From Barcoding to Metagenomics: Molecular Identification Techniques for Ecological Studies of Endangered Primates Amrita Srivath

Total Page:16

File Type:pdf, Size:1020Kb

From Barcoding to Metagenomics: Molecular Identification Techniques for Ecological Studies of Endangered Primates Amrita Srivath FROM BARCODING TO METAGENOMICS: MOLECULAR IDENTIFICATION TECHNIQUES FOR ECOLOGICAL STUDIES OF ENDANGERED PRIMATES AMRITA SRIVATHSAN B. Sc. (Hons.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE AND DEPARTMENT OF LIFE SCIENCES IMPERIAL COLLEGE LONDON 2014 DECLARATION I hereby declare that this thesis is my original work. I have duly acknowledged all the sources of information which have been used in the thesis. The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work ___________________ Amrita Srivathsan 31 July 2014 ii “I asked the question for the best reason possible, for the only reason, indeed that excuses anyone for asking any question - simple curiosity.” – Oscar Wilde iii ACKNOWLEDGEMENTS My most sincere gratitude goes to a number of people whose contributions were invaluable during my PhD studies: Prof. Rudolf Meier, it seems only fitting to begin this with Wilde, who, through you, had a heavy hand in the first part of the thesis. Thank you. For nurturing scientific thinking in me, for being the most supportive supervisor one can imagine, and for a lot of reasons that would be difficult to list. Your immense knowledge and ideas in many different aspects of this field lead to discussions that give me perspective on the questions we are asking and always leave me instigated about research. I am fortunate to have an opportunity to be supervised by you. Prof. Alfried Vogler, for hosting me in the Natural History Museum, which was my first time in such an environment, and it was a great experience. Thanks a lot for your extremely valuable suggestions, for giving me access to facilities that were critical for this thesis, for teaching me how scientific writing is done and most importantly showing me how to think big and work towards it. It is truly inspiring, and I learnt a lot about genomics and molecular systematics during my stay in NHM. To both my supervisors I am really grateful for your support during the sudden change in timeline, so that that the thesis could be put together. Andie Ang, without whom this project would not be possible. For collecting the samples, for plant collections, for molecular work, for data validation and for monkey- talk. iv John Sha for providing the data for retention time for douc langurs. Members of Singapore Zoological gardens, for all their help with the feeding trials for douc langurs. Members of Nee Soon Swamp Forest survey team and Mirza Rifqi Ismail for collecting plant samples, and vouchering them. Teo Li Young and Tay Ywee Chieh for their help with sequencing plant barcodes. Chong Kwek Yan for his insights into plant community in Nee Soon. Simon Burbidge and Peter Foster, the people behind the scenes managing the servers where this work was done. I am fairly sure that I have spent more time with these servers than people in last two years and they have never left me frustrated. AITBiotech members who generated the Next Generation Sequencing data for this project. NUS for funding my studies through President’s Graduate Fellowship and for funding travel to and from London, Illumina for funding the MiSeq runs, Ministry of Education and National Parks Board for funding the project. Members of two labs: From NUS, Jayanthi, for tea breaks and giving amazing company here, you will be dearly missed. Sujatha, who taught me how to run my first PCR and who was there and back again. Lei, my batchmate who is writing this along with me, your support during writing helped me a lot. Kathy, for all the coffee breaks and bearing with random statements from my corner and brainstorming with me. Yuchen, for never failing to entertain, and helping with formatting this. Darren and Youguang for helping me with crosschecking and forms. Denise, Wing Hing, Shiyang, Mindy, Youguang, Ywee Chieh, Diego, Gwynne, Gowri, Jinfa, Li Young, Bilge, Amy, you all made lab a really great place. From NHM, Chris, for sharing your pipeline that made the databases happen, Alex and Martijn, for sharing your ideas and valuable discussions, Ben, Kirsten, Nicole, Debora, Martin, Samia, Carmelo, Conrad, Paula, for your great company. v A number of friends, in particular, Shweta (whose gift of white tea was a constant company during writing), Akshat, Manali, Shefali, Aishwarya, Shy, Anupama, Janani, Eli, Seetha and Souvik, thanks for putting up with me especially through this last year of strange level of communication. Anjali Ma’am and Hindustani greats for keeping me sane, even if momentarily. Amma, Appa, and Atreya, for being great role models in life and academia and for being my backbone throughout. vi TABLE OF CONTENTS SUMMARY ................................................................................................................ xi List of Figures ........................................................................................................... xiii List of tables and appendices ...................................................................................... xv List of publications .................................................................................................. xvii CHAPTER 1 General Introduction ............................................................................... 1 CHAPTER 2 On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA barcoding literature ........................................................................................... 13 2.1 Abstract ....................................................................................................... 13 2.2 Introduction ................................................................................................. 14 2.3 Materials and Methods ................................................................................ 17 2.4 Results and Discussion ................................................................................ 19 2.5 Conclusions ................................................................................................. 25 CHAPTER 3 An update on DNA Barcoding: Low species coverage and an increasing number of unidentified barcodes ................................................................................ 26 3.1 Abstract ....................................................................................................... 26 3.2 Introduction ................................................................................................. 28 3.2 Materials and Methods ................................................................................ 31 3.3 Results and Discussion ................................................................................ 33 3.3.1 Species coverage: Metazoa ............................................................................... 33 3.3.2 Species coverage: BOLD campaign taxa ......................................................... 36 3.3.3 Unidentified vs. Identified sequences ............................................................... 38 3.4 Conclusions ................................................................................................. 41 vii 3.5 An update ..................................................................................................... 42 CHAPTER 4 The databases for diet and parasite analyses: barcoding the Nee Soon Swamp forest and the bioinformatic retrieval of barcode sequences from GenBank . 43 4.1 Abstract ....................................................................................................... 43 4.2 Introduction ................................................................................................. 45 4.3 Methods ....................................................................................................... 49 4.3.1 Local databases ................................................................................................. 49 4.3.2 Data mining from GenBank .............................................................................. 50 4.3.3 rDNA databases ................................................................................................ 52 4.4 Results ......................................................................................................... 53 CHAPTER 5 Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf-feeding monkey (Pygathrix nemaeus) ............................................ 60 5.1 Abstract ....................................................................................................... 60 5.2 Introduction ................................................................................................. 62 5.3 Materials and Methods ................................................................................ 65 5.3.1 Diet composition ............................................................................................... 65 5.3.2 Sample preparation and Next Generation Sequencing ...................................... 65 5.3.3 Diet database ..................................................................................................... 67 5.3.4 Plant database ...................................................................................................
Recommended publications
  • Food Selection by Northern Yellow-Cheeked Crested Gibbons (Nomascus Annamensis)In Northern Cambodia
    Food Selection by Northern Yellow-cheeked Crested Gibbons (Nomascus annamensis)in Northern Cambodia Naven Hon A thesis submitted to Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity School of Biological Sciences Victoria University of Wellington New Zealand 2016 i Abstract Tropical regions have extremely high plant diversity, which in turn supports a high diversity of animals. However, not all plant species are selected by animals as food sources, with some herbivores selecting only specific plants as food as not all plants have the same nutrient make up. Animals must select which food items to include in their diets, as the amount and type of nutrients in their diet can affect lifespan, health, fitness, and reproduction. Gibbon populations have declined significantly in recent years due to habitat destruction and hunting. Northern yellow-cheeked crested gibbon (Nomascus annamensis) is a newly described species, and has a limited distribution restricted to Cambodia, Laos and Vietnam. The northern yellow-cheeked crested gibbons play an important role in seed dispersal, yet little is currently known about this species, including its food selection and nutritional needs. However, data on food selection and nutritional composition of selected food items would greatly inform the conservation of both wild and captive populations of this species. This study aims to quantify food selection by the northern yellow-cheeked crested gibbons by investigating the main plant species consumed and the influence of the availability of food items on their selection. The study also explores the nutritional composition of food items consumed by this gibbon species and identifying key plant species that provide these significant nutrients.
    [Show full text]
  • Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
    Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5].
    [Show full text]
  • The Use of Barcoding Sequences for the Construction of Phylogenetic Relationships in the Euphorbiaceae
    University of Padova Department of Land, Environment Agriculture and Forestry MSc in Mediterranean Forestry and Natural Resources Management The use of barcoding sequences for the construction of phylogenetic relationships in the Euphorbiaceae Supervisor: Alessandro Vannozzi Co-supervisor: Prof. Dr. Oliver Gailing Submitted by: Bikash Kharel Matriculation No. 1177536 ACADEMIC YEAR 2017/2018 Acknowledgments This dissertation has come to this positive end through the collective efforts of several people and organizations: from rural peasants to highly academic personnel and institutions around the world. Without their mental, physical and financial support this research would not have been possible. I would like to express my gratitude to all of them who were involved directly or indirectly in this endeavor. To all of them, I express my deep appreciation. Firstly, I am thankful to Prof. Dr. Oliver Gailing for providing me the opportunity to conduct my thesis on this topic. I greatly appreciate my supervisor Alessandro Vannozzi for providing the vision regarding Forest Genetics and DNA barcoding. My cordial thanks and heartfelt gratitude goes to him whose encouragements, suggestions and comments made this research possible to shape in this form. I am also thankful to Prof. Dr. Konstantin V. Krutovsky for his guidance in each and every step of this research especially helping me with the CodonCode software and reviewing the thesis. I also want to thank Erasmus Mundus Programme for providing me with a scholarship for pursuing Master’s degree in Mediterranean Forestry and Natural Resources Management (MEDFOR) course. Besides this, I would like to thank all my professors who broadened my knowledge during the period of my study in University of Lisbon and University of Padova.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Chemical Investigation of the Bark of Adenanthera Pavonina Linn Arzumand Ara, Md
    Int. J. Chem. Sci.: 10(1), 2012, 98-103 ISSN 0972-768X www.sadgurupublications.com CHEMICAL INVESTIGATION OF THE BARK OF ADENANTHERA PAVONINA LINN ARZUMAND ARA, MD. ABUL HASHEM* and TANVIR MUSLIMa Department of Chemistry, Jahangirnagar University, Savar, DHAKA – 1342, BANGLADESH aDepartment of Chemistry, University of Dhaka, DHAKA – 1000, BANGLADESH ABSTRACT The chemical investigation of the bark of Adenanthera pavonina Linn. have been found to contain the reducing sugar (1.01%) as glucose. The percentages of various amino acids present in the crude protein (5.25%) were found to be aspartic acid (0.10%), threonine (0.24%), serine (0.08%), glutamic acid (0.52%), glycine (0.09%), alanine (0.07%), valine (0.10%), methionine (0.13%), isoleucine (0.06%), tyrosine (0.27%), histidine (0.11%), lysine (0.88%) and arginine (0.25%). The fatty acid composition were found to be lauric (5.23%), palmitic (38.16%), oleic acid (6.29%) and stearic acid (8.93%). Key words: Adenanthera pavonina Linn, Reducing sugar, Amino acids, Fatty Acids. INTRODUCTION The plant Adenanthera pavonina Linn. (Bengali Rakta Kambal) belongs to the family Leguminosae and is an important medicinal plant widely distributed in the Asian and African countries1. As an indigenous plant it is grown and cultivated mostly in the south- eastern region of Bangladesh2. Decoction of the seeds is used in pulmonary affections and externally applied in chronic ophthalmia. The seeds of the plant are used for the treatment of boils and inflammations2,3. Methanolic extract of the seeds and roots showed blood pressure lowering effect2,4. The leaves and the barks of the plant are used as a remedy for chronic rheumatism, gout, haematuria, haematemesis and diarrhoea1-3.
    [Show full text]
  • Title Evolutionary Relationships Between Pollination and Protective Mutualisms in the Genus Macaranga (Euphorbiaceae)( Dissertat
    Evolutionary relationships between pollination and protective Title mutualisms in the genus Macaranga (Euphorbiaceae)( Dissertation_全文 ) Author(s) Yamasaki, Eri Citation 京都大学 Issue Date 2014-03-24 URL https://doi.org/10.14989/doctor.k18113 学位規則第9条第2項により要約公開; 許諾条件により本文 Right は2019-06-25に公開 Type Thesis or Dissertation Textversion ETD Kyoto University Evolutionary relationships between pollination and protective mutualisms in the genus Macaranga (Euphorbiaceae) Eri Yamasaki 2014 1 2 Contents 摘要.…………………………………………………………………………………..5 Summary.……………………………………………………………………………..9 Chapter 1 General introduction……………………………………………………………….14 Chapter 2 Diversity of pollination systems in Macaranga Section 2.1 Diversity of bracteole morphology in Macaranga ………………………….20 Section 2.2 Wind and insect pollination (ambophily) in Mallotus , a sister group of Macaranga …………..…………..……...…………..………………………...31 Section 2.3 Disk-shaped nectaries on bracteoles of Macaranga sinensis provide a reward for pollinators……………………………….………………………………...45 Chapter 3 Interactions among plants, pollinators and guard ants in ant-plant Macaranga Section 3.1 Density of ant guards on inflorescences and their effects on herbivores and pollinators…………………………………………………….......................56 Section 3.2 Anal secretions of pollinator thrips of Macaranga winkleri repel guard ants…….71 Chapter 4 General discussion.………………….……………………………………………...85 Appendix…………………………………………………………………….………89 Acknowledgement…………………………………………………………….…...101 Literature cited……………………………….…………………………………….103
    [Show full text]
  • Eurycoma Longifolia) Habitat in Batang Lubu Sutam Forest, North Sumatra, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 2, February 2019 E-ISSN: 2085-4722 Pages: 413-418 DOI: 10.13057/biodiv/d200215 The composition and diversity of plant species in pasak bumi’s (Eurycoma longifolia) habitat in Batang Lubu Sutam forest, North Sumatra, Indonesia ARIDA SUSILOWATI1,♥, HENTI HENDALASTUTI RACHMAT2, DENI ELFIATI1, M. HABIBI HASIBUAN1 1Faculty of Forestry, Universitas Sumatera Utara. Jl. Tridharma Ujung No.1 Kampus USU, Medan 20155, North Sumatra, Indonesia. Tel./fax.: + 62-61-8220605 ♥email: [email protected] 2Forest Research, Development and Innovation, Ministry of Environment and Forestry. Jl. Raya Gunung Batu 5 Bogor 16610, West Java, Indonesia Manuscript received: 6 October 2018. Revision accepted: 21 January 2019. Abstract. Susilowati A, Rachmat HH, Elfiati D, Hasibuan MH. 2019. The composition and diversity of plant species in pasak bumi’s (Eurycoma longifolia) habitat in Batang Lubu Sutam forest, North Sumatra, Indonesia. Biodiversitas 20: 413-418. Pasak bumi (Eurycoma longifolia Jack) is one of the most popular medicinal plants in Indonesia. Currently, E. longifolia is being over-exploited due to its potential and popularity as herbal medicine and its high value in the market. Therefore, the study on the population structure of the species and habitat characterization is required to ensure successfulness of conservation of this species. The study was carried out in lowland forest, located in Limited Production Forest within the Register Number 40, situated administratively in Papaso Village, Sub- District of Batang Lubu Sutam-Padang Lawas, North Sumatra, Indonesia. Batang Lubu Sutam forest is known as a source of pasak bumi material in North Sumatra. Every year tons of pasak bumi are collected from this forest and exported to Malaysia and surrounding countries.
    [Show full text]
  • Pharmacognosy, Phytochemical Study and Antioxidant Activity of Sterculia Rubiginosa Zoll
    Pharmacogn J. 2018; 10(3):571-575. A Multifaceted Journal in the field of Natural Products and Pharmacognosy Original Article www.phcogj.com | www.journalonweb.com/pj | www.phcog.net Pharmacognosy, Phytochemical Study and Antioxidant Activity of Sterculia rubiginosa Zoll. Ex Miq. Leaves Rini Prastiwi1,2*, Berna Elya2, Rani Sauriasari3, Muhammad Hanafi4, Ema Dewanti1 ABSTRACT Introduction: Sterculia rubiginosa Zoll ex.Miq leaves have been used as traditional medicine in Indonesia. There is no report about pharmacognosy and phytochemical study with this plant.Objective: The main aim of this research is to establish pharmacognosy, phytochemical study and antioxidant activity of Sterculia rubiginosa Zoll.ex. Miq. Leaves. The plant used to cure many diseases of Indonesia. Methods: In the present study, pharmacognosy and phyto- 1,2* chemical study of plant material were performed as per the Indonesian Herb Pharmacopoeia. Rini Prastiwi , Berna Results: Microscopy powder of Sterculia rubiginosa Zoll.ex. Miq. Leaves shows star shape Elya2, Rani Sauriasari3, trichoma as a specific fragment. Physicochemical parameters including total ash (17.152 %), Muhammad Hanafi4, acid-insoluble ash (0.922 %), water-soluble extractive (1.610 % w/w), alcohol-soluble extractive Ema Dewanti1 (4.524 % w/w), hexane-soluble extractive (4.005 % w/w), and ethyl acetate-soluble extractive (3.160 % w/w) were evaluated. Phytochemical screening of ethanol extracts showed the 1Department of Pharmacognosy- presence of tannins, flavonoids, alkaloids, steroids-terpenoids, glycosides, and phenols. And Phytochemistry, Faculty of Pharmacy absent of saponins and Anthraquinones. Antioxidant activity with IC50 157, 4665 ppm and and Science Muhammadiyah Prof.Dr. flavonoid total was 59.436 mg/g quercetin equivalent.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for Lyme Disease (Chronic)
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for Lyme Disease (Chronic) Plant Chemical Count Activity Count Garcinia xanthochymus 1 1 Nicotiana rustica 1 1 Acacia modesta 1 1 Galanthus nivalis 1 1 Dryopteris marginalis 2 1 Premna integrifolia 1 1 Senecio alpinus 1 1 Cephalotaxus harringtonii 1 1 Comptonia peregrina 1 1 Diospyros rotundifolia 1 1 Alnus crispa 1 1 Haplophyton cimicidum 1 1 Diospyros undulata 1 1 Roylea elegans 1 1 Bruguiera gymnorrhiza 1 1 Gmelina arborea 1 1 Orthosphenia mexicana 1 1 Lumnitzera racemosa 1 1 Melilotus alba 2 1 Duboisia leichhardtii 1 1 Erythroxylum zambesiacum 1 1 Salvia beckeri 1 1 Cephalotaxus spp 1 1 Taxus cuspidata 3 1 Suaeda maritima 1 1 Rhizophora mucronata 1 1 Streblus asper 1 1 Plant Chemical Count Activity Count Dianthus sp. 1 1 Glechoma hirsuta 1 1 Phyllanthus flexuosus 1 1 Euphorbia broteri 1 1 Hyssopus ferganensis 1 1 Lemaireocereus thurberi 1 1 Holacantha emoryi 1 1 Casearia arborea 1 1 Fagonia cretica 1 1 Cephalotaxus wilsoniana 1 1 Hydnocarpus anthelminticus 2 1 Taxus sp 2 1 Zataria multiflora 1 1 Acinos thymoides 1 1 Ambrosia artemisiifolia 1 1 Rhododendron schotense 1 1 Sweetia panamensis 1 1 Thymelaea hirsuta 1 1 Argyreia nervosa 1 1 Carapa guianensis 1 1 Parthenium hysterophorus 1 1 Rhododendron anthopogon 1 1 Strobilanthes cusia 1 1 Dianthus superbus 1 1 Pyropolyporus fomentarius 1 1 Euphorbia hermentiana 1 1 Porteresia coarctata 1 1 2 Plant Chemical Count Activity Count Aerva lanata 1 1 Rivea corymbosa 1 1 Solanum mammosum 1 1 Juniperus horizontalis 1 1 Maytenus
    [Show full text]
  • Peer-Review Article
    PEER-REVIEWED ARTICLE bioresources.com Effects of Different Drying Treatments on Preservation of Organic Compounds in Dalbergia bariensis Wood Lin Yang,a Tao Jiang,b,c Honghai Liu,a and Kaifu Li b,* Rosewood furniture and handicrafts are appreciated by Chinese people on account of their rich aroma and pleasing feel. The unique characteristics of rosewood are attributed to the presence of certain organic compounds in its gum canal and parenchyma cells. However, modern wood drying is different from traditional technology with respect to protecting those valuable organic compounds in wood. In this study, to investigate the valuable organic compounds in Dalbergia bariensis, and the effect of drying treatments on their preservation rates, wood extracts, untreated and treated with conventional drying (CD), vacuum drying (VD), and vacuum freeze drying (VFD), were analyzed by gas chromatography- mass spectrometry (GC-MS). The results indicated that there were some compounds with obvious pharmaceutical functions in Dalbergia bariensis, which can be used to improve the furniture function in health care. Also, the preservation of these compounds was affected by drying treatment; VFD drying preserved the maximum amount of organic compounds in wood. Keywords: Dalbergia bariensis; Organic compounds; Extract; Effect of drying; Aroma of wood Contact information: a: College of Furniture and Industrial Design, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China; b: College of Forestry, South China Agricultural University, No.483 Wushan Road, Tianhe District, GuangZhou 510642, China; c: CEPREI Laboratory, Guangzhou 510075 , China; *Corresponding author: [email protected] INTRODUCTION Dalbergia is a large genus in the pea family, Fabaceae, subfamily Faboideae.
    [Show full text]
  • Tree Taxa Inventory at Ayer Hitam Forest Base-Camp
    PertanikaJ. Trop. Agric. Sci. 24(1): 29 - 34 (2001) ISSN: 1511-3701 © Universiti Putra Malaysia Press Tree Taxa Inventory at Ayer Hitam Forest Base-Camp I. FARIDAH HANUM, A. RAHIM, P. LEPUN, I. EDHAM and M. NAZRE Fpculty. ofForestry, Universit Putra Malaysia 43400' UPM Serdang, Selangor, Malaysia Keywords: Base-carnp, tree species, endemic, education, Ayer Hitam ABSTRAK Inventori yang dijalankan di sekitar kawasan perkhemahan melalui 6 denai baru mendapati 86 spesies pokok tumbuhan berbiji yang terkandung di dalam 68 genera dan 32 famili. Daripada jumlah tersebut 22 merupakan spesies balak, 9 spesies buah-buahan, 3 spesies ubat-ubatan dan 8 spesies pokok yang mengeluarkan bahan pencelup dan tanin. Daripada kesemua takson ini sebanyak 6 spes"ies yang endemik kepada Semenanjung Malaysia juga terdapat di kawasan ini; dua daripadanya adalah rekod baru bagi Negeri Selangor. Kawasan tapak perkhemahan ini sesuai dijadikan kawasan pembelajaran dan latihan amali bagi kursus-kursus berkaitan perhutanan dan alam sekitar. ABSTRACT An inventory at the base camp along 6 new trails recorded a total of86 species of seed plant taxa in 68 genera and 32 families. Of this number 22 timber species, 9 fruit tree species, 3 species with medicinal values and 8 species producing dye and tannins were identified. 6 Peninsular Malaysian endemics are also found here, two being new records for Selangor. This area is useful for teaching and practical training for forestry related and environmental courses. INTRODUCTION In this paper, an assessment on the suitabil­ AyeI' Hitam Forest Reserve, which is located ity of the AyeI' Hitam Forest base camp area for within the Multimedia Super Corridor that con­ teaching forest related courses and environment nects Kuala Lumpur with the new administrative in the university and its vicinity will be discussed.
    [Show full text]
  • Downloaded From: Usage Rights: Creative Commons: Attribution-Noncommercial-No Deriva- Tive Works 4.0
    Trethowan, Liam Andrew (2018) Phytogeography and the stoichiometric niche: exploring their interplay in Sulawesi. Doctoral thesis (PhD), Manch- ester Metropolitan University in collaboration with Royal Botanic Gardens Kew. Downloaded from: https://e-space.mmu.ac.uk/623370/ Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva- tive Works 4.0 Please cite the published version https://e-space.mmu.ac.uk PHYTOGEOGRAPHY AND THE STOICHIOMETRIC NICHE: EXPLORING THEIR INTERPLAY IN SULAWESI LIAM ANDREW TRETHOWAN A thesis submitted in partiAl fulfilment of the requirements of MAnchester MetropolitAn University for the degree of Doctor of Philosophy School of Science and Environment, Manchester MetropolitAn University in collaboration with RoyAl Botanic GArdens Kew 2018 1 For the people of SulAwesi whose goodwill, cheeriness and resourcefulness are the foundation of this thesis. They deserve fAr more than trAgedy. 2 Acknowledgements I thank the Indonesian Ministry for Research and Technology (RISTEK) for permission to perform fieldwork. Also, Herbarium Bogoriense (BO) for the Memorandum of Understanding and Material Transfer Agreement that supported my application to perform Indonesian fieldwork and to Deden Girmansyah and Endang Kintamani my counterparts from BO who provided support and key logistical help throughout my trip. Thanks to the Indonesian Agricultural Research Agency (Badan Litbang Kementerian Pertanian) for performing soil analyses. Funding for labwork and fieldwork was provided by the Bentham Moxon Trust, Coalbourn Trust, Botanical Research Fund, an MMU postgraduate research award and two Emily Holmes awards. I would like to thank numerous people from Sulawesi for their help and support; in particular researchers and Forestry Department workers: Ramadhanil Pitopang, Asrianti Arif, Rosmarlinasiah, Niken Purwijaya, Bambang, Saroso and Marcy Summers.
    [Show full text]