Quick viewing(Text Mode)

2015-10-26 1 Polymer Characterization by Temperature

2015-10-26 1 Polymer Characterization by Temperature

2015-10-26

Polymer Characterization by Temperature Gradient Interaction : SEC vs. TGIC

2015. 10. 20

Taihyun Chang Division of Advanced Materials Science and Department of Chemistry Pohang University of Science and Technology (POSTECH) http://tc.postech.ac.kr/

How well do we know the polymers we are working with?

Various molecular heterogeneities in synthetic polymers

Chemical Molar mass Chain Architecture Functionality Composition

Stereoregularity, Monomer sequence, etc.

1 2015-10-26

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

Chromatography separation

In a chromatographic separation, analyte molecules are subjected to consecutive equilibrium in the distribution between the mobile phase and stationary phase while they pass through the column. Reservoir containing the eluent (mobile phase) Sample Time Time

Column packed with stationary phase

The fastest moving substance eluted from column

Mobile phase ⇔ Stationary phase

cm cs K = cs/cm

VR = Vm + K Vs

2 2015-10-26

Porous packing materials for HPLC columns

SEM images of PS/DVB gel Cross-sectional TEM images of a silica (top: 103, bottom: 106) particle for IC (pore diameter = 300 Å)

3 ~ 5 m

1 m

10 ~ 20 m

200 nm

Size Exclusion Chromatography (SEC)

Size Exclusion Chromatography

Interstitial space Solid phase o o  G SEC   S SEC      Pore KSEC  exp   exp   RT   R  w o Fl cp o  KSEC  1 ci

 Development of the technique: J. Moore, Dow Chemical Company (1962)

 First commercial instrument: Waters Associate (1963)

 First paper: J. Moore, J. Polym. Sci., Part A 2 835 (1964)

 Introduction of Q factor: L. E. Maley, J. Polym. Sci., Part C 8 253 (1965)

 Universal calibration: Z. Grubisic; P. Rempp; H. Benoit, J. Polym. Sci., Part B 5 753 (1967)

 Theoretical Interpretation: E.F. Casassa, J. Polym. Sci., Part B 5 773 (1967)

3 2015-10-26

Limitations in SEC analysis

1. SEC separates polymers by hydrodynamic size only 2. Hydrodynamic size decreases with chain branching

Polymer Mixture Copolymer Non-linear Polymer

Intrinsic Band broadening – particularly serious in SEC

Linear Homopolymer

SEC vs. IC

Size Exclusion Chromatography

Interstitial space Solid phase

o o Pore  G SEC   S SEC  K  exp   exp  w SEC     o  RT   R  Fl

Exclusion cp ∆S o  KSEC  1 ci Interaction Chromatography

Interstitial space Solid phase Exclusion  Go   So H o  ∆S Pore  IC   IC IC  KIC  exp   exp    RT   R RT 

Flow Interaction ∆H cs o  KIC    Stationary phase cm

4 2015-10-26

IC Analysis of Polymers - History

 Separation of Copolymers in terms of Chemical Composition

TLC : Inagaki et al. Macromolecules 1 520 (1968) Belenki et al. Akad.Nauk SSSR 186 857 (1969) NPLC: Teramachi et al. Macromolecules 12 992 (()1979) Glöckner et al. Acta Polym. 33 614 (1982)

 Separation of Homopolymers in terms of Molecular Weight

TLC : Inagaki & coworkers Polym. J. 1 518 (1970) Otocka & Hellman Macromolecules 3 362 (1970) Belenki et al. J. Chromatogr. 53 3 (1970) RPLC: Armstrong & Bui Anal. Chem. 54 706 (1982) TGIC: Chang & coworkers Polymer 37 5747 (1996) Lochmüller & coworkers, J. Chromotgr. Sci. 34 69 (1996)

 Separation at Chromatographic Critical Condition (LCCC)

Belenki & coworkers, Dokl Acad Nauk USSR 231 1147 (1976) Vysokomol. Soedin. A19 657 (1977)

Temperature & effect on HPLC retention

Column: Nucleosil C18, 5 μm, 100 Å , 250 x 4.5 mm

Eluent: CH2Cl2/CH3CN mixture at 0.5 mL/min

o Eluent Effect (30.5 C) Temperature Effect (57/43)

6546,5,4 Temperature 3 2 1 CH Cl vol% o 2 2 50 C < Samples > 65 % 45oC PS MW

62 % o 6,5,4 40 C 1 2,500 1 3 2 59 % 2 12,000 35oC

(a.u.) 3 29,000 57.5 % o (a.u.)

260 30.5 C A 260 1,2,3 4 165,000 A 57 % o 4 5 28 C 12 5 502,000 3 4 55 % 25oC 6 1,800,000 1 2 53 % 3 20oC

0 102030 0102030 t (min) t R to t (min) o R Chromatographic Critical Condition Chang, Adv. Polym. Sci. 163 1 (2003)

5 2015-10-26

ThreeThree HPLCHPLC separationseparation modesmodes for for polymerspolymers

SEC: Exclusion >> Interaction ~ 0 IC: Exclusion < Interaction LCCC: Interaction ~ Exclusion

LCCC SEC

IC g M o l

Vi Vp

Vm or Vo VR

Two Dimensional Liquid Chromatography (2D-LC)

6 2015-10-26

Martin’s Rule

o o RPLC of PS Martin’s rule: G polym  n  G unit , n : degree of polymerization 3 1400k

n n ThenK polym  Kunit or VR  Vm  Kunit Vs 2 Retention of polymer molecules changes ln k 13.8k exponentially with the degree of polymerization. 1

In order for a polymer sample with a wide molecular 0 weight distribution to be eluted in a reasonable 3.3 3.4 3.5 3.6 3.7 experimental period, it is necessary to change K 1/T (x1000) during the .

0 One way to control the retention is to change Go -400 itself: Solvent gradient interaction chromatography

-800 (kJ/mol) o H

Alternative way to control the retention is to change T:  Temperature gradient interaction chromatography -1200

(TGIC) -1600 0 400 800 1200 1600 MW (kg/mol) Kim et al. Anal. Chem. 81 14 (2009)

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

7 2015-10-26

Column Temperature Control

Temperature effect in IC Separation

40 Column: Nucleosil C18, 3 μm, 100 Å dT/dt = 8oC/min 50 x 4.6 mm 30 Eluent: CH2Cl2/CH3CN = 57/43 (v/v) 10mL/min1.0 mL/min 20 PS Samples: 5.1, 15.3, 30.9, 55.2, 98.9, 200, 648 (kg/mol) 10 T ( o

0 5 10 15 C)

(a.u.) 40

260 dT/dt = 2oC/min • In TGIC, retention is controlled by A 5.1k changing the column temperature. 30 • How does the temperature program

15.3k 648k 20 200k affect the retention? 30.9k 55.2k 98.9k 10 • Can we predict the polymer retention with given T-program? 0 5 10 15 t (min) R Ryu et al. J. Chromatogr. A 1075 145 (2005)

8 2015-10-26

Thermodynamics in IC separation

KIC: solute distribution constant VR  Vm  KVs , K  cS cm VR: retention volume

o o Vm: mobile phase volume o   H S  V : stationary phase volume K  exp G RT  exp   s  RT R  cm: solute concentration in MP cS: solute concentration in SP k  tR  to to  KVs Vm k: retention factor

tR: retention time ln k  lnt  t  t  R o o tR = VR / flow rate o o  H S to: solvent elution time    ln,   Vs Vm RT R to = Vm / flow rate

• Assuming that Vs and Vm are invariant, the solute retention is a function of the thermodynamic parameters, Ho and So, and temperature, T.

• In solvent gradient elution, retention is controlled by changing the mobile phase composition (thus changing Ho and So) while in TGIC, retention is controlled by changing the column temperature.

At a fixed temperature, T

o o  tR  to   H S a ln k  ln     ln  b  to  RT R T

t t expa T  b 1 Definition R o v(T): migration rate of polymer (T dependent)

tR : retention time of polymer to : solvent elution time (T independent) T(t): column temperature at time t L: column length  : column heating rate (K/min)

L L t vT   and R vT dt  L tR to expa T  b 1 0

9 2015-10-26

For a linear T ramp with a gradient  , T = T(0) +  t.

dT =  dt or dt = dT/ , and

At t = 0, T = T(0) and at t = tR, T = T(0) +  tR.

tR T 0 tR 1 vT dt  vT   dT  L 0 T 0  L Since vT  to expa T b 1

T 0  tR L dT  L T 0  to expa T  b1

T 0  tR 1 dT  to T 0  expa T  b 1

• Using the integral equation above, we can calculate tR numerically if we know a and b, which depend on M.

For a multistep linear T-ramp

T(t3) = T(0)+1(t2-t1)+ 2(t3-t2)

T(t2) = T(0) + 1(t2-t1)

T(0) 0 t1 t2 t3 time

T t  T t  t 2 dT 3 dT t  1   o exp H RT 0  S R 1   exp H RT  S R 1   exp H RT  S R 1 T t1 1 T t2 2

• We can solve this integral equation numerically to obtain tR.

10 2015-10-26

Experimental verification 0

-200 Column: Nucleosil C18, 3m, 100Å, 50 x 4.6 mm -400 Eluent: CH2Cl2/CH3CN = 57/43 (v/v), 0.7 mL/min

(kJ/mol) o -600 H 

-800 van’t Hoff plot of polystyrene

-1000 0 200 400 600 648k 384k 99k Mp (kg/mol) 0 3 55k 113k -500

2 31k -1000

1 (J/mol/K) k

-1500  ln

15k 0 -2000 + Rln o

-1 S -2500 

-2 -3000 0.0033 0.0034 0.0035 0.0036 o 0 200 400 600 1/T ( C) Mp (kg/mol) First, the thermodynamic parameters are obtained by van’t Hoff plot.

Temperature Gradient Interaction Chromatography (TGIC)

6 experiment 30 5th order fitting 3rd order fitting

5 20 T( o (a.u.) C)

260 log M A

10 4

0481216 03691215 t (min) t (min) R 6.0 R 200 k calculated t 384 k R 30 experimental t R 648 k 5.5 89 k 15.9 k 55.2 k

20 T .u.) M ( a

g 505.0 30. 9 k o (

C) lo 260

A 10 4.5

0 log M = 3.96619 + 0,0871 x tR 4.0 0 5 10 15 20 0 5 10 15 20 t (min) t (min) R R Column: Nucleosil C18, 3 μm, 100Å, 50 x 4.6 mm Eluent: CH2Cl2/CH3CN = 57/43 (v/v) at 0.7 mL/min Ryu & Chang, Anal. Chem. 77 6347 (2005)

11 2015-10-26

How polymers migrate inside the column?

Column: Nucleosil C18, 3 m, 100Å 50 x 4.6 mm

Eluent: CH2Cl2/CH3CN = 57/43 (v/v) Flow rate: 0.7 mL/min

T-program: linear log MW vs. tR  High MW polymers essentially do not move at all until it reaches a certain temperature. 200 k  Above the temperature, 384 k they start to move rapidly. 648 k 89 k  It tells us that most of the 15.9 k 55.2 k separation of high MW 30.9 k polymers occurs in a short distance from the column inlet. solvent

15.9 k 30.9 k 55.2 k 89 k 200 k 384 k 648 k

Advantage of TGIC over solvent gradient elution

Solvent gradient elution causes significant background signal drift that makes it difficult to use many useful detection methods for polymer analysis such as differential refractometer, light scattering, and viscometry. Temperature change also causes background signal drift, btitibut it is sma llthller than so lven t gra ditdient an did, in pr iiltinciple, tempera ture can be readjusted at the detector.

TGIC of PS with RI & LS detection T (oC) Isocratic Elution !! 10 22 25 27 29 RI (a) 6 LS .) u LogM 4 R(0) (a.  PS: 32.7k, 74.4k, 127k, n or  2 213k, 394k, 683k

0 102030

VR (mL)

12 2015-10-26

Advantage of TGIC over SEC

Much lower band broadening and MW sensitive separation !

Column: 1 C18 silica column, 100 Å, Column: 4 DVB columns, 105, 104, 103 Å, 250 x 4.5 mm mixed, 250 x 10 mm

Eluent: CH2Cl2/CH3CN (57/43) Eluent: THF

IC SEC

Mw/Mn = 1.05

Mw/Mn = 1.005

9 PS standards: 2.0 k,11.6 k, 30.7 k, 53.5 k, 114 k, 208 k, 502 k, 1090 k, 2890 k Lee & Chang, Polymer 37 5747 (1996)

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

13 2015-10-26

TGIC separation of 14 Polystyrene Standards

Sample: 14 PS standards Column: C18 100 Å (Nucleosil, 250 x 2.1 mm)

Eluent: CH2Cl2/CH3CN = 57/43(v/v) 50 2k M w 40 ( M /M by SEC, M /M by TGIC ) w n w n

30 228k 1090k

11.6k T ( (1.05, 1.005) (1.06, 1.007) 22k 632k o 151k 20 C) (a.u.) (1.03, 1.010) 114k 403k 53.5k 1530k 260 37.3k 81.9k 2890k A 10

0

0 10203040 V (mL) R Chang et al. Am. Lab. 34 39 (2002)

How Narrow is really Narrow?

MWD of polymer of n = 1,000

Mw/Mn 1.001 1.01

1.02 (a.u.) i

w 1.05

400 600 800 1000 1200 1400 1600 degree of polymerization

14 2015-10-26

SEC and TGIC Characterization of Polystyrenes

Styrene Take out aliquots and terminate with sec-BuLi Cyclohexane, 45 oC i-propanol at different polymerization times. T (oC)

5 5 15 18 26 32

SEC 1.0x105 PS1 5.0 TGIC 238s

PS2 888s 4 4.5 8.0x10

PS3 1626s

4.0 6.0x104 logM PS4 M (a.u.) (a.u.)

2296s 260 260 A A PS5 3.5 3098s 4.0x104

PS6 4220s 3.0 2.0x104

PS7 14345s

2.5 0.0 13 14 15 16 17 18 19 20 0 20406080100 t (min) R t (min) R

MWD of Polystyrenes by SEC and TGIC

SEC: 2 x PL mixed C, THF TGIC SEC Poisson distribution

TGIC: 1 x Nucleosil C18 (100Å), 238s

CH2Cl2/CH3CN 57/43 (v/v) Poisson i1 

i e 888s distribution: W  i ( 1)(i 1)!

1626s

Poly’n Mw/Mn (Mw) time SEC TGIC Poisson 2296s

(a.u.)

238s 1.08 (4.3k) 1.06 (4.0k) 1.02 i w 888s 1.04 (21.3k) 1.02 (21.0k) 1.003 3098s 1626s 1.05 (35.0k) 1.02 (34.4k) 1.002

2296s 1.05 (42.9k) 1.01 (43.4k) 1.002 4220s

3098s 1.05 (50.3k) 1.008 (50.2k) 1.002 4220s 1.05 (56.0 k) 1.006 (55.2k) 1.002 14345s 14345s 1.05 (62.0k) 1.005 (62.0k) 1.002 0 200 400 600 800 1000 Lee et al. Macromolecules 33 5111 (2000) i

15 2015-10-26

PS standards (RP-TGIC x SEC)

PS standards: 6 k, 15.3 k 30.9 k, 54 k, 93 k, 170 k, 384 k, 1160 k Calibration curve

7 RP-TGIC 6 (100 Å)

5 Log M Log (min) 4.6 mm

R 4 ×

3

CN = 57/43 (v/v) 57/43 CN = 0 50 100 150 200 250 300 350 400 3

RP-TGIC t t (min) R /CH

2 7 Cl 2 SEC ucleosil C18 150 H .05 mL/min 1D RP -1D RP TGIC

N C 0 6

5

Log M Log SEC t (min) R 4

2D SEC 3 PolyPore (250 ×4.6 mm) 0.8 1.0 1.2 1.4 o t (min) THF: 1.65 mL/min, T = 110 C R

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

16 2015-10-26

Star-shaped PS by linking with divinyl benzene

DVB Highly Styrene + sec-BuLi  PS Li + ++ +Branched Species

SEC Light Scattering TGIC R.I.

n (a.u.)  (a.u.) 260 & 90 A 1 R 2 3 456

8 101214160 102030 V (mL) R tR (min) 2 x PL mixed C (300 x 7.5 mm) Nucleosil C18 250 × 4.6 mm (500 Å)

Eluent: THF Eluent : CH2Cl2/CH3CN = 57/43 (v/v) Flow rate : 0.8 mL/min Flow rate: 0.5 mL/min

2D-LC of star-shaped PS (RP-TGIC x SEC)

1D RP - TGIC Nucleosil C18 250 × 4.6 mm (500 Å)

Eluent: CH2Cl2/CH3CN = 57/43 (v/v) Flow rate: 0.05 mL/min (min) R RP-TGIC t

SEC tR (min)

2D SEC Bare Silica 150 × 4.6 mm (100 Å) + 50 × 4.6 mm (300 Å) +150 × 4.6 mm (1000 Å) Eluent : THF Flow rate : 1.8 mL/min at 130 oC Im et al. J. Chromatogr. A 1216 4606 (2009)

17 2015-10-26

Synthesis of Exact PB combs

Nikos Hadjichristidis, Univ. of Athens

SEC & TGIC analysis of comb-shaped Polybutadiene

Column: Polypore(300 x 7.5mm, 5μm) 2EA Column: Lunasil C18, 150×4.6 (i.d.) mm, 500Å, 7μm Eluent: THF, 0.8mL/min Eluent : 1,4-dioxane , 0.5mL/min

580k As- As- 586k 48 prepared prepared

45

195k T (

(a.u.) 214k (a.u.) o 90

C) 90 165k 42 R R n, n,   89k 67k 39

36

12 14 16 18 20 9 18273645 t (min) t (min) E E After After 48 fractionation fractionation

45 (a.u.) T ( (a.u.) 90

o 90

R 42 C) R n,  n,

 39

36

12 14 16 18 20 9 18273645 t (min) E tE (min) Ratkanthwar et al. Polym. Chem. 4 5645 (2013)

18 2015-10-26

Synthesis of H-shaped Polybutadiene

Benzene s-BuLi Li RT 20k (arm)

Titration s-BuLi Butadiene Li

Cl Si Cl Si CH CH3 3

(CH3)2SiCl2 Li 20k (star) 120k (H) HA20B40

Jimmy Mays, Univ. of Tennessee

SEC & TGIC characterization of H-shaped PBd

SEC

(a) (b) (a) linear PBd arm (b) star PBd (½ H) (a.u.) (a.u.) n n   , , (c) H-PBd (HA20B40). 90 90 R R

16 18 14 16 18 t TGIC 22 R t R (a) (b) 2 (c)

20 (a.u.) C) (a.u.)

o n n  (a.u.)  T ( , n , 90 90 

R , R 90 1 3 R 18

024680 102030 t (min) R 32 t (min) 14 16 18 R 30 t (c) 3 R a 28 a+1/2b a (1) 1/2b 1/2b 26 a 24 C)

a o (a.u.) a

n 22 peak 1 peak 2 peak 3 2 T (  4 ,

90 20 R a a 1 18 (2) a+b+a b+a a a b a b 16 a a 14 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Chen et al. Macromolecules, peak 1 peak 2 peak 3 peak 4 t (min) R 44, 7799 (2011)

19 2015-10-26

PSPI3 Miktoarm Star Copolymer

Styrene + sec-BuLi  Li Isoprene + sec-BuLi  Li

Li + SiCl4 (excess)  SiCl3 + excess SiCl4

SiCl3 + Li (excess) 

+ side products (fractionation)

Possible side products: PSPI2SiOR, PSPISi(OR)2, HomoPI, etc.

J. Mays, Univ. of Tennessee

SEC and TGIC Analysis of PSPI3

SEC TGIC unfractionated mother high MW PI F5 60 F7 F1 PI F4 50 )

F6 a.u.) ( F6 C

o PSPI 40 3 235 F2 F5 T ( 260, F7 PSPI A F3 30 F4 2 F3 PSPI 20

0 10203040506070 PS PI 2 PSPI F2 fractionated n (a.u.) F5 60  PS mother F1 .u.) 50 ) a C Fractionated ( o

F4 mother 235 40

F2 T (

Unfractionated 260, F7 mother A 30

20 9 101112131415 0 10203040506070 t (min) v (mL) R R Park et al. Macromolecules 36, 5834 (2003)

20 2015-10-26

PSPI3 mikto arm star copolymer (RP-TGIC x SEC)

1D RP-TGIC C18 100 x 2.1mm, 5 μm, 100 Å Eluent: 1,4 Dioxane, 0.015 mL/min Relative Molar Mass

UV 230 nm PI

PSPI3 (min) T ( R

PSPI o 2 C)

RP-TGIC t RP-TGIC PSPI UV 260 nm

PS2PI

PS

SEC t (min) 2D SEC R PolyPore 250 ×4.6 mm Eluent : THF, 1.7 mL/min Temperature : 110 oC Im et al. J. Chromatogr. A 1216 4606 (2009)

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

21 2015-10-26

LCCC separation of Rings from Linear Precursors

Synthetic scheme of Ring PS

(1) (CH3)2SiCl2 extreme dilution

(2) CH3OH

Possible byproducts

J. Roovers, NRC-Canada

LCCC separation of Rings from Linear precursors

SEC LCCC for linear PS Column: 2 x PL mixed-C Column: Nucleosil C18AB

Eluent: THF Eluent: CH2Cl2/CH3CN=57/43 Column temperature: 40 oC Column temperature: 42 oC Precursor(linear) Precuecuso(rsor(lin ea)ear) Ring Ring .198k .198k .161k .161k

86.9k 86.9k

73.3k 73.3k

48.0k (a.u.) 48.0k 260 (a.u.) A

n 23.4k

 23.4k

18.0k 18.0k 12.1k 12.1k 16.9k 16.9k

357911 14 16 18 20 22 t (min) R t (min) R Lee et al. Macromolecules, 33 8129 (2000)

22 2015-10-26

Fractionation results by SEC & MALDI-TOF MS

SEC MALDI-TOF MS

: As-received Ring PS 16.9k : Fractionated Ring PS

.198k Linear precursor

73.3k

Ring PS

n (a.u.) As-received nsity (a.u.) nsity  48.0k e

Int Ring PS 18.0k Fractionated by LCCC

15 16 17 18 19 2000 3000 4000 5000 6000 7000 8000 9000 10000 t (min) m/ z R

Before and After LCCC Fractionation

CH 3 DP =38 Si

CH3 Before After

4124.4 4124.5

4244.7

4155.7

4000 4100 4200 4300 4000 4100 4200 4300

CH CH3 3 CH3 H Si OCH3 H CO Si 3 Si OCH3 CH CH 3 3 CH3

Cho et al. Macromolecules 34 7570 (2001)

23 2015-10-26

Property of Purified Ring PS – 4.6 kg/mol

Segmental Tg RelaxationTime 400 103 3840

102 350 90

1 (K) (s) 10 g  T PS ring Ring 300 PS ring (theory) 6.4 linear PS 100

250 3.7 kg/mol 10-1

1 10 100 1000 2.6 2.7 2.8 2.9 M (kg/mol) n 1000 / T (K-1)

figure 1Santangelo et al. Macromolecules 34 9002 (2001)figure

Stress Relaxation of Entangled Polymers

Δ R198 ▲ Linear □R161 ■Linear

6  10 e G N  d 105

104 198,000 g/mol R198 G(t) (Pa) u.)

3 10 . 161,000 g/mol n (a

  d R161 102 V (mL) R 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 t (s)

Kapnistos et al. Nature Mater. 7 997 (2008)

24 2015-10-26

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

TGIC Separation of Various Polymers

polyisoprene 50 3.2 k 40 T ( Column: C18 silica, 5 μm, 100 Å pore 35.1 k 78.4 k 30 (a.u.) o

13.3 k C) Eluent: CH2Cl2/CH3CN = 80/20(v/v) 308 k 20

ELSD 10 I 0 0 10203040506070 polystyrene

2 k 40

30 T ( Column: C18 silica, 5 μm, 100 Å pore 11.6 k o (a.u.) 20 C) Eluent: CH Cl /CH CN = 57/43(v/v) 53.5 k 208 k 2 2 3 30.7 k 502 k1090 k 260 114 k 2890 k 10 A 0 0 10203040 poly(methyl methacrylate)

60 Column: C18 silica, 5 μm, 100 Å pore 40 T ( 9.4 k Eluent: CH CN 100% 31.1 k o (a.u.) 3 C) 68.4 k 183 k 500 k 235 1350 k 20 A

0 0 102030405060

VR (mL)

25 2015-10-26

Fractionation of Mixture by Simultaneous SEC/IC

Size Exclusion Chromatography SOLVENT FLOW

SEC condition

Interaction Chromatography

FLOW IC condition

tR

Temperature Dependence of PS/PMMA Retention

SEC IC Column : 3 Nucleosil C18, 5 μm 100Å, 500Å, 1000Å pore .0℃ Eluent : CH2Cl2/CH3CN = 57/43 (v/v) SEC con dition f or PMMA 10℃ IC condition for PS

20℃ (a.u.)

235 30℃ A o o  G SEC   S SEC      KSEC  exp   exp  40℃  RT   R 

T- iitiinsensitive 50℃

0 5 10 15 20 25  Go   So H o  K  exp IC   exp IC  IC  V (mL) IC     R  RT   R RT  T- sensitive 5 PMMA standards: 2k ~1,500k 11 PS standards: 1.7k ~2,890k

26 2015-10-26

Simultaneous SEC/TGIC fractionation of PS/PMMA mixture

Column: 3 Nucleosil C18, 5 μm Mw Mw/Mn code Polymer 100Å, 500Å, 1000Å pore (kg/mol) (SEC) Eluent: CH2Cl2/CH3CN = 57/43 (v/v) 1PMMA1500 1.11

2PMMA 501 1.09 50 PMMA PS 3 PMMA 77. 5 1061.06 j k S 4PMMA 8.5 1.14 a 40 i 5PMMA 2.0 1.10 aPS 1.7 1.06 2 h 1 3 30 bPS 5.1 1.05 5 g 4 T ( cPS11.6 1.03 (a.u.) b o C)

dPS22.0 1.03 235 f 20

A c d e ePS37.3 1.04 fPS68.0 1.03 10 gPS 114 1.05 hPS 208 1.05 0 iPS502 1.04 jPS1090 1.08 0 102030405060 kPS2890 1.09 V (mL) R Lee & Chang, Macromolecules 29 7294 (1996)

Simultaneous SEC/TGIC Fractionation of Polymer Mixtures

Column : Nucleosil C18, 250 x 4.6 mm (a) 1000, 500, 100 Å pore 40 PS PI 30 Eluent : CH Cl /CH CN = 80/20(v/v) 3 4 2 2 3 T

1 2 5 (

SEC condition for PS and PMMA o C) TGIC condition for PI 5 20 1 2 3 4 10 (a.u.) 0 ELSD I (b) Code PI PS PMMA SEC TGIC 1 2,700 2,890,000 2,130,000 PMMA PI 3 2 10,400 501,500 365,000 4 5

2 1 4 3 28,100 140,000 78,700 1 2 3 4 56,800 15,300 17,900 5 199,000 3,600

0 102030 V (min) R Lee et al. Macromol. Chem. Phys. 201 320 (2000)

27 2015-10-26

NP- and RP-TGIC of PS NP-TGIC 40 NP-TGIC Column : Nucleosil bare silica 30

100 Å pore, 250 x 2.1 mm T( o C) Eluent : i-octane/THF = 55/45(v/v) (a.u.) 20 260 A RP-TGCGIC 10 Column : Nucleosil C18 bonded silica 100 Å pore, 250 x 2.1 mm 0 Eluent : CH2Cl2/CH3CN = 57/43(v/v) 02468101214

VR (mL) PS Mw (kg/mol) Mw/Mn 40

(kg/mol) NP RP NP RP RP-TGIC 35 32.7 30 68.1 68.1 68.5 1.006 1.008 T ( 25 o C)

112 112.3 113.0 1.005 1.006 (a.u.)

260 20

213 205.7 200.3 1.004 1.004 A 394 395.5 385.4 1.003 1.004 15

683 653.4 648.3 1.006 1.006 10 1530 01234567 VR (mL) Lee et al. J. Chromatogr. A. 910 51 (2001)

NP- vs. RP-TGIC: Simultaneous SEC and TGIC of PS and PI

NP-TGIC NP-TGIC 40 Column : 3 Nucleosil bare silica PI's Solvent 30 100, 500, 1000 Å pore, 250 x 4.6 mm

PS-1 T ( (a.u.) Eluent : i-octane/THF = 55/45(v/v) o

20 C) 0

23 PS-2 A PS-3 PS-4 PS-5 RP-TGIC PS-6 10 PS-7 PS-8 Column : 3 Nucleosil C18 bonded silica 100, 500, 1000 Å pore, 250 x 4.6 mm) 0 0 1020304050 Eluent : CH2Cl2/CH3CN = 80/20 (v/v) VR (mL) Samples (kg/mol) RP-TGIC 40 PS : 10.3, 32.7, 68.1, 112, 213, 394, 683, 1530

PI : 2. 7, 11. 9, 53. 0, 199 ) SlSolven t 30

PS's T( (a.u. PI-7 o 20 C) 230

A PI-1 PI-4

PI-2 10

0 0 1020304050

Lee et al. J. Chromatogr. A 910 51 (2001) VR (mL)

28 2015-10-26

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

MW & Composition Distribution in Block Copolymers

Effects of MW and composition distribution on the BCP phase behavior.

Various structures of diblock copolymer

Body Centered Cubic Hexggyonally Packed Cy linder (BCC) (HEX) MW

Lamella (LAM) Double Gyroid (DG)

Modulated Lamella Hexagonally Perforated Lamella (MLAM) (HPL) Composition

29 2015-10-26

Fractionation of Homopolymer from BCP

Size Exclusion Chromatography SOLVENT FLOW

SEC condition Interaction Chromatography

FLOW IC condition

tR

PS-b-PMMA/PS Mi xt ures SOLVENT SEC IC PMMA PMMA FLOW PS

PS PS SEC for PS / PS IC for PMMA

tR

Fractionation of homo-PS (Multiple injection)

NPLC separation of PS-b-PMMA Multiple Injection

Column : Bare Silica (100  22 mm) Column : Bare Silica (100  22 mm) Eluent : THF/isooctane = 65/35 (v/v) Eluent : THF/isooctane = 60/40 (v/v) Flow rate : 1. 5 mL/min Flow rate : 1. 5 mL/min

80 PS-b-PMMA PS PS Precursor 60

40 PS-b-PMMA T( o (a.u.) (a.u.) C) 260 260 A A 20

(10 injections) 0

0 102030405060 0 50 100 150 200 250 300 350 t (min) t (min) R R

Park et al. J. Am. Chem. Soc 126 8906 (2004)

30 2015-10-26

Fractionation of individual block of BCP P I block lengthI block RPLC MW

Composition PS block length NPLC

PS block PI block

NP & RPLC Separation of Low MW PS-b-PI

Matrix:PS-b-PI dithranol 2.4 kg/mol, 30.4 wt% PI ReflectionColumn: mode LUNA MALDI-TOF C18 4.6 mm MS ID, 100Å Column: Diol bonded silica 7.8 mm ID, 100Å Salt: AgTFA Matrix:Solvent: dithranol CH2Cl2/CH3CN = 53/47 (v/v) Eluent: i-Octane/THF = 97/3 (v/v) Salt: AgTFA 0.5 mL/min, 20OC Detection:0.7 mL/min Reflection mode

Molar mass (DP ,DP, DP ) PS PI PS precursor

1475.9 (8,7) 60frac 1 f3 PS-b-PI f5 1544.1 (8,8)f7 1160.1 1228.2 f5 f3 (3,11) frac 2 (3,10) f1 f9 f1 1612.1 (8,9) 45 f11 1368.2 1436.2 frac 3 (5,10) (5,11) f1 f3 f7 1680.1 (8,10) T( (a.u.) (a.u.) f6 30 Molar mass O 1576.1 1644.2 frac 4 C) 230 260 (7,10) (7,11) (DP , DP ) A PS PI A f5 1748.2 (8,11) frac 5 1784.1 1852.1 Intensity (a.u.) Intensity Intensity (a.u.) Intensity 15 (9,10) (9,11) 1816. 4 (8, 12) f7 frac 6 1992.4 2060.4 (11,10) (11,11) 1884.1 (8,13) 0 f9 frac 7 2201.6 2269.7 0 20406080 (13,10) (13,11) t (min) 1952.3 (8,14) 0 10203040f11 R frac 8 t (min) R 1000 2000 3000 4000 NPLC1400 ⇒ fractionation 1600 of 1800 PS block 2000 2200 RPLC ⇒ fractionationm/z of PI block m/z Near LCCC for PI and IC for PS Near LCCC for PS and IC for PI Park et al. Macromolecules 35 5974 (2002)

31 2015-10-26

2D NP-TGIC & RPLC Separation set-up

Im et al. Anal. Chem. 79, 1067 (2007 )

PS-b-PI (NP-TGIC x RPLC)

Diol bonded silica C18 silica, 150×4.6 mm 250×7.8 mm Eluent : CH Cl /CH CN=53/47 (v/v) 2 2 3 Eluent : isooctane/THF = 97/3 (v/v) Flow rate : 1.5 mL/min Flow rate : 0.05 mL/min

Im et al. Anal. Chem. 79, 1067 (2007)

32 2015-10-26

Fractionation of High MW PS-b-PI

RPLC fractionation NPLC fractionation PS-b-PI 12k/24k (21k/12k) PS-b-PI 12k/24k (21k/12k) Column :C18, 100Å (4.6mm ID) Column :Diol, 100Å (4.6mm ID)

Eluent: CH2Cl2/ACN (80/20, 74/26) Eluent: isooctane/THF (75/25, 70/30) T = 2oC (3oC) T = 5oC (16oC)

(a.u.)

(a.u.)

260 235 A A

0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 t (min) R t (min) Fractionation according to PI block Fractionation Raccording to PS block

SHIL Mother SMIH SLIH SMIM

100 nm 100 nm 100 nm 100 nm 100 nm

LAM 24 HPL G 22 HEX ODT SMIH mean-field

PI block l PI block SLIH SHIH 20

18 RPL

N

SLIM SMIM SHIM  16 C e ngth 14 SLIL SHIL SMIL 12

10 PS block length 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 NPLC f PI Park et al. Macromolecules 36 4662 (2003)

33 2015-10-26

PS-b-PMMA at Air/Water Interface - surface micelles

Top view Side view Structure of surface micelles of amphiphilic PMMA PS PMMA block copolymers at PS Water air/water interface PMMA

Homo-polymer free PS-b-PMMA mother: 53.1k - 19.7k,

wtPS = 0.73, Mw/Mn = 1.05 3 x 3 m

Chung et al. Macromolecules 38 6122 (2005)

Morphology of PS-b-PMMA Surface Micelles

ML MM MH PS-b-PMMA mother: 72.8 kg/mol

wtPS = 0.73 SH Mw/Mn = 1. 05 (SEC) Fractionated by Fractionated 72.3k/0.77/1.01 77.6k/0.74/1.01 79.5k/0.71/1.01

PS bloc SHMM SM SHML SHMH RP

S M S M S M R

k M M L M L M H PLC length 71.3k/0.70/1.01 C 67. 7k/0. 76/1. 01 69. 5k/0. 72/1. 01

SLML S M SLMM L H

PMMA block length SL NPLC 63.1k/0.73/1.01 64.8k/0.69/1.01 65.3k/0.67/1.01 Chung et al. Macromolecules 38 6122 (2005) Fractionated by NPLC 3 x 3 m

34 2015-10-26

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

OH end-functional PS

SEC 2 x PL-mixed B Eluent: THF Flow rate: 1.5 mL/min Styrene + sec-BuLi  PS Li

PS Li PS,PS-OH 10K (1) Ethylene i-propanol oxide (2) i-propanol (a.u.) 260

A PS,PS-OH 100K

H CH2CH2OH

PS,PS-OH 500K

10 11 12 13 14 15 16 V (mL) R

35 2015-10-26

NP- vs. RP-TGIC: Separation by a single -OH end group

NP-TGIC 50 NP-TGIC 40 PS 10k 30

PS-OH 10k T( (a.u.) O

Column: Nucleosil bare silica C

260 20 ) A 100 Å pore, 250 x 2. 1 mm PS 100k PS-OH 100k Eluent: i-octane/THF = 55/45(v/v) 10 0

01234567 V (mL) R

RP-TGIC 35 RP-TGIC 30

PS, PS-OH 10k 25 Column: Nucleosil C18 bonded silica T(

20 O (a.u.)

C)

100 Å pore, 250 x 2.1 mm 260 15 A Eluent: CH2Cl2/CH3CN = 57/43(v/v) PS, PS-OH 100k 10 5

0123456 V (mL) R Lee et al. J. Chromatogr. A 910 51 (2001)

End group analysis by 2D-LC

1D NPLC Bare silica 50 × 2.1 mm (100 Å) Eluent : isooctane/THF = 55/45 (v/v) PS 2k, 10k, 110k Temperature : 34.2 oC PS-OH 2k, 10k, 110k Flow rate : 0.015 mL/min

PS-OH (min) PS-OH R PS-OH NPLC t PS PS PS

110 k 10 k 2 k 2D SEC PolyPore 250 ×4.6 mm SEC tR (min) Eluent : THF Temperature : 110 oC Flow rate : 1.7 mL/min Switching valve loop : 30 μL

Im et al. J. Chromatogr. A 1216 4606 (2009)

36 2015-10-26

Synthetic Scheme of Branched PS with CDMSS

Styrene + sec-BuLi  PS Li slow

PS Li

fast

CDMSS (less than 1 eq.) branching point

Exp 1 : CDMSS/sec-BuLi = 0.87 (BS 87) Exp 2 : CDMSS/sec-BuLi = 0.65 (BS 65) Exp 3 : CDMSS/sec-BuLi = 0.45 (BS 45) Highly branched species

K. Lee, Kumho Petrochemical Ltd.

SEC and TGIC separation of branched PS

BS 87: CDMSS/sec-BuLi = 0.87 BS 65: CDMSS/sec-BuLi = 0.65 BS 45: CDMSS/sec-BuLi = 0.45 SEC TGIC PL mixed Cⅹ2 Luna C18, 100 Å, 5 mm, 250ⅹ4.6 mm

Eluent : THF Eluent : CH2Cl2/CH3CN = 55/45 (v/v) Flow rate : 0.8 mL/min Flow rate : 0.6 mL/min

45 PS 2.1k CDMSS/sec-BuLi = 0.45 40 BS87 BS65 Precursor CDMSS/sec-BuLi = 0.65 CDMSS/sec-BuLi = 0.87 35 15.2k 8.3k BS45 2.1k 4.7k 30

12 arms! 25 T .u.) ( (a.u.) O a C)

n ( 20  260

A 15

10

5

0

13 14 15 16 17 0 20406080100 V (mL) t (min) R R

Im et al. Anal. Chem. 76 2638 (2004)

37 2015-10-26

Star-shaped PS with arms of broad MWD

BS 65: CDMSS/n-BuLi = 0.65 LCCC ( T = 53.3oC) Kromasil C18, 150 × 4.6 mm, 5 m, 100 Å BS 49: CDMSS/n-BuLi = 0.45 Eluent : CH2Cl2/CH3CN = 53/47 (v/v) Flow rate : 0.5 mL/min RP-TGIC Kromasil C18, 150×4.6 mm (100Å) Eluent : CH2Cl2/CH3CN = 53/47 (v/v) Flow rate : 0.5 mL/min PS precursor 60

50

40 (a.u.) BS65 T ( 260 A o C

(a.u.) 30 BS49 0 ) 26 BS49 A 20

10 PS precursor BS65

0 10203040506070 t (min) R 2468

tR (min) Im et al. J. Chromatogr. A 1103 235 (2006)

2-D LC (TGIC x LCCC) analysis of MW & branching

Kromasil C18, 150 × 4.6 mm, 100 Å

Eluent : CH2Cl2/CH3CN = 53/47 (v/v)

4

3 Molecular Weigh (mL) R

2 t RP-TGIC V

1 Branch number

LCCC VR (mL)

Im et al. J. Chromatogr. A 1103 235 (2006)

38 2015-10-26

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

SEC vs. TGIC of the three different tactic PEMAs

SEC RPLC Column: PL-mixed C  2 Column: LUNA C18 4.6 mm ID, 100Å

Eluent: THF Solvent: CH3CN/CH2Cl2 = 70/30 (v/v) Flow rat e: 0 .8 m L/m in Flow rat e: 0 .45 mL/ m in

s-PEMA 1530k 384k 113k 31k 11.6k 3250 580 f2 h-PEMA 48 PS stds i-PEMA f1 f3 f2 f4 f2 f1 f3 s- PEMA T( O 40 C) (a.u.)

(a.u.) 235 A 235 h- PEMA A

32

i- PEMA

81216200 1020304050 V (mL) t (min) R R

T. Kitayama, Osaka Univ.

39 2015-10-26

MALDI-TOF MS Spectra of mother PEMAs & Fractions

MALDI-TOF (Reflection mode) Matrix: IAA (indoleacrylic acid) Solvent: THF Salt: NaI

h - P E M A s - P E M A i - PEMA

h - f 1 s - f 1 i - f1

h - f 2

Intensity (a.u.)

Intensity (a.u.) Intensity i - f2 s - f 2 (a.u.) Intensity h - f 3

s - f 3 h - f 4 i - f3

4000 8000 12000 16000 20000 4000 8000 12000 16000 20000 6000 9000 12000 15000 m / z m/z m / z

SEC vs. TGIC of the three different tactic PEMAs

SEC RPLC Column: PL-mixed C  2 Column: LUNA C18 4.6 mm ID, 100Å

Eluent: THF Solvent: CH3CN/CH2Cl2 = 70/30 (v/v) Flow rat e: 0 .8 m L/m in Flow rat e: 0 .45 mL/ m in

s-PEMA 1530k 384k 113k 31k 11.6k 3250 580 f2 h-PEMA 48 PS stds i-PEMA f1 f3 f2 f4 f2 f1 f3 s- PEMA T( O 40 C) (a.u.)

(a.u.) 235 s-f2 A h-f3 235

h- PEMA A

h-f2 i-f3 32

i- PEMA s-f3 h-f4

81216200 1020304050 V (mL) t (min) R R

Cho et al. Anal. Chem. 74 1928 (2002)

40 2015-10-26

SEC calibration curve of stereoregular PEMA

Column: PL mixed C  2 Eluent: THF Flow rate: 0.8 mL/min PS stds 4.4 s-PEMA h1- PEMA h2-PEMA i-PEMA 4.2

4.0

log M

383.8

3.6

17.0 17.5 18.0 18.5 19.0 19.5 20.0 t (min) R Cho et al. Macromolecules 35 5974 (2002)

Content

• Introduction Size Exclusion Chromatography vs. Interaction Chromatography

• Temperature Gradient Interaction Chromatography

• Precision Analysis of Molecular Weight Distribution

• Nonlinear Polymers Branched polymer, Ring polymer

• Chemical Composition Mixture, Block Copolymer, Functionality

• Stereoregularity, Isotope

41 2015-10-26

PS Comb - Synthetic Scheme

h-PS bar (200k) h-styrene + sec-BuLi

Bu chloromethylation

d-PS arm (85k) Cl Cl Cl d-styrene + sec-BuLi

Bu

d-PS d-PS d-PS

C.M. Fernyhough, Univ. of Sheffield

SEC & Light scattering detection

SEC PS Comb PL mixed C×2, THF Mw/Mn = 595 k / 540 k Light scattering detection (Viscotek TDA 300)

AbhbAverage branch number M  M N  n,comb n,backbone br n = 4.2 186 k M n,branch (a.u.) 90 R

1.0 n &  Backbone 374 k 0.8 Mw/Mn = 200 k / 190 k

ht Fraction 0.6 83 k g

0.4

0.2 Cumulative Wei Cumulative Branches 160 k 0.0 Mw/Mn = 85 k / 83 k

4.0x105 6.0x105 8.0x105 1.0x106 1.2x106 1.4x106 Molar Mass (g/mol) 6 8 10 12 14 V (mL) R

42 2015-10-26

NP-TGIC Chromatogram of PS Comb

Column: Bare, 7 μm , 500 Å, 250×2.1 mm Eluent: Hexane/THF = 57/43 (v/v) Flow rate: 0.3 mL/min T (oC)

14 14 32 50 1.2x106

1.0x106 Molar mass (g mass Molar 8.0x105

n (a.u.) 6.0x105  & / mol) 0 9

R 4.0x105

2.0x105

0 20406080100 Elution time(min) Chambon et al. Macromolecules 41 5869 (2008)

NP-TGIC Analysis of PS comb

Assumption - Backbone: 200 k 1.0 Branch: 85 k 3-branch 0.8

0.6 e Weight Fraction

v 040.4

0.2 Wt fraction of 3-branch Cumulati

0.0

2.0x105 4.0x105 6.0x105 8.0x105 1.0x106 1.2x106 Molar Mass (g/mol) 20

15 PS Comb

% 10 N br n

5 From average MW 4.1

From distribution 4.0 0 12345678910 Arm number

43 2015-10-26

RP-TGIC Analysis of PS comb

Column: C18, 7 μm , 500 Å, 150×4.6 mm

Eluent: CH2Cl2/CH3CN=57/43 (v/v) Flow rate : 0.5 mL/min T (oC) 24 24 26 34

107 LogM (a.u.)

o 260 T ( C)

14 14 32 50 6 A 1.2x10 &

90 1.0x106 R Molar mass (g/mol) mass Molar 8.0x105

n (a.u.) 6.0x105  & 90

6 R 10 4.0x105 0 5 10 15 20 t (min) 2.0x105 R 0 20406080100 Elution time(min)

Isotope effect in IC separation

SEC NP-TGIC RP-TGIC

Column: PL mixed C×2 Bare silica 250×2.1 mm, 5 μm, 500 Å Kromasil C18 150×4.6 mm, 5 μm, 100 Å Eluent: THF Eluent : i-octane/THF=57/43 (v/v) CH2Cl2/CH3CN=57/43 (v/v) Flow rate: 0.8 mL/min Flow rate: 0.3 mL/min Flow rate: 0.5 mL/min

35 22 10 k 10 k 30 20 60 k 10 k 18 25 60 k

16 T ( T (

20

o (a.u.) C) h-PS o C) (a.u.) 260 (a.u.)

h-PS 60 A 0 2 6 60 k 2

14 A A 15 h-PS 12 10

d-PS 10 d-PS d-PS 5 10 12 14 16 18 0 5 10 15 20 0 3 6 9 12 15 18 21 t (min) t (min) t (min) R R R

44 2015-10-26

RP-TGIC× SEC of comb PS (a.u.) 260 A

00 02 04 06 08 10 12 14 16 Nucleosil C18 150 × 4.6 mm (500 Å)

Eluent: CH2Cl2/CH3CN = 57/43 (v/v) Flow rate: 0.05 mL/min A260 34 T (

26 o C) (min) R

GIC t 24 T RP-

24

R90 & A260 SEC tR (min) PolyPore 250 ×4.6 mm Eluent : THF, 1.7 mL/min Temperature : 110 oC

RP-TGIC & NP-TGIC analysis of PS comb

T (oC) 5 5 17 32 RP-TGIC 40 F1 F3 F6 F8

20

T ( Mother (a.u.) o

C) 260 F1

& A & 0 F2 90 (a.u.) R 260 F3 A F4 F5 0 2 4 6 8 10 12 14 16 18 20 t (()min) R T(T (oC) F6 24 24 26 34 F7 F8

107

LogM 0 1020304050 (a.u.)

260 t (min) R & A 90 R NP-TGIC

106 0 5 10 15 20 t (min) R

45 2015-10-26

2D NPNP--TGICTGIC x RPRP--SGICSGIC setset--upup

Things need to be considered:

1. Eluent compatibilty: NPLC first, trapping and eluent exchange

Switching valve condition Pre-column: Diol, 50×4.6 mm, 100 Å, 7 μm Diol, 50×4.6 mm, 100 Å, 7 μm Loop : 100 μl

CH3CN (with 4% iso-octane) 2. Speed: Solvent gradient elution of 2nd - RPLC

5min 3min 5min 3min 5min 3min … Re-stabilization time Separation time

B content (%) Initial state Time (min)

NP-TGIC x RPLC of comb PS

NP-TGIC RPLC Nucleosil bare silica, 50 × 4.6 mm, 500 Å Nucleosil C18 150 ×4.6 mm (500Å)

Eluent: THF/iso-octane = 48/52 (v/v) Eluent: CH2Cl2/CH3CN = 57/43 (v/v)  59/41 (v/v) Flow rate: 0.05 mL/min Flow rate: 1.5 mL/min (a.u.) 260 A 32

Triple backbone ! T ( o C) in)

m 17 ( R

5

NP-TGIC t

260 (a.u.) A 5 RPLC t (min) R Ahn et al. Anal. Chem. 83 4237 (2011)

46 2015-10-26

SEC analysis of fractionated hPS-b-dPS

Column: Polypore (300 x 7.5mm, 5μm) 2EA Eluent: THF at 0.8mL/min Detector: Viscotek (Triple detector)

Precursor hPS 18k

hPS-b-dPS (a.u.)

90 18k-17k R

, 260

A hPS-b-dPS

n, 18k-38k 

hPS-b-dPS 18k-80k

10 12 14 16 18 20

tE (min)

Lee et al. Macromolecules. 46 9114 (2013)

Elution of hPS-b-dPS at CC of hPS

Lunasil C18, 150×4.6 mm, 100Å, 5µm; CH Cl /CH CN = 57/43 (v/v), 0.5 mL/min 2 2 3

7 hPS 11k Temp : 40˚C hPS 27k Precursor 6 hPS 48k hPS 18k hPS-b-dPS 5 .) u.) . LogM u 18k-17k (a

(a.

260 4 260 A

A hPS-b-dPS

18k-38k 3 hPS-b-dPS 18k-80k 2 2345 2.0 2.5 3.0 3.5 4.0 4.5 5.0 t (min) t (min) E E dPS -M (g/mol) p Calibration with homo-dPS Expected M Measured Mp p ()(error) Precursor -- At CC of hPS, hPS-b-dPS elutes in the hPS-b-dPS decreasing order of MW while they elute 18k-17k 16.9 k 10.1 k (40.2%) before the solvent peak (SEC region). hPS-b-dPS 18k-38k 37.7 k 33.5 k (11.4%)  MW of dPS block (homo-dPS calibration) hPS-b-dPS deviates significantly from the true value, 18k-80k 80.2 k 74.8 k (6.7%) particularly for low MW dPS block.

47 2015-10-26

Elution of hPS-b-dPS at CC of dPS

Lunasil C18, 150×4.6 mm, 100Å, 5µm; CH Cl /CH CN = 57/43 (v/v), 0.5 mL/min 2 2 3 5 dPS 6k Temp : 33.6˚C dPS 25k Precursor dPS 46k hPS 18k

4 )

hPS-b-dPS LogM ) . 18k-17k (a.u (a.u. 260 260 A A hPS-b-dPS 3 18k-38k

hPS-b-dPS 18k-80k 2 3.0 3.5 4.0 4.5 5.0 5.5 6.0 3456 t (min) t (min) E E Calibration with homo-hPS hPS - Mp (g/mol)

Measured Mp  At CC of dPS, hPS-b-dPS elutes in the Expected Mp (error) decreasing order of MW while they elute Precursor 17.8k - after the solvent peak (IC region). hPS-b-dPS 18k-17k 17.8k 15.6k (12.4%)  Again, the MW of hPS block (homo hPS-b-dPS hPS calibration) deviates significantly 18k-38k 17.8k 14.0k (21.3%) from the true value, particularly at high hPS-b-dPS 18k-80k 17.8k 8.2k (53.9%) MW dPS block.

2D-LC (RP-TGIC x RP-LCCC) of hPS-b-dPS

Solvent peak

18k-160k-18k (Coupled 18k-80k) 1st D (RP-TGIC) 18k-76k-18k Lunasil C18, 150×4.6 (i.d.) mm, 100 Å, 5 μm (Coupled 18k-38k) CH2Cl2/CH3CN (57/43) at 0.05mL/min

18k-34k-18k (Coupled 18k-17k) 18k-80k 2nd D (RP-LCCC)

Lunasil C18, 150×4.6 (i.d.) mm, 100 Å, 5 μm o CH2Cl2/CH3CN (57/43) at 1.5 mL/min, 33.6 C (min)

E 18k-38k 36k (Coupled 18k)

18k-17k  As expected, hPS is retained more RP-TGIC t strongly than dPS in the RPLC separation . 18k  At CC of dPS, hPS-b-dPS elutes in the order of decreasing MW while they elute after the solvent peak (IC region).  Full resolution of 3 hPS-b-dPS and a number of byproducts is realized by 2D-LC. RP -LCCC tE (min) Lee et al. Macromolecules. 46 9114 (2013)

48 2015-10-26

Summary

Size Exclusion Chromatography Interaction Chromatography

Interstitial space Solid phase Interstitial space Solid phase Exclusion Pore ∆S Pore w vs. Flo Interaction ∆H Exclusion ∆S Stationary phase

SEC

W LCCC M Exccusolusion >> Inte teactoraction ~ 0

log SEC IC IC Exclusion < Interaction

V  V LCCC Interaction ~ Exclusion Elution volume Chang, J. Polym. Sci. B 43 1591 (2005)

Summary

45 50 PS 2.1k 2k CDMSS/sec-BuLi = 0.45 40 M CDMSS/sec-BuLi = 0.65 w 40 ( M /M by SEC, M /M by TGIC ) CDMSS/sec-BuLi = 0.87 35 w n w n 30 228k 1090k 30 T ( 11.6k 25 T ( (1.05, 1.005) (1.06, 1.007)

22k O o High Resolution632k C)

151k C

(a.u.) 20 (a.u.) (1.03, 1.010) 114k 403k 20 Branched Polymer

1530k ) 60 53.5k 260 2

37.3k 81. 9k 2890k A 15 A 10 10

5 0 0

0 102030400 20406080100 V (mL) t (min) R R

Linear Ring precursor 50

j S k 40 a i 2 Cyclic Polymer 1 3 h 30 5

T ( Block copolymer 4 g o (a.u.) (a.u.) b Mixture C) 235

260 f 20 A c A d e

10

0

0 102030405060 3 5 7 9 11 13 V (mL) t (min) R R

49 2015-10-26

Summary

 Multivariate distribution in synthetic polymers Mol. Wt., Composition, Branching, Functionality, etc.

 2D-LC helps! Even isotope effect can help! (a.u.) 260 A 32 T ( o C)

17

5

260

(a.u.) A 5

N. Korea

China S. Korea Pohang Japan

50 2015-10-26

PAL Chemistry

Library

POSTECH was ranked 1st in Times Higher Education 100 under 50 Rankings for last 3 consecutive years, 2012-2014. Pohang University of Science and Technology (POSTECH)

4th generation light source (x-ray free electron laser) is under construction to be operational in 2016.

51