to examine four different combinations of the two substratum treatments on juvenile Venerupis philippinarum settlement, survival, and growth and on local water chemistry at Fidalgo Bay and Skokomish Delta, Washington.
    [Show full text]
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]
  • Download Download
    Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives.
    [Show full text]
  • A Review of the Biology and Fisheries of Horse Clams (Tresus Capax and Tresus Nuttallii)
    Fisheries and Oceans Pêches at Océans Canada Canad a Canadian Stock Assessment Secretariat Secrétariat canadien pour l'évaluation des stocks Research Document 98/8 8 Document de recherche 98/8 8 Not to be cited without Ne pas citer sans permission of the authors ' autorisation des auteurs ' A Review of the Biology and Fisheries of Horse Clams (Tresus capax and Tresus nuttallii) R. B . Lauzier, C . M. Hand, A. Campbell and S .Heizerz Fisheries and Oceans Canada Pacific Biological Station, Stock Assessment Division, Nanaimo, B.C. V9R 5K6 2 Fisheries and Oceans Canada South Coast Division, N anaimo, B.C. V9T 1K3 ' This series documents the scientific basis for the ' La présente série documente les bases scientifiques evaluation of fisheries resources in Canada . As des évaluations des ressources halieutiques du such, it addresses the issues of the day in the time Canada. Elle traite des problèmes courants selon les frames required and the documents it contains are échéanciers dictés. Les documents qu'elle contient not intended as definitive statements on the subjects ne doivent pas être considérés comme des énoncés addressed but rather as progress reports on ongoing définitifs sur les sujets traités, mais plutôt comme investigations . des rapports d'étape sur les études en cours . Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé Secretariat. au secrétariat . ISSN 1480-4883 Ottawa, 199 8 Canada* Abstract A review of the biology and distribution of horse clams (Tresus capax and Tresus nuttallii)and a review of the fisheries of horse clams from British Columbia, Washington and Oregon is presented, based on previous surveys, scientific literature, and technical reports .
    [Show full text]
  • Appendix 3 Marine Spcies Lists
    Appendix 3 Marine Species Lists with Abundance and Habitat Notes for Provincial Helliwell Park Marine Species at “Wall” at Flora Islet and Reef Marine Species at Norris Rocks Marine Species at Toby Islet Reef Marine Species at Maude Reef, Lambert Channel Habitats and Notes of Marine Species of Helliwell Provincial Park Helliwell Provincial Park Ecosystem Based Plan – March 2001 Marine Species at wall at Flora Islet and Reef Common Name Latin Name Abundance Notes Sponges Cloud sponge Aphrocallistes vastus Abundant, only local site occurance Numerous, only local site where Chimney sponge, Boot sponge Rhabdocalyptus dawsoni numerous Numerous, only local site where Chimney sponge, Boot sponge Staurocalyptus dowlingi numerous Scallop sponges Myxilla, Mycale Orange ball sponge Tethya californiana Fairly numerous Aggregated vase sponge Polymastia pacifica One sighting Hydroids Sea Fir Abietinaria sp. Corals Orange sea pen Ptilosarcus gurneyi Numerous Orange cup coral Balanophyllia elegans Abundant Zoanthids Epizoanthus scotinus Numerous Anemones Short plumose anemone Metridium senile Fairly numerous Giant plumose anemone Metridium gigantium Fairly numerous Aggregate green anemone Anthopleura elegantissima Abundant Tube-dwelling anemone Pachycerianthus fimbriatus Abundant Fairly numerous, only local site other Crimson anemone Cribrinopsis fernaldi than Toby Islet Swimming anemone Stomphia sp. Fairly numerous Jellyfish Water jellyfish Aequoria victoria Moon jellyfish Aurelia aurita Lion's mane jellyfish Cyanea capillata Particuilarly abundant
    [Show full text]
  • Small Scale Clam Farming in Washington
    S m a l l - S c a l e CLAM Farming For PleaSure and ProFit in WaShington According to one Native American tale, the first humans arrived in the Pacific Northwest by stepping out of a clam shell. Since those ancient times, clams have had central roles in shaping the cultures and economies of the Pacific Northwest. For many shoreline property owners or leaseholders in Washington, clam farming is an enjoyable and sometimes profitable way to remain connected with the rich aquacultural legacy of the state. It is also a good way for them to become more aware of coastal processes such as sedimentation and erosion and to be vigilant for Spartina cordgrass, European green crab and other unintentionally introduced marine organisms. Two clam species — native littleneck clams and Manila clams — are routinely farmed in Washington. This publication introduces shoreline property owners and leaseholders to these two species and describes methods for growing clams for consumption. 1 2 IntroducIng two PoPular clams Three clam species — native littleneck clams (Protothaca staminea), Manila clams (Venerupis japonica) and geoduck clams (Panope abrupta) — are routinely farmed in Washington. Successful cultivation of geoduck clams entails different farming strategies and, as such, is not described in this introductory document. Native littleneck clams have been an important food On Washington beaches, Manila clams thrive in source of Northwest coastal Indian tribes. These clams protected bays and inlets on relatively stable have relatively thick shells that can attain a length of beaches with mixtures of gravel, sand, three inches. They can grow to a harvestable size in mud and shell.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Seasonal Variation of Biochemical Components in Clam (Saxidomus
    J. Ocean Univ. China (Oceanic and Coastal Sea Research) DOI 10.1007/s11802-016-2855-6 ISSN 1672-5182, 2016 15 (2): 341-350 http://www.ouc.edu.cn/xbywb/ E-mail:[email protected] Seasonal Variation of Biochemical Components in Clam (Saxidomus purpuratus Sowerby 1852) in Relation to Its Reproductive Cycle and the Environmental Condition of Sanggou Bay, China BI Jinhong1), 2), LI Qi1), *, ZHANG Xinjun2), ZHANG Zhixin2), TIAN Jinling2), XU Yushan2), and LIU Wenguang3) 1) Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao 266003, P. R. China 2) Rongcheng Fishery Technical Extension Station, Rongcheng 264300, P. R. China 3) Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, P. R. China (Received January 3, 2015; revised March 2, 2015; accepted December 29, 2015) © Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2016 Abstract Seasonal variation of biochemical components in clam (Saxidomus purpuratus Sowerby 1852) was investigated from March 2012 to February 2013 in relation to environmental condition of Sanggou Bay and the reproductive cycle of clam. According to the histological analysis, the reproductive cycle of S. purpuratus includes two distinctive phases: a total spent and inactive stage from November to January, and a gametogenesis stage, including ripeness and spawning, during the rest of the year. Gametes were generated at a low temperature (2.1℃) in February. Spawning took place once a year from June to October. The massive spawning occurred in August when the highest water temperature and chlorophyll a level could be observed.
    [Show full text]
  • Intertidal Organisms of Point Reyes National Seashore
    Intertidal Organisms of Point Reyes National Seashore PORIFERA: sea sponges. CRUSTACEANS: barnacles, shrimp, crabs, and allies. CNIDERIANS: sea anemones and allies. MOLLUSKS : abalones, limpets, snails, BRYOZOANS: moss animals. clams, nudibranchs, chitons, and octopi. ECHINODERMS: sea stars, sea cucumbers, MARINE WORMS: flatworms, ribbon brittle stars, sea urchins. worms, peanut worms, segmented worms. UROCHORDATES: tunicates. Genus/Species Common Name Porifera Prosuberites spp. Cork sponge Leucosolenia eleanor Calcareous sponge Leucilla nuttingi Little white sponge Aplysilla glacialis Karatose sponge Lissodendoryx spp. Skunk sponge Ophlitaspongia pennata Red star sponge Haliclona spp. Purple haliclona Leuconia heathi Sharp-spined leuconia Cliona celata Yellow-boring sponge Plocarnia karykina Red encrusting sponge Hymeniacidon spp. Yellow nipple sponge Polymastia pachymastia Polymastia Cniderians Tubularia marina Tubularia hydroid Garveia annulata Orange-colored hydroid Ovelia spp. Obelia Sertularia spp. Sertularia Abientinaria greenii Green's bushy hydroid Aglaophenia struthionides Giant ostrich-plume hydroid Aglaophenia latirostris Dainty ostrich-plume hydroid Plumularia spp. Plumularia Pleurobrachia bachei Cat's eye Polyorchis spp. Bell-shaped jellyfish Chrysaora melanaster Striped jellyfish Velella velella By-the-wind-sailor Aurelia auria Moon jelly Epiactus prolifera Proliferating anemone Anthopleura xanthogrammica Giant green anemone Anthopleura artemissia Aggregated anemone Anthopleura elegantissima Burrowing anemone Tealia lofotensis
    [Show full text]