University of Florida Thesis Or Dissertation Formatting Template

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation Formatting Template PATHOGEN, HOST, AND ENVIRONMENTAL DYNAMICS: A CASE STUDY OF PANULIRUS ARGUS VIRUS 1 IN CARIBBEAN SPINY LOBSTERS By ABIGAIL S. CLARK A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Abigail S. Clark To Jason, Mom, Dad, and Grandma ACKNOWLEDGMENTS This work would not have been successful without the support of several individuals and funding sources. I would first like to thank my supervisory chair, Donald Behringer, and my supervisory co-chair, Thomas Waltzek, without whom this work would not have possible. I am sincerely grateful to them for their leadership, intellect, and endless encouragement. The following personnel assisted with sample collection: Angelo Jason Spadaro, Mark Butler, Joshua Anderson, Jack Butler, Gaya Gnanalingam, Danielle Puls, Nathan Berkebile, Erica Ross, David Ousley, Evan Hill, and Alyssa Thompson. Additional help was provided by Tom Matthews, Casey Butler, and Gabby Renchen of Florida Fish and Wildlife Conservation Commission who supplied postlarval lobsters. Assistance with molecular work was provided by Linda Archer, Natalie Stilwell, Patrick Thompson, Jason Ferrante, Galaxia Cortés-Hinojosa, Gabriel Diaz, Anna Swigris, and Jaime Haggard. I would like to acknowledge the following faculty members, students, and support staff: Kuttichantran Subramaniam, Andrew Kane, Ross Brooks, Ruth Francis-Floyd, James Wellehan, James Colee, Debra Murie, Daryl Parkyn, Larry Tolbert, Justin Stilwell, Samantha Koda, Mameow Preeyanan, Kamonchai Imnoi, Elizabeth Scherbatskoy, Nelmarie Landrau Giovannetti, Rachel Henriquez, Jared Freitas, Pedro Henrique Viadanna, and Maria Jose Robles Malagamba. These individuals were instrumental in various aspects of my research, ranging from laboratory logistics to lobster dissections. Finally, I would like to recognize my committee members, Samantha Wisely, Jessica Moss Small, and Robert Swett for their unending support and mentorship. This project was funded by a Florida Sea Grant Scholars program grant (ASC), a University of Florida Opportunity Seed Fund grant (DCB, JFXW, and TBW), and National Science Foundation – Biological Oceanography grant OCE-0928398 (DCB). 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES ...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 LIST OF ABBREVIATIONS ..........................................................................................................9 ABSTRACT ...................................................................................................................................10 CHAPTER 1 LITERATURE REVIEW .......................................................................................................12 Disease Ecology ......................................................................................................................12 Environmental Effects on Crustacean Health .........................................................................15 Crustacean Immune Response ................................................................................................16 Pathogens in Crustaceans .......................................................................................................17 2 VALIDATION OF A TAQMAN REAL-TIME QUANTITATIVE PCR ASSAY FOR THE DETECTION OF PANULIRUS ARGUS VIRUS 1 .....................................................20 Introduction .............................................................................................................................20 Materials and Methods ...........................................................................................................21 In silico TaqMan qPCR Primer and Probe Design ..........................................................21 Detection of PaV1 DNA Using the qPCR Assay ............................................................21 Estimation of the qPCR Assay Slope, Y-Intercept, Correlation Coefficient (R2), Efficiency, Dynamic Range, Analytical Sensitivity, Repeatability, Reproducibility, and Analytical Specificity .................................................................22 Estimation of the qPCR Assay Diagnostic Sensitivity and Specificity ...........................23 Results.....................................................................................................................................25 In silico TaqMan qPCR Primer and Probe Design ..........................................................25 Estimation of the qPCR Assay Slope, Y-Intercept, Correlation Coefficient (R2), Efficiency, Dynamic Range, Analytical Sensitivity, Repeatability, Reproducibility, and Analytical Specificity .................................................................25 Estimation of the qPCR Assay Diagnostic Sensitivity and Specificity ...........................26 Discussion ...............................................................................................................................26 3 VIABILITY OF PANULIRUS ARGUS VIRUS 1 IN SEAWATER .....................................39 Introduction .............................................................................................................................39 Materials and Methods ...........................................................................................................41 Lobster Screening ............................................................................................................41 Viral Purification and Quantitation .................................................................................42 5 Sampling and Experimental Setup ..................................................................................42 Results.....................................................................................................................................44 Viral Inocula and Concentrations ....................................................................................44 PaV1 Viability .................................................................................................................45 Discussion ...............................................................................................................................46 4 THE RELATIONSHIP BETWEEN VIRAL LOAD AND INFECTION IN CARIBBEAN SPINY LOBSTERS EXPOSED TO PANULIRUS ARGUS VIRUS 1 ..........55 Introduction .............................................................................................................................55 Materials and Methods ...........................................................................................................58 Lobster Collection and Screening ...................................................................................58 Inoculation .......................................................................................................................58 Sampling ..........................................................................................................................60 Data Analyses ..................................................................................................................60 Results.....................................................................................................................................60 Viral Load ........................................................................................................................60 Lobster Mortality .............................................................................................................61 Discussion ...............................................................................................................................62 5 SPONGES AND THE SPATIAL EPIDEMIOLOGY OF PANULIRUS ARGUS VIRUS 1 IN CARIBBEAN SPINY LOBSTERS THROUGHOUT THE FLORIDA KEYS, USA ........................................................................................................................................74 Introduction .............................................................................................................................74 Materials and Methods ...........................................................................................................77 Sample Collection ...........................................................................................................77 Data Analyses ..................................................................................................................78 Results.....................................................................................................................................79 PaV1 Prevalence ..............................................................................................................79 Community Characteristics .............................................................................................79 PaV1 Prevalence vs. Community Characteristics ...........................................................80 Discussion ...............................................................................................................................81 6 CONCLUSIONS ....................................................................................................................95
Recommended publications
  • Parasitic Dinoflagellate Hematodinium Perezi Prevalence in Larval and Juvenile Blue Crabs Callinectes Sapidus from Coastal Bays of Virginia
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 6-6-2019 Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia HJ Small Virginia Institute of Marine Science JP Huchin-Mian Virginia Institute of Marine Science KS Reece Virginia Institute of Marine Science KM Pagenkopp Lohan MJ Butler IV See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons, and the Parasitology Commons Recommended Citation Small, HJ; Huchin-Mian, JP; Reece, KS; Pagenkopp Lohan, KM; Butler, MJ IV; and Shields, JD, Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia (2019). Diseases of Aquatic Organisms, 134, 215-222. 10.3354/dao03371 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors HJ Small, JP Huchin-Mian, KS Reece, KM Pagenkopp Lohan, MJ Butler IV, and JD Shields This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1428 Vol. 134: 215–222, 2019 DISEASES OF AQUATIC ORGANISMS Published online June 6 https://doi.org/10.3354/dao03371 Dis Aquat Org OPENPEN ACCESSCCESS Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia H. J. Small1,*, J. P. Huchin-Mian1,3, K.
    [Show full text]
  • Role of Symbiotic Bacteria on Life History Traits of Freshwater Crustacean, Daphnia Magna
    Title Role of symbiotic bacteria on life history traits of freshwater crustacean, Daphnia magna Author(s) Peerakietkhajorn, Saranya Citation Issue Date Text Version ETD URL https://doi.org/10.18910/54011 DOI 10.18910/54011 rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University Doctoral Dissertation Role of symbiotic bacteria on life history traits of freshwater crustacean, Daphnia magna Saranya Peerakietkhajorn June 2015 Department of Biotechnology Graduate School of Engineering Osaka University 1 Contents Chapter 1 General introduction 5 1.1 Biology of Daphnia 6 1.2 Daphnia in bioenvironmental sciences 10 1.3 Molecular genetics of Daphnia 10 1.4 Symbiosis 11 1.5 Objective of this study 14 Chapter 2 Role of symbiotic bacteria on life history traits of D. magna and bacterial community composition 2.1 Introduction 15 2.2 Material and Methods 2.2.1 Daphnia strain and culture condition 16 2.2.2 Axenic Chlorella 17 2.2.3 Preparation of aposymbiotic juvenile Daphnia 17 2.2.4 Bacteria-free culture of aposymbiotic Daphnia 18 2.2.5 Determination of longevity of Daphnia 18 2.2.6 Re-infection by co-culture with symbiotic Daphnia 18 2.2.7 Re-infection by dipping in Daphnia extracts 18 2.2.8 DNA extraction 19 2.2.9 Quantitative polymerase chain reaction (qPCR) 19 2.2.10 Sequencing 20 2.2.11 Statistical analyse 20 2.3 Results 2 2.3.1 Generation of aposymbiotic Daphnia 20 2.3.2 Longevity of aposymbiotic Daphnia 22 2.3.3 Population dynamics of aposymbiotic Daphnia 23 2.3.4 Recovery of fecundity of aposymbiotic Daphnia by re-infection 23 2.3.5 Sequencing of symbiotic bacteria 26 2.4 Discussion 30 2.5 Summary 32 Chapter 3 Role of Limnohabitans, a dominant bacterium on D.
    [Show full text]
  • Lobster Diseases
    HELGOL~NDER MEERESUNTERSUCHUNGEN Helgol~inder Meeresunters. 37, 243-254 (1984) Lobster diseases J. E. Stewart Fisheries Research Branch, Department of Fisheries and Oceans; P.O.Box 550, Hallfax, Nova Scotia, Canada B3J 2S7 ABSTRACT: A number of diseases affecting lobsters (shell disease, fungal infections and a few selected parasitic occurrences} are described and have been discussed briefly. The bacterial disease, gaffkemia, is described in more detail and used insofar as possible to illustrate the interaction of a pathogen with a vulnerable crustacean host. Emphasis has been placed on the holistic approach stressing the capacity of lobsters and other crustaceans to cope with disease through flexible defense mechanisms, including on occasion the development of resistance. INTRODUCTION Although lobsters in their natural environments and in captivity are exposed to a wide range of microorganisms the list of diseases to which they are recorded as being subject is not lengthy. The list, however, will undoubtedly lengthen as studies on the lobsters continue and in particular as attempts to culture lobsters proceed. Lobsters in keeping with other large and long lived crustaceans appear to be reasonably equipped to deal with most infectious agents. They possess a continuous sheath of chitinous shell or membranous covering composed of several different layers more or less impervious to normal wear and tear. In addition, once this barrier is breached a battery of intrinsic defenses is available to confine or destroy disease agents. These include rapid formation of a firm non-retracting hemolymph clot, bactericidins, agglutinins, phagocytic capacity or encapsulation and melanization. All of these serve the lobsters well until the animals are faced with an infectious agent which through circumstance or unique capabilities is able to overcome these defenses.
    [Show full text]
  • Cefas PANDA Report
    Project no. SSPE-CT-2003-502329 PANDA Permanent network to strengthen expertise on infectious diseases of aquaculture species and scientific advice to EU policy Coordination Action, Scientific support to policies WP4: Report on the current best methods for rapid and accurate detection of the main disease hazards in aquaculture, requirements for improvement, their eventual standardisation and validation, and how to achieve harmonised implementation throughout Europe of the best diagnostic methods Olga Haenen*, Inger Dalsgaard, Jean-Robert Bonami, Jean-Pierre Joly, Niels Olesen, Britt Bang Jensen, Ellen Ariel, Laurence Miossec and Isabelle Arzul Work package leader & corresponding author: Dr Olga Haenen, CIDC-Lelystad, NL ([email protected]) PANDA co-ordinator: Dr Barry Hill, CEFAS, UK; www.europanda.net © PANDA, 2007 Cover image: Koi with Koi Herpes Virus Disease: enophthalmia and gill necrosis (M.Engelsma acknowl.) Contents Executive summary 5 Section 1 Introduction 7 1.1 Description of work 7 1.2 Deliverables 8 1.3 Milestones and expected results 9 1.4 Structure of the report and how to use it 9 1.5 General remarks and links with other WPs of PANDA 9 Section 2 Materials and methods 10 2.1 Task force 10 2.2 Network 10 2.3 Workshops and dissemination 10 2.4 Analysis of data 10 2.5 Why harmonization throughout Europe background and aim 11 2.6. CRL functions 11 Section 3 Results 12 3.1 Task force 12 3.2 Network 12 3.3 Workshops and dissemination 12 3.4 Analysis of data 14 Diseases/pathogens of fish 14 3.4.1 Epizootic haematopoietic necrosis
    [Show full text]
  • Pre-Exposure to Infectious Hypodermal and Haematopoietic Necrosis Virus Or to Inactivated White Spot Syndrome Virus
    Journal of Fish Diseases 2006, 29, 589–600 Pre-exposure to infectious hypodermal and haematopoietic necrosis virus or to inactivated white spot syndrome virus (WSSV) confers protection against WSSV in Penaeus vannamei (Boone) post-larvae J Melena1,4, B Bayot1, I Betancourt1, Y Amano2, F Panchana1, V Alday3, J Caldern1, S Stern1, Ph Roch4 and J-R Bonami4 1 Fundacio´n CENAIM-ESPOL, Guayaquil, Ecuador 2 Instituto Nacional de Higiene, Leopoldo Izquieta Pe´rez, Guayaquil, Ecuador 3 INVE TECHNOLOGIES nv, Dendermonde, Belgium 4 Pathogens and Immunity, EcoLag, Universite´ Montpellier 2, Montpellier cedex 5, France delayed mortality. This evidence suggests a pro- Abstract tective role of IHHNV as an interfering virus, while Larvae and post-larvae of Penaeus vannamei protection obtained by inactivated WSSV might (Boone) were submitted to primary challenge with result from non-specific antiviral immune response. infectious hypodermal and haematopoietic necrosis Keywords: infectious hypodermal and haemato- virus (IHHNV) or formalin-inactivated white spot poietic necrosis virus, Penaeus vannamei, viral syndrome virus (WSSV). Survival rate and viral co-infection, viral inactivation, viral interference, load were evaluated after secondary per os challenge white spot syndrome virus. with WSSV at post-larval stage 45 (PL45). Only shrimp treated with inactivated WSSV at PL35 or with IHHNV infection at nauplius 5, zoea 1 and Introduction PL22 were alive (4.7% and 4%, respectively) at Viral diseases have led to severe mortalities of 10 days post-infection (p.i.). Moreover, at 9 days cultured penaeid shrimp all over the world (Flegel p.i. there was 100% mortality in all remaining 1997; Lightner 1999).
    [Show full text]
  • ABSTRACT Dinoflagellate Parasites in the Hematodinium Genus Have
    ABSTRACT Title of Document: DEVELOPMENT, VALIDATION AND APPLICATION OF A QUANTITATIVE POLYMERASE CHAIN REACTION ASSAY TO ASSESS ENVIRONMENTAL SAMPLES FOR HEMATODINIUM PEREZI PREVALENCE Ammar W. Hanif, MS, 2012 Directed By: Assistant Professor Eric J. Schott, Institute of Marine and Environmental Technology, University of Maryland Center of Environmental Science Associate Professor Rosemary Jagus, Co- advisor, Institute of Marine and Environmental Technology, University of Maryland Center of Environmental Science Dinoflagellate parasites in the Hematodinium genus have emerged as important pathogens of economically important crustaceans worldwide, causing significant economic losses to fisheries and aquaculture. An understanding of the routes of infection in blue crab (Callinectes sapidus) populations would be facilitated by an improved knowledge of environmental reservoirs. A previously used PCR assay, based on small subunit rRNA sequences, lacked the specificity needed for Hematodinium perezi detection of environmental samples. Therefore a quantitative PCR assay based on the internal transcribed spacer 2 (ITS2) region of H. perezi rRNA genes was developed, validated, and applied to examine temporal and spatial incidences of environmental reservoirs in Delmarva coastal bays. H. perezi was detected in sediment and water in several Delmarva coastal bays, as well as the host, C. sapidus. Results suggest the existence of localized sediment reservoirs in areas where hydrological and geophysical features allow for the formation of cell deposits. DEVELOPMENT, VALIDATION, AND APPLICATION OF A QUANTITATIVE POLYMERASE CHAIN REACTION ASSAY TO ASSESS HEMATODINIUM PEREZI PREVALENCE IN ENVIRONMENTAL SAMPLES By Ammar W. Hanif Thesis submitted to the Faculty of the Graduate School of the University of Maryland College Park, in partial fulfillment of the requirements for the degree of Master of Science 2012 Advisory committee: Professor Eric J.
    [Show full text]
  • Enhanced Cellular Immunity in Shrimp (Litopenaeus Vannamei) After ‘Vaccination’
    Enhanced Cellular Immunity in Shrimp (Litopenaeus vannamei) after ‘Vaccination’ Edward C. Pope1., Adam Powell1., Emily C. Roberts1, Robin J. Shields1, Robin Wardle2, Andrew F. Rowley1* 1 Centre for Sustainable Aquatic Research, Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom, 2 Intervet/Schering – Plough Animal Health (Aquaculture), Aquaculture Centre, Saffron Walden, United Kingdom Abstract It has long been viewed that invertebrates rely exclusively upon a wide variety of innate mechanisms for protection from disease and parasite invasion and lack any specific acquired immune mechanisms comparable to those of vertebrates. Recent findings, however, suggest certain invertebrates may be able to mount some form of specific immunity, termed ‘specific immune priming’, although the mechanism of this is not fully understood (see Textbox S1). In our initial experiments, either formalin-inactivated Vibrio harveyi or sterile saline were injected into the main body cavity (haemocoel) of juvenile shrimp (Litopenaeus vannamei). Haemocytes (blood cells) from V. harveyi-injected shrimp were collected 7 days later and incubated with a 1:1 mix of V. harveyi and an unrelated Gram positive bacterium, Bacillus subtilis. Haemocytes from ‘vaccinated’ shrimp showed elevated levels of phagocytosis of V. harveyi, but not B. subtilis, compared with those from saline-injected (non-immunised) animals. The increased phagocytic activity was characterised by a significant increase in the percentage of phagocytic cells. When shrimp were injected with B. subtilis rather than vibrio, there was no significant increase in the phagocytic activity of haemocytes from these animals in comparison to the non-immunised (saline injected) controls. Whole haemolymph (blood) from either ‘immunised’ or non-immunised’ shrimp was shown to display innate humoral antibacterial activity against V.
    [Show full text]
  • Disease of Aquatic Organisms 100:89
    Vol. 100: 89–93, 2012 DISEASES OF AQUATIC ORGANISMS Published August 27 doi: 10.3354/dao02510 Dis Aquat Org OPENPEN ACCESSCCESS INTRODUCTION Disease effects on lobster fisheries, ecology, and culture: overview of DAO Special 6 Donald C. Behringer1,2,*, Mark J. Butler IV3, Grant D. Stentiford4 1Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32653, USA 2Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610, USA 3Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA 4European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK ABSTRACT: Lobsters are prized by commercial and recreational fishermen worldwide, and their populations are therefore buffeted by fishery practices. But lobsters also remain integral members of their benthic communities where predator−prey relationships, competitive interactions, and host−pathogen dynamics push and pull at their population dynamics. Although lobsters have few reported pathogens and parasites relative to other decapod crustaceans, the rise of diseases with consequences for lobster fisheries and aquaculture has spotlighted the importance of disease for lobster biology, population dynamics and ecology. Researchers, managers, and fishers thus increasingly recognize the need to understand lobster pathogens and parasites so they can be managed proactively and their impacts minimized where possible. At the 2011 International Con- ference and Workshop on Lobster Biology and Management a special session on lobster diseases was convened and this special issue of Diseases of Aquatic Organisms highlights those proceed- ings with a suite of articles focused on diseases discussed during that session.
    [Show full text]
  • 11 Shields FISH 98(1)
    139 Abstract.–On the eastern seaboard of Mortality and hematology of blue crabs, the United States, populations of the blue crab, Callinectes sapidus, experi- Callinectes sapidus, experimentally infected ence recurring outbreaks of a parasitic dinoflagellate, Hematodinium perezi. with the parasitic dinoflagellate Epizootics fulminate in summer and autumn causing mortalities in high- Hematodinium perezi* salinity embayments and estuaries. In laboratory studies, we experimentally investigated host mortality due to the Jeffrey D. Shields disease, assessed differential hemato- Christopher M. Squyars logical changes in infected crabs, and Department of Environmental Sciences examined proliferation of the parasite. Virginia Institute of Marine Science Mature, overwintering, nonovigerous The College of William and Mary female crabs were injected with 103 or P.O. Box 1346, Gloucester Point, VA 23602, USA 105 cells of H. perezi. Mortalities began E-mail address (for J. D. Shields): [email protected] 14 d after infection, with a median time to death of 30.3 ±1.5 d (SE). Sub- sequent mortality rates were greater than 86% in infected crabs. A relative risk model indicated that infected crabs were seven to eight times more likely to Hematodinium perezi is a parasitic larger, riverine (“bayside”) fishery; die than controls and that decreases in total hemocyte densities covaried signif- dinoflagellate that proliferates in it appears most detrimental to the icantly with mortality. Hemocyte densi- the hemolymph of several crab spe- coastal (“seaside”) crab fisheries. ties declined precipitously (mean=48%) cies. In the blue crab, Callinectes Outbreaks of infestation by Hema- within 3 d of infection and exhibited sapidus, H. perezi is highly patho- todinium spp.
    [Show full text]
  • A Review of the Impact of Diseases on Crab and Lobster Fisheries
    A Review Of The Impact Of Diseases On Crab And Lobster Fisheries Jeffrey D. Shields Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062 Abstract Diseases are a natural component of crustacean populations. Background levels of various agents are expected in fished populations, and there is good reason to establish baseline levels of pathogens in exploited fisheries before they become a problem. Such baselines are often difficult to fund or publish; nonetheless, outbreaks are an integral feature of heavily exploited populations. Mortalities or other problems can arise when an outbreak occurs, and all too often the underlying causes of an outbreak are poorly understood. A variety of stressors can lead to outbreaks of disease or contribute to their severity. Pollution, poor water quality, hypoxia, temperature extremes, overexploitation have all been implicated in various outbreaks. This review focuses on epidemic diseases of commercially important crabs and lobsters as well as a few examples of other disease issues in crustaceans that are ecologically important, but not of commercial significance. Key words: pathogens, crustaceans, mortality, Carcinonemertes, PaV1, overfishing, Rhizo- cephala, Paramoeba Introduction Pathogens cause direct and indirect losses to fish were thought to contain presumptive crustacean fisheries. Direct losses are obvi- toxins (Magnien 2001). At the time, the ous, resulting in morbidity or mortality to scare threatened the commercial fishing in- the fished species, but they can be difficult dustry of Chesapeake Bay because consum- to assess. However, mortality events can be ers did not purchase fish from the region. widespread and can even damage the socio- economics of impacted fishing communities, Direct losses are most visible to the fishery such as the lobster mortality event in Long because the outcome is usually morbidity or Island Sound during 1999 (Pearce and mortality to the targeted component of the Balcom 2005).
    [Show full text]
  • Prevalence of Blue Crab (Callinectes Sapidus) Diseases, Parasites, And
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2014 Prevalence of Blue Crab (Callinectes sapidus) Diseases, Parasites, and Symbionts in Louisiana Holly Rogers Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Environmental Sciences Commons Recommended Citation Rogers, Holly, "Prevalence of Blue Crab (Callinectes sapidus) Diseases, Parasites, and Symbionts in Louisiana" (2014). LSU Master's Theses. 3071. https://digitalcommons.lsu.edu/gradschool_theses/3071 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. PREVALENCE OF BLUE CRAB (CALLINECTES SAPIDUS) DISEASES, PARASITES, AND SYMBIONTS IN LOUISIANA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Renewable Natural Resources by Holly A. Rogers B.S., University of Cincinnati, 2011 August 2014 ACKNOWLEDGMENTS I would like to thank my major professor, Dr. Julie Anderson, for selecting me for this assistantship and research project and for teaching more than I ever wanted to know about blue crabs. I would also like to thank Dr. Bill Kelso for his advice and instruction, particularly on scientific writing. I owe thanks to Dr. John Hawke for his guidance on crab and aquatic diseases and Dr. Sabrina Taylor for her helpful PCR advice.
    [Show full text]
  • Parasites and Marine Invasions: Ecological and Evolutionary Perspectives
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center SEARES-01422; No of Pages 16 Journal of Sea Research xxx (2016) xxx–xxx Contents lists available at ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Parasites and marine invasions: Ecological and evolutionary perspectives M. Anouk Goedknegt a,⁎, Marieke E. Feis b, K. Mathias Wegner b, Pieternella C. Luttikhuizen a,c, Christian Buschbaum b, Kees (C. J.) Camphuysen a, Jaap van der Meer a,d, David W. Thieltges a,c a Marine Ecology Department, Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, Den Burg, 1790 AB Texel, The Netherlands b Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List auf Sylt, Germany c Department of Marine Benthic Ecology and Evolution GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands d Department of Animal Ecology, VU University Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands article info abstract Article history: Worldwide, marine and coastal ecosystems are heavily invaded by introduced species and the potential role of Received 28 February 2015 parasites in the success and impact of marine invasions has been increasingly recognized. In this review, we Received in revised form 1 December 2015 link recent theoretical developments in invasion ecology with empirical studies from marine ecosystems in Accepted 7 December
    [Show full text]