The Chemistry of an Ejected Common Envelope Alcolea Javier

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry of an Ejected Common Envelope Alcolea Javier M1-92 revisited: the chemistry of an ejected common envelope Alcolea Javier Observatorio Astronómico Nacional The detailed chemical abundance pattern of the metal-rich Galactic globular cluster NGC 6366 Alves-Brito Alan Federal University of Rio Grande do Sul Carbon Enrichment in the Early Universe Andersen Johannes University of Copenhagen RAMSES II - Raman Search for Extragalactic Symbiotic Stars Angeloni Rodolfo Universidad de La Serena Observational Properties of Miras in the KELT Survey Arnold Robert Lehigh University A THEORY AND SIMULATION-BASED CONVECTIVE BOUNDARY MIXING MODEL FOR AGB STAR EVOLUTION AND Battino Umberto University of Edinburgh ElementalNUCLEOSYNTHESIS abundances of primary stars in Sirius-like systems: Constraints on pollution from AGB stars Bharat Kumar Yerra National Astronomical Observatories, Chinese Academy of Sciences On the nature and mass loss of Bulge OH/IR stars Blommaert Joris Astronomy and Astrophysics Research Group, Vrije Universiteit Jet formation revealed in post-AGB binaries Bollen Dylan MacquarieBrussel University Where is the metallicity ceiling to form carbon stars? Boyer Martha STScI To Be or Not to Be: EHB Stars and AGB Stars Brown David Specola Vaticana The discovery of an asymmetric detached shell around the "fresh" carbon AGB star TX Psc Brunner Magdalena Institut für Astrophysik Imaging Red Supergiants with VLT/SPHERE/ZIMPOL Cannon Emily KU Leuven The Impact of Dust/Gas Ratios on Chromospheric Activity in Red Giant and Supergiant Stars Carpenter Ken NASA's GSFC Metallic Line Doubling in the Spectra of the Variable R Scuti Star chafouai khadija Cadi Ayyad Raman and Thomson Wings around Balmer Lines in the Two S-Type Symbiotic Stars Z Andromedae and AG Draconis Chang Seok-Jun Department of Physics and Astronomy, Sejong University Populations of accreting white dwarfs Chen Hai-Liang Yunnan Observatories Preparing spectrophotometric and interferometric observables from 3D hydrodynamical simulations of AGB stars. Chiavassa Andrea Observatoire de la Cote d'Azur New PARSEC-V2.0 stellar isochrones with alpha-enhanced mixtures and rotation Costa Guglielmo SISSA The Role of Shocks in the Detemination of Empirical Abundances for Type-I Planetary Nebulae Costa Roberto Universidade de São Paulo Unravelling the sulphur chemistry of AGB stars Danilovich Taïssa KU Leuven APEX spectral scan of the M-type AGB star R Dor De Beck Elvire Chalmers University of Technology In search of the fundamentals of dust formation around evolved stars with the Origins Space Telescope De Beck Elvire Chalmers University of Technology Magritte: a new multidimensional accelerated general-purpose radiative transfer code De Ceuster Frederik KU Leuven Alien visitors rule cosmic makeup Decin Leen Institute of Astronomy, KU Leuven Gaseous metal oxides and hydroxides tracing the formation of AGB dust grains. Decin Leen Institute of Astronomy, KU Leuven Stacking analysis of the HERITAGE data to statistically study far-IR dust emission from evolved stars Dharmawardena Thavisha Academia Sinica Institute of Astronomy and Astrophysics Stark broadening data for post AGB and AGB stars - STARK-B Database, a node of Virtual Atomic and Molecular Data Center (VAMDC) Dimitrijevic Milan S. Astronomical Observatory Observations of the Ultraviolet-Bright Star Barnard 29 in the Globular Cluster M13 (NGC 6205) Dixon William Space Telescope Science Institute A systematic survey of grain growth in discs around post-AGB binaries with PACS and SPIRE photometry Dsilva Karan KU Leuven, Belgium A new Python interface for the spectroscopic data analysis. El jariri Youssef Cadi Aayad University The loss of large amplitude pulsations at the end of AGB evolution Engels Dieter Hamburger Sternwarte Photometric properties for a carbon star DARWIN model grid Eriksson Kjell Uppsala university Using barium stars to constrain binary interaction in systems containing stars with convective envelopes Escorza Ana Institute of Astronomy (KU Leuven) Ammonia in carbon rich stars Etmanski Bartosz Nicolaus Copernicus Astronomical Centre Grid of realistic CSPNs atmosphere models Fierro-Santillán Celia Instituto Politécnico Nacional The maser emitting structure and time variability of the SiS lines J=14-13 and 15-14 in IRC+10216 Fonfria Jose Pablo Instituto de Fisica Fundamental, CSIC Central Stars of Planetary Nebulae in Galactic Open Clusters: Providing additional data for the White Dwarf Initial-to-Final-Mass Relation Fragkou Vasiliki The University of Hong Kong On cylindrically symmetric solutions of polarized radiative transfer equation Freimanis Juris Ventspils University College Hen 3-160 - the first symbiotic binary with Mira variable S star? Galan Cezary Nicolaus Copernicus Astronomical Center PAS GK Car and GZ Nor: Two depleted low-luminosity Galactic RV Tauri stars Gezer Ilknur Ege University Infrared light curves of dusty & metal-poor AGB stars Goldman Steve Space Telescope Science Institute Mid-IR spectroscopic observations of the dustiest AGB stars in the Galaxy Goldman Steve Space Telescope Science Institute A step further on the physical, kinematic and excitation properties of PNe Gonçalves Denise R. Valongo Observatory - Federal University of Rio e Janeiro Tracers of stellar mass loss: Mid-IR colors and surface brightness fluctuations Gonzalez-Lopezlira Rosa Amelia IRyA, UNAM Using Blue Straggler Binaries to Constrain AGB Mass Transfer Gosnell Natalie Colorado College The longest period Long Period Variables in the Magellanic Clouds Groenewegen Martin Koninklijke Sterrenwacht van Belgie Differentially rotating white dwarfs with 2DStars Halabi Ghina Institute of Astronomy Heavy puzzle pieces: Learning about the i process from Pb abundances Hampel Melanie Monash Centre for Astrophysics Kepler K2: A Search for Very Red Stellar Objects Hartig Erich University of Vienna, Astrophysics Galactic Simulations of r-process Elemental Abundances Haynes Chris University of Hertfordshire Raman-Scattered O VI 6825, 7082Å and C II 7023, 7053Å in the Symbiotic Nova RR Telescopii Heo Jeong-Eun Sejong University The Structure of the Inner Circumstellar Shell in Miras Hinkle Kenneth NOAO Multiband study of AGB stars in clusters Hojaev Alisher S. UB Astronomical Institute of UAS Rotating disks around M-type AGB stars homan ward KU Leuven Variability in Post-AGB Stars: Pulsation and Binarity in Proto-Planetary Nebulae Hrivnak Bruce Valparaiso University On the silicate crystallinities of oxygen-rich evolved stars and their mass-loss rates Jiang Biwei Department of Astronomy, Beijing Normal University Binary evolution and double sequences of blue stragglers in globular clusters Jiang Dengkai Yunnan Observatories, Chinese Academy of Sciences Dust producing AGB stars in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A Jones Olivia UK Astronomy Technology Center Spectroscopic binaries among AGB stars Jorissen Alain ULB - Institut d'Astronomie ALMA spectrum of the extreme OH/IR star OH26.5+0.6 Justtanont Kay Chalmers University of Technology When binaries keep track of recent AGB nucleosynthesis: The Zr - Nb pair in extrinsic stars as an efficient s-process diagnostic Karinkuzhi Drisya Bangalore University The mineralogy of AGB dust in the Magellanic Clouds Kemper Ciska Academia Sinica, Institute of Astronomy & Astrophysics Monitoring of the AGB star R Doradus using SPHERE/ZIMPOL Khouri Theo Chalmers University of Technology Tomography of the red supergiant star mu Cep Kravchenko Kateryna Institute of Astronomy and Astrophysics, Universite Libre de Chemical enrichment of galaxies as the result of organic synthesis in evolved stars Kwok Sun UniversityBruxelles of British Columbia O-rich LPVs in the X-shooter Spectral Library Lançon Ariane Observatoire astronomique de Strasbourg Late Thermal Pulse Evolution Models and the Rapid Evolution of V839 Ara Lawlor Timothy Pennsylvania State University - Brandywine Carbon and oxygen isotopes in AGB stars, from the cores of AGB stars to presolar dust Lebzelter Thomas Institut für Astrophysik Stellar Wind Accretion and Raman O VI Spectroscopy of the Symbiotic Star AG Draconis Lee Young-Min Department of Physics and Astronomy, Sejong University Search for technetium and s-process elements in binary central stars of planetary nebulae Löbling Lisa European Southern Observatory Properties of OH/IR stars versus YSOs in mid- and far-infrared surveys Loup Cecile Observatoire Astronomique de Strasbourg, CNRS ZOOMING INTO THE COMPLEX DUSTY ENVELOPES OF C-RICH AGB STARS Lykou Foteini The University of Hong Kong Mass Loss Rates of Li-rich AGB/RGB Stars Maciel Walter University of Sao Paulo, Astronomy Department Observational constraints on thermal pulses and the evolution of the mass-loss rate Maercker Matthias Onsala Space Observatory Phase-lag measurements in dust-scattered, polarised light: the distance to R Scl Maercker Matthias Onsala Space Observatory The submm properties of dust in the detached shells around carbon AGB stars Maercker Matthias Onsala Space Observatory The interaction of the Helix nebula with the interstellar medium; a solid case. Manchado Arturo IAC The abundance of SiC2 in Carbon Star Envelopes Massalkhi Sarah Instituto de Física Fundamental, CSIC Separation of gas and dust in the winds of AGB stars Mattsson Lars Nordita, Stockholm University Mass-loss from solar-like and metal-poor stars McDonald Iain University of Manchester Modelling the extended dust emission around carbon stars observed by Herschel Mecina Marko Institut für Astrophysik Rotating stellar models of low- and intermediate-mass stars from the
Recommended publications
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • II Publications, Presentations
    II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class.
    [Show full text]
  • A Dozen Colliding Wind X-Ray Binaries in the Star Cluster R 136 in the 30 Doradus Region
    A dozen colliding wind X-ray binaries in the star cluster R 136 in the 30 Doradus region Simon F. Portegies Zwart?,DavidPooley,Walter,H.G.Lewin Massachusetts Institute of Technology, Cambridge, MA 02139, USA ? Hubble Fellow Subject headings: stars: early-type — tars: Wolf-Rayet — galaxies:) Magellanic Clouds — X-rays: stars — X-rays: binaries — globular clusters: individual (R136) –2– ABSTRACT We analyzed archival Chandra X-ray observations of the central portion of the 30 Doradus region in the Large Magellanic Cloud. The image contains 20 32 35 1 X-ray point sources with luminosities between 5 10 and 2 10 erg s− (0.2 × × — 3.5 keV). A dozen sources have bright WN Wolf-Rayet or spectral type O stars as optical counterparts. Nine of these are within 3:4 pc of R 136, the ∼ central star cluster of NGC 2070. We derive an empirical relation between the X-ray luminosity and the parameters for the stellar wind of the optical counterpart. The relation gives good agreement for known colliding wind binaries in the Milky Way Galaxy and for the identified X-ray sources in NGC 2070. We conclude that probably all identified X-ray sources in NGC 2070 are colliding wind binaries and that they are not associated with compact objects. This conclusion contradicts Wang (1995) who argued, using ROSAT data, that two earlier discovered X-ray sources are accreting black-hole binaries. Five early type stars in R 136 are not bright in X-rays, possibly indicating that they are either: single stars or have a low mass companion or a wide orbit.
    [Show full text]
  • The Agb Newsletter
    THE AGB NEWSLETTER An electronic publication dedicated to Asymptotic Giant Branch stars and related phenomena Official publication of the IAU Working Group on Abundances in Red Giants No. 208 — 1 November 2014 http://www.astro.keele.ac.uk/AGBnews Editors: Jacco van Loon, Ambra Nanni and Albert Zijlstra Editorial Dear Colleagues, It is our pleasure to present you the 208th issue of the AGB Newsletter. The variety of topics is, as usual, enormous, though post-AGB phases feature prominently, as does R Scuti this time. Don’t miss the announcements of the Olivier Chesneau Prize, and of three workshops to keep you busy and entertained over the course of May–July next year. We look forward to receiving your reactions to this month’s Food for Thought (see below)! The next issue is planned to be distributed around the 1st of December. Editorially Yours, Jacco van Loon, Ambra Nanni and Albert Zijlstra Food for Thought This month’s thought-provoking statement is: What is your favourite AGB star, RSG, post-AGB object, post-RSG or PN? And why? Reactions to this statement or suggestions for next month’s statement can be e-mailed to [email protected] (please state whether you wish to remain anonymous) 1 Refereed Journal Papers Evolutionary status of the active star PZ Mon Yu.V. Pakhomov1, N.N. Chugai1, N.I. Bondar2, N.A. Gorynya1,3 and E.A. Semenko4 1Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya 48, 119017, Moscow, Russia 2Crimean Astrophysical Observatory, Nauchny, Crimea, 2984009, Russia 3Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetskij prospekt, 13, Moscow 119991, Russia 4Special Astrophysical Observatory of Russian Academy of Sciences, Russia We use original spectra and available photometric data to recover parameters of the stellar atmosphere of PZ Mon, formerly referred as an active red dwarf.
    [Show full text]
  • Spectroscopy of Variable Stars
    Spectroscopy of Variable Stars Steve B. Howell and Travis A. Rector The National Optical Astronomy Observatory 950 N. Cherry Ave. Tucson, AZ 85719 USA Introduction A Note from the Authors The goal of this project is to determine the physical characteristics of variable stars (e.g., temperature, radius and luminosity) by analyzing spectra and photometric observations that span several years. The project was originally developed as a The 2.1-meter telescope and research project for teachers participating in the NOAO TLRBSE program. Coudé Feed spectrograph at Kitt Peak National Observatory in Ari- Please note that it is assumed that the instructor and students are familiar with the zona. The 2.1-meter telescope is concepts of photometry and spectroscopy as it is used in astronomy, as well as inside the white dome. The Coudé stellar classification and stellar evolution. This document is an incomplete source Feed spectrograph is in the right of information on these topics, so further study is encouraged. In particular, the half of the building. It also uses “Stellar Spectroscopy” document will be useful for learning how to analyze the the white tower on the right. spectrum of a star. Prerequisites To be able to do this research project, students should have a basic understanding of the following concepts: • Spectroscopy and photometry in astronomy • Stellar evolution • Stellar classification • Inverse-square law and Stefan’s law The control room for the Coudé Description of the Data Feed spectrograph. The spec- trograph is operated by the two The spectra used in this project were obtained with the Coudé Feed telescopes computers on the left.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • Gaia Data Release 2 Special Issue
    A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D.
    [Show full text]
  • NASA Astrobiology Institute 2018 Annual Science Report
    A National Aeronautics and Space Administration 2018 Annual Science Report Table of Contents 2018 at the NAI 1 NAI 2018 Teams 2 2018 Team Reports The Evolution of Prebiotic Chemical Complexity and the Organic Inventory 6 of Protoplanetary Disk and Primordial Planets Lead Institution: NASA Ames Research Center Reliving the Past: Experimental Evolution of Major Transitions 18 Lead Institution: Georgia Institute of Technology Origin and Evolution of Organics and Water in Planetary Systems 34 Lead Institution: NASA Goddard Space Flight Center Icy Worlds: Astrobiology at the Water-Rock Interface and Beyond 46 Lead Institution: NASA Jet Propulsion Laboratory Habitability of Hydrocarbon Worlds: Titan and Beyond 60 Lead Institution: NASA Jet Propulsion Laboratory The Origins of Molecules in Diverse Space and Planetary Environments 72 and Their Intramolecular Isotope Signatures Lead Institution: Pennsylvania State University ENIGMA: Evolution of Nanomachines in Geospheres and Microbial Ancestors 80 Lead Institution: Rutgers University Changing Planetary Environments and the Fingerprints of Life 88 Lead Institution: SETI Institute Alternative Earths 100 Lead Institution: University of California, Riverside Rock Powered Life 120 Lead Institution: University of Colorado Boulder NASA Astrobiology Institute iii Annual Report 2018 2018 at the NAI In 2018, the NASA Astrobiology Program announced a plan to transition to a new structure of Research Coordination Networks, RCNs, and simultaneously planned the termination of the NASA Astrobiology Institute
    [Show full text]
  • The Deep Near-Infrared Southern Sky Survey (DENIS)
    R E P O R T S F R O M O B S E R V E R S The Deep Near-Infrared Southern Sky Survey (DENIS) N. EPCHTEIN, B. DE BATZ, L. CAPOANI, L. CHEVALLIER, E. COPET, P. FOUQUÉ, F. LACOMBE, T. LE BERTRE, S. PAU, D. ROUAN, S. RUPHY, G. SIMON, D. TIPHÈNE, Paris Observatory, France W.B. BURTON, E. BERTIN, E. DEUL, H. HABING, Leiden Observatory, Netherlands J. BORSENBERGER, M. DENNEFELD, F. GUGLIELMO, C. LOUP, G. MAMON, Y. NG, A. OMONT, L. PROVOST, J.-C. RENAULT, F. TANGUY, Institut d’Astrophysique de Paris, France S. KIMESWENGER and C. KIENEL, University of Innsbruck, Austria F. GARZON, Instituto de Astrofísica de Canarias, Spain P. PERSI and M. FERRARI-TONIOLO, Istituto di Astrofisica Spaziale, Frascati, Italy A. ROBIN, Besançon Observatory, France G. PATUREL and I. VAUGLIN, Lyons Observatory, France T. FORVEILLE and X. DELFOSSE, Grenoble Observatory, France J. HRON and M. SCHULTHEIS, Vienna Observatory, Austria I. APPENZELLER AND S. WAGNER, Landessternwarte, Heidelberg, Germany L. BALAZS and A. HOLL, Konkoly Observatory, Budapest, Hungary J. LÉPINE, P. BOSCOLO, E. PICAZZIO, University of São Paulo, Brazil P.-A. DUC, European Southern Observatory, Garching, Germany M.-O. MENNESSIER, University of Montpellier, France 1. The DENIS Project celestial objects and unknown physical efforts which led to a proposal for the processes. DENIS project, aimed at covering the Since the middle of 1994, the ESO The 2.2-micron window is of particular entire southern sky from the ESO site at 1-metre telescope has been dedicated astrophysical interest. It is the longest La Silla, making full-time use of the ESO on a full-time basis to a long-term project wavelength window not much hampered 1-metre telescope.
    [Show full text]
  • Rotation of the Asymptotic Giant Branch Star R Doradus
    Rotation of the asymptotic giant branch star R Doradus Downloaded from: https://research.chalmers.se, 2021-09-30 01:42 UTC Citation for the original published paper (version of record): Vlemmings, W., Khouri, T., De Beck, E. et al (2018) Rotation of the asymptotic giant branch star R Doradus Astronomy and Astrophysics, 613 http://dx.doi.org/10.1051/0004-6361/201832929 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) A&A 613, L4 (2018) https://doi.org/10.1051/0004-6361/201832929 Astronomy & © ESO 2018 Astrophysics LETTER TO THE EDITOR Rotation of the asymptotic giant branch star R Doradus W. H. T. Vlemmings1, T. Khouri1, E. De Beck1, H. Olofsson1, G. García-Segura2, E. Villaver3, A. Baudry4, E. M. L. Humphreys5, M. Maercker1, and S. Ramstedt6 1 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden e-mail: [email protected] 2 Instituto de Astronomía, Universidad Nacional Autónoma de México, Km. 107 Carr. Tijuana-Ensenada, 22860 Ensenada B. C., Mexico 3 Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain 4 Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France 5 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 6 Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden Received 1 March 2018 / Accepted 12 April 2018 ABSTRACT High-resolution observations of the extended atmospheres of asymptotic giant branch (AGB) stars can now directly be compared to the theories that describe stellar mass loss.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • 2013 Version
    Citizen Science with Variable Stars Brought to you by the AAVSO, Astronomers without Borders, the National Science Foundation and Your Universe Astronomers need your help! Many bright stars change in brightness all the time and for many different reasons. Some stars are too bright for professionals to CitizenSky is a collaboration of the look at with most large telescopes. So, we American Association of need your help to watch these stars as they Variable Star Observers (AAVSO), the University of dim and brighten over the next several years. Denver, the Adler Planetarium, the Johns Hopkins University and the California Academies of This guide will help you find these bright Science with support from the National Science Foundation. stars, measure their brightness and then submit the measurements to assist professional astronomers. Participate in one of the largest and longest running citizen science projects in history! Thousands of people just like you are helping o ut. Astronomers need large numbers of people to get the amount of precision they need to do their research. You are the key. Header artwork is reproduced with permission from Sky & Telescope magazine (www.skyandtelescope.com) Betelgeuse – Alpha Orionis From the city or country sky, from almost any part of the world, the majestic figure of Orion dominates the night sky with his belt, sword, and club. Low and to the right is the great red pulsating supergiant, Betelgeuse (alpha Orionis). Recently acquiring fame for being the first star to have its atmosphere directly imaged (shown below), alpha Orionis has captivated observers' attention for centuries. At minimum brightness, as in 1927 and 1941, its magnitude may drop below 1.2.
    [Show full text]