<<

______

AlmaMaterStudiorum–UniversitàdiBologna DOTTORATODIRICERCA IN SCIENZEFARMACEUTICHE CicloXXI Settorescientificodisciplinarediafferenza: CHIM/08 STUDIESONTHEINTERACTIONOF SURFACTANTSANDNEUTRAL CYCLODEXTRINSBYCAPILLARY ELECTROPHORESIS.APPLICATIONTO CHIRALANALYSIS. Dott.ssaClaudiaBendazzoli CoordinatoreDottorato Relatore Prof.MaurizioRecanatiniProf.RobertoGotti Esame finale anno 2009 ______ “Quandoilsaggioindicalaluna, lostoltoguardaildito.” (proverbiocinese) ______ TomyMum ______ TableofContents:  Preface(pag.89)  Chapter1:SodiumDodecylSulfateandCriticalMicelle Concentration • Introduction(pag.1116)  StructureofaMicelle  Dynamicpropertiesofsurfactants • SDS: determination of critical micelle concentration byCE(pag.1617) • Methodologicalapproaches(pag.1825)  Method based on the retention model—micellar electrokineticmethod  Method based on the mobility model—capillary electrophoresis(mobility)method  Practical requirements for making critical micelle concentration measurements: micellar electrokinetic chromatography method and capillary electrophoresis (mobility)method • Method based on the measurements of electric current using capillary electrophoresis instrumentation capillary electrophoresis (current) method(pag.2628)  Practical requirements for making critical micelle concentration measurements: Capillary electrophoresis (current)method. • References(pag.2932)  Chapter2:MicellarElectrokineticChromatography • Introduction(pag.3436) • Resolution(pag.3638) • Selectivity(pag.39) • ResolutionOptimation(pag.4046)  Choiceofmicelle  Choiceofbuffersolution  Choiceoftemperature

4 ______

 Choiceofadditives • References(pag.4647)  Chapter3:Cyclodextrins • Introduction(pag.4955)  Discoveryperiod:from1891to1930  StructuralFeatures • CDInclusionComplex(pag.5558) • Application(pag.5859) • References(pag.5961)  Chapter4:CDMEKC • Introduction(6367) • CDsandSDS:inclusioncomplex(pag.6774) • References(pag.7475)  Chapter5:Capillaryelectrophoresisstudyontheinteraction between sodium dodecyl sulfate and neutral cyclodextrins. Applicationtochiralseparation. • Experimental(pag.8083):  Materials  Apparatus  Methodologicalapproaches  CMCdeterminationbyelectriccurrentmethod  Estimation of the association constant and complex stoichiometry  Electrophoretic mobility of neutral probes in SDS/CD  EPRexperiments • Results(pag.84100):  EffectofCDsontheCMCofSDS  StudyoftheassociationofβCDsandSDSbyCE  EPRstudiesontheinteractionofSDSandneutralCDs  CE mobility of neutral analytes in mixed systems (SDS/CDs)  Applicationtochiralseparations • Discussion(pag.100107):

5 ______

 Association of SDS to CD by electric current CE experiments  EPRstudies  CEmobilitystudies  Applicationtochiralseparation • Conclusion(pag.107108) • References(pag.108110)  Chapter6:DifferentiationofgreenteasamplesbychiralCD MEKCanalysisofcatechinscontent. • Introduction(pag.112114) • MaterialsandMethods(pag.114117):  Materials  Apparatus  Solutions  Calibrationgraphs  Epimerisationstudies  Preparationofteasample • Resultsanddiscussion(pag.117128)  OptimisationofCDMEKC  Validation  Epimerisationstudies  Applicationtoquantitativeanalysis • ConcludingRemarks(pag.128129) • References(pag.129132)

6 ______

7 Preface ______

Preface Intheirpioneeringpapersof1984e1985Terabeetal.discoveredthat chromatographicprocesscantakeplaceinaCEenvironment.Indetails the separation is achieved using additive (named separation carrier or pseudostationaryphase )havingavelocitydifferentfromthatoftheanalytes tobeseparated.Inthelasttwodecadeselectrokineticchromatography (EKC) has been mainly regarded as a special mode of capillary electrophoresis(CE),becomingapowerfultechniquethatbringsspeed, reproducibility and automation to the intensive methods of classical electrophoresis. Usually the additive present in the electrophoretic background, pseudostationary phase, is a micelleforming ionic surfactant. This approachisnamedMicellarElectrokineticChromatography(MEKC).It wasalsorealizedveryearlybyTerabethatthepresenceofmicellesisnot a prerequisite of EKC: over time many variants of EKC have been developed by employing as a separation carrier ‘polymeric micelles’, microdroplets,othertypesofcolloidalphases,dissolvedlinearpolymers anddendrimersoroligomericunits.Despiteallthesevariantshowever, MEKC is the most known and wieldiest applied technique. It is important to note that among the many ionic surfactants available, sodiumdodecylsulfate(SDS)isthemostused.Itpossessesalongalkyl chainasthehydrophobicgroupandanionicgroupasthepolargroup. ThemicelleformedbySDSisbelievedtobesphericalinshape,withthe polargroupsbeinglocatedintheouterzoneofthemicelleandthealkyl groupsconstitutingthehydrophobiccore.

8 Preface ______

A further additive able to establish interactions with the analytes that have to be separated can be supplemented into the background electrolyte(BGE)togetherwiththeprimarysurfactant.Thesolutescan interact differently with both the separation media and an improved selectivityisoftenachieved.Oneofthemostuseddualpseudostationary phase systems is represented by cyclodextrinmodified micellar electrokinetic chromatography (CDMEKC), mainly applied in chiral analysis and for the resolution of complex mixtures of hydrophobic compounds. The presence of CDs introduces new equilibria in the separationmedium(e.g.inclusionofSDSmonomerintotheCDcavity). TheaimofthisPhDthesisisastudytoprovideacontributiontowards theadequateunderstandingoftheinteractionsbetweenthecomponents ofthemostcommonlyusedBGEinCDMEKC:SDSandneutralCDs. Thisinformationcanbeusefulinordertoproperlyapplythesecoupled systemsinselective(andenantioselective)analysisofcomplexsamples. In presence of micelles and cyclodextrins in the electophoretic background,theanalytescanestablishdifferentkindofinteractions:(i) analytesmicelles, (ii) analyte cyclodextrin, (iii) analyte(cyclodextrin surfactant’s monomer). Furthermore, the interaction between cyclodextrinandmicellesshouldbetakenintoaccountaswell. Theresearchwascarriedoutwiththeaimtoinvestigatetheinteraction between neutral cyclodextrins and sodium dodocyl sulfate (SDS).

9 ______ Chapter1 : SodiumDodecylSulfate CriticalMicelleConcentration

10 Chapter1: SDSandCMC ______ SodiumDodecylSulfateandCriticalMicelle Concentration Introduction Ithasbeenwidelyrecognizedthatthephysicalpropertiesofsurfactant solutions, such as surface tension, osmotic pressure, electrical conductivity, and (as a function of temperature), show an abruptchangeintheneighbourhoodofthecriticalconcentrationoccurs. ThisunusualbehaviourwasfirstinvestigatedbyMcBain on fatty acid salts in dilute aqueous solution (1, 2) and later by Hartley (3). Other evidenceformolecularaggregationwasobtainedfromvapourpressure measurementsandthesolubilityoforganicmaterial.The formation of colloidalsizedclusters of individual surfactant molecules in solution is nowbetterknownasmicellization.AlthoughfirstsuggestedbyMcBain, theearliestconcretemodelforsphericalmicellesisattributedtoHartley etal.(4).Theprocessofsurfactantclusteringormicellizationisprimarily an entropydriven process (5, 6). When surfactants are dissolved in water,thehydrophobicgroupdisruptsthehydrogenbondedstructureof waterandthereforeincreasesthefreeenergyofthesystem.Surfactant moleculesthereforeconcentrateatinterfaces,sothattheirhydrophobic groupsareremovedordirectedawayfromthewaterandthefreeenergy ofthesolutionisminimized.Thedistortionofthewaterstructurecan alsobedecreased(andthefreeenergyofthesolutionreduced)bythe aggregationofsurfaceactivemoleculesintoclusters(micelles)withtheir

11 Chapter1: SDSandCMC ______ hydrophobicgroupsdirectedtowardtheinterioroftheclusterandtheir hydrophilicgroupsdirectedtowardthewater. However,thesurfactantmoleculestransferredfromthebulksolutionto themicellemayexperiencesomelossoffreedomfrombeingconfinedto themicelle.Inaddition,theymayexperienceanelectrostatic repulsion from other similarly charged surfactant molecules in the case of surfactantswithionicheadgroups.Theseforcesincreasethefreeenergy of the system and oppose micellization. Hence, micelle formation dependsontheforcebalancebetweenthefactorsfavouringmicellization (vanderWaalsandhydrophobicforces)andthoseopposingit(kinetic energyofthemoleculesandelectrostaticrepulsion).Theexplanationfor theentropydominatedassociationofsurfactantmoleculesiscalledthe “hydrophobiceffect”or“hydrophobicbonding”(7). Theconcentrationatwhichmicellesfirstappearinsolutioniscalledthe critical micelle concentration (CMC) and can be determined from the discontinuityorinflectionpointintheplotofaphysicalpropertyofthe solutionasafunctionofthesurfactantconcentration. Representing the surfactant by S, the micellization process can be describedbythereaction:

where Sn is a micellar aggregate composed of n surfactant molecules. Theaggregationnumber n (which represents thenumber of surfactant moleculesinamicelle)hasbeenfoundtoincreasewithincreasinglength of the hydrophobic group and decrease with increasing size of the hydrophilic group (10). In general, the greater the hydrocarbon chain lengthofthesurfactantmolecules,thegreatertheaggregationnumberof

12 Chapter1: SDSandCMC ______ micelles.Also,thosefactorsthatincreasetheaggregationnumbertendto decreasetheCMC.Forexample,increasingthealkylchainlengthofa surfactantdecreasestheCMC.Thepresenceofelectrolytealsodecreases theCMC,duetothe“saltingout”effect.Whensurfactantmonomersare saltedoutbythepresenceofanelectrolyte,micellizationisfavouredand theCMCisdecreased. ItisimportanttoemphasizethatCMCrepresentstheconcentrationof freesurfactantmonomersinamicellarsolutionundergivenconditions oftemperature,pressure,andcomposition. StructureofaMicelle The recognition that surfactant association structures can mimic biologicalstructureshassparkedconsiderableinterestinselfassembled surfactantaggregatessuchascylindrical,lamellar,andreversemicelles. Lipid aggregates known as liposome are common in physiological systems,andtailoredliposomesareused,forexample,asdrugdelivery vehiclesorincosmetics(8).Selfassembledstructuressuchasmicellesor reversed micelles (surfactant aggregates with hydrophilic head groups shieldedfrom,andlipophilictailsstickingouttoanorganic)also playanincreasinglyimportantroleincatalysisandseparationprocesses inengineeringandenvironmentalscienceandtechnology(9–10). Inaqueousmedia,forexample,surfactantswithbulkyorlooselypacked hydrophilic groups and long, thin hydrophobic chains tend to form sphericalmicelles,whilethosewithshort,bulkyhydrophobicchainsand small, closepacked hydrophilic groups tend to form lamellar or cylindricalmicelles.

13 Chapter1: SDSandCMC ______ AtconcentrationsslightlyabovetheCMC,micellesareconsideredtobe ofsphericalshape.Changesintemperature,surfactantconcentration,or additivesinthesolutionmaychangethesize,shape,aggregationnumber, andstabilityofthemicelles. Dynamicpropertiesofsurfactantssolution Micelles are often drawn as static structures of spherical aggregates of oriented surfactant molecules. However, micelles are in dynamic equilibriumwithindividualsurfactantmoleculesthatareconstantlybeing exchangedbetweenthebulkandthemicelles. Additionally,themicellesthemselvesarecontinuouslydisintegratingand reassembling. There are two relaxation processes involved in micellar solutions.Thefirstisafastrelaxationprocessreferredtoas τ1(generally on the order of microseconds), which is associated with the quick exchange of monomers between micelles and the surrounding bulk phase. This process can be considered to be the collision between surfactantmonomersandmicelles.Thesecondrelaxationtime, τ 2(on the order of milliseconds), is attributed to the micelle formation and dissolutionprocess(i.e.,thelifetimeofthemicelle). It has been shown that in certain surfactants such as nonionic surfactantsandmixedsurfactantsystems, τ2 canbeaslongasminutes!

14 Chapter1: SDSandCMC ______

Fig.1:Mechanismsforthetworelaxationtimes, τ1and τ2,fora surfactantsolutionaboveCMC(11).

Figure 1 shows the two characteristic relaxation times, τ 1 and τ 2, associatedwithmicellarsolutions.Micelleformationanddisintegrationis analogoustotheequilibriumbetweenwaterandwatervapouratagiven temperature and pressure. For a closed system containing liquid water andwatervapourinequilibrium,thenumberofwatermoleculesperunit areapersecondevaporatingfromthesurfaceisequaltothenumberof water molecules condensing at the surface. Thus, the total number of molecules in the vapour phase or in the liquid does not change with time,sotherateofcondensationisequaltotherateofevaporation.The same principle holds for a micellar solution. Under equilibrium conditions, the rate of micelle formation is equal to the rate of disintegrationintosurfactantmonomers. Micellarrelaxationkineticsshowdependenceontemperature,pressure, andconcentration,aswellasontheadditionofother species such as shortchain alcohols. It was shown that the τ 2 of an SDS micelle decreaseswithincreasedconcentrationofC1–C5alcohols(11).These kineticshavebeenstudiedbyvarioustechniquessuchasstoppedflow,

15 Chapter1: SDSandCMC ______ temperaturejump, pressurejump, and ultrasonic absorption (12). The tworelaxationtimescanbeusedtocalculatetwoimportantparameters ofamicellarsolution:(a)theresidencetimeofasurfactantmoleculeina micelleand(b)theaveragelifetimeorstabilityofamicelle. Thedescribedmethodsprovideadirectdescriptionandcharacterization ofthedynamicpropertiesofmicelles.Howeverotherphysicalchemical methodscanbeappliedtogaininformationonthemicellearchitecture (13). Sodium Dodecyl Sulfate: determination of critical micelle concentrationbycapillaryelectrophoresis. The optimization of the analytical conditions and the separation of analytesincapillaryelectrophoresis(CE) havebeen the subjects of an important field of research (1215). The study of the micellization process being a key parameter in the optimization of analytical conditionsinCE,particularlyinMicellarElectrokineticChromatography (MEKC),agoodunderstandingofthemicellizationofasurfactantisof paramount importance; thus, the determination of the CMC of surfactants under the operating conditions of a system is certainly desirable.Anumberofmethods,includingelectricalconductivity(16– 19), surface tension (20), light scattering (21,22), spectrophotometry (18,19,23),cyclicvoltammetry(24),NMR(25),speedofsound(26),CE (27–28),etc.,havebeenusedtodeterminetheCMCofsurfactants.The CMCvalueofasurfactantisaffectedbytheoperatingconditionsofan electrophoreticsystem,suchasthenatureofthebufferelectrolyte,the type and composition of the electrolyte solution (28, 34), buffer pH (29,30),theionicstrengthoftheelectrolytesolution(28,29,31),thetype

16 Chapter1: SDSandCMC ______ ofcounterionoftheelectrolytesolution(32),thetypeofcounterionof the surfactant (32), the presence of various organic modifiers (33), temperature (35), and the nature of solubilised solutes (36). CE is conveniently applied to the determination of the CMC in an electrophoreticsystemunderanyoftheoperatingconditions,whichare desirabletobeapplied.SeveralapproachesbasedonCEtechniquehave beenproposedtodeterminetheCMCvaluesofsurfactants(3840,27– 28). Among them, three major methods are emphasized: the first method, proposed by Terabe et al. (41), is based on the linear relationshipoftheretentionfactorofasolutewithmicelleconcentration using MEKC technique. It is the zonal method , which is based on the migrationspeedmonitoringofamicelleinteractingmarkerinjectedasan analyteinacapillaryfilledwithasurfactantsolution. The second method is based on the variation of the effective electrophoretic mobility of a marker compound as a function of surfactant concentration in the premicellar and micellar regions. By plotting the effective electrophoretic mobility of a marker compound against surfactant concentration, a sharp change in slope can be observed at the CMC (27–32). The third method is based on the measurementsoftheelectriccurrentofmicellarelectrolytesolutionsasa functionofsurfactantconcentrationusingCEinstrumentationatagiven applied voltage (42). The practical requirements for making CMC measurements and the CMC values of surfactants determined by CE methods are presented. In addition, difficulties, uncertainty, and misconceptionsthatmayariseintheCMCdeterminationarediscussed.

17 Chapter1: SDSandCMC ______ Methodologicalapproaches Methodbasedontheretentionmodel—micellarelectrokineticchromatographymethod Ithasbeenknownthattheeffectiveelectrophoreticmobilityofaneutral solute (eff ) in MEKC is proportional to the mobility of the micellar phase(mc )andisgivenby(43):

eff =(k/1+k)mc (1) where kis the retention factor of the soluteand the term k/(1 + k) representsthemolefractionofthesoluteinthemicellarphase.Eq.(1) canberearrangedandexpressedas: k=eff /mc −eff (2) InCE,theelectrophoreticmobilityofasoluteisrelatedtothemigration timesby:

eff =(1/ tr −1/t eo )(L tLd/V) (3) where t r and t eo are the migration time of the solute and that of the neutralmarker,respectively,L t andL dthetotallengthofthecapillaryand thedistancefromtheupstreamendtothedetector,respectively,andV istheappliedvoltage.Bysubstitutingmigrationtimesforthemobilities inEq.(2),theretentionfactorcanbeexpressedintermsofmigration timesas: tr t eo k=(4) teo (1tr/t mc )

18 Chapter1: SDSandCMC ______ where t mc is the migration time of a micelle marker. Accordingly, the retentionfactorofaneutralsolutecanbecalculatedfromthemigration times.Forananionicsolute,theeffectiveelectrophoreticmobilitycanbe describedastheweightedaverageofthemobilityof the solute in the micellarphaseanditsownmobilityintheaqueousphaseandisgivenby: k 1 =() +() (5) eff 1+k mc 1+k 0 where0isthemobilityintheabsenceofmicellesintheaqueousphase. Similarly,Eq.(5)canberearrangedandexpressedas: eff –0 (6)k= mc –eff and tr t 0 (7)k= t0 (1tr/t mc ) where t 0 isthemigrationtimeoftheanionicsoluteinthe absence of micelles. For an acidic solute, the situation becomes more complicated. The effectiveelectrophoreticmobilityisexpressedastheweightedaverageof asolutewiththemobilityofthemicellarphaseanditsownmobilityin theaqueousphaseasdescribedinEq.(5).However,dependingonthe pH of the buffer electrolyte, the electrophoretic mobility of an acidic soluteintheabsenceofmicellesisexpressedas K (8)a 0= + A Ka +[H ]

19 Chapter1: SDSandCMC ______ whereA−isthemobilityofthefullydissociatedspeciesandK aisthe acid dissociation constant. Therefore, the retention factor of an acidic solutecanbeexpressedastheweightedaverageoftheretentionfactor of its undissociated form (k HA ) and that of the fully dissociated form

(k A−)as: + [H ] Ka k=+ kHA + + (9)kA [H ]+K a [H ]+K a + kHA +(Ka/[H ])k A k=(10)+ 1+K a/[H ] Itshouldbenotedthat,inthiscase,theinteractionsofaselectedacidic solute with surfactant monomers are usually assumed to be negligibly small.Forabasicsolutewithananionicsurfactantasamicelleforming agent, the equilibrium involves ionpairing interaction between the cationic solute and the anionic micelles. Again, the effective electrophoretic mobility of a basic solute can be described as the weightedaverageofasolutewiththemobilityofthemicellarphaseand itscharacteristicmobilityintheaqueousphasebytheequation: Kb/(1+K b+K bK1) k =(11)+ eff 1+k c 1+k mc wherecistheelectrophoreticmobilityofthenonionpairedspecies,K b isdefinedasthebaseconstantofthesolutedividedbytheconcentration of the hydroxide ion, and K 1istheproductoftheCMCandtheion pairingequilibriumconstant.Thus,kcanbeexpressedas:

eff –[K b/(1+K b+K bK1)]c (12) k= mc eff

20 Chapter1: SDSandCMC ______ where

c=0(1+Kb)/K b. Ontheotherhand,kisrelatedtothepartitioncoefficient of a solute between the micellar and aqueous phases (P mw ) and the phase ratio

(V mc /V aq )bytheequation: k=(Pmw Vmc )/Vaq (13) The phase ratio is governed by three parameters as shown in the followingequation:

~ Vmc V(C T CMC) (14)= ~ Vaq 1V(C CMC) T ~ whereVandC T arethemolarvolumeandtotalsurfactantconcentration, respectively. At low micellar concentrations, the phase ratio is ~ approximatelyequaltoV(C T−CMC).Inthiscase,kislinearlyrelatedto

CTbythefollowingequation: ~ k=Pmw V(C T−CMC) (15)

By plotting k against C T, the CMC of a surfactant can be easily determinedfromEq.(15).

21 Chapter1: SDSandCMC ______

Fig. 2 (26): Relationship between k and [SDS] for A) some neutral solutes: 2naphtol (■), toluene (*), nitrobenzene (○), phenol (∆) and resorcinol(□)andB)someanionicsolutes(chlorophenols, CPs): 2CP (□), 3CP (∆), 23CP (○), 25CP (*), 245CP (■), 246CP (▲) and pentaCP(●).Electropherogramsmeasuredin50mMphosphatebufferat pH7.0(40°) Fig. 2A shows the plots of k versus sodium dodecylsulfate (SDS) concentrationforsomeneutralsolutes(benzenederivatives)applyingthe Eq.(4)toevaluatekvaluesandinfig.2Banionicsolutes(chlorophenols) usingEq.(7)alsotoevaluatekvalues.Asshown,alllinesalmostpass throughthesameintercept,andtheslopeoftheline(P mw )increaseswith thehydrophobicityofthecompound.Theresultsindicatethatastronger interactionbetweentheselectedtestsoluteandthesurfactantmayyielda smallererrorinthedeterminationoftheCMCvalue(26). Methodbasedonthemobilitymodel—capillaryelectrophoresis(mobility)method In the evolution of the effective electrophoretic mobility of a marker compoundasafunctionofsurfactantconcentrationinthepremicellar andmicellarregions,adramaticchangeinslopeataparticularsurfactant

22 Chapter1: SDSandCMC ______ concentration is observed. This particular concentration is a good indicationoftheCMCofthesurfactant. ThemethodbasedonthisconceptwasfirstintroducedbyJacquierand Desbene(27)usingnaphthaleneasamarkercompoundfordetermining theCMCofSDS.Asharpchangeinslopewasobservedataround5mM whenmobilitycurveswereplottedasafunctionofSDSconcentrationin the premicellar and micellar regions. The mobility equations for describingthemigrationbehaviorofnaphthaleneinthepremicellarand micellarconcentrationregionsaregivenby: Ksolv [C T] (Ceff =solv T<CMC)(16) 1+K [C ] solv T and Ksolv [CMC] Kmc [M] eff =solv + (Cmc T>CMC)(17) 1+K solv [CMC] 1+K [M] mc whereK solv andsolv arethebindingconstantandthelimitingmobilityof solvophobic complexes formed between the test solute and surfactant monomersthroughsolvophobicinteractions,K mc isthebindingconstant ofthesolutetothemicelles,and[M]isthemicelleconcentrationwhich isequalto(C T−CMC)/n,wherenistheaggregationnumber.Whenthe interactionbetweentheselectedneutralsoluteandsurfactantmonomers becomes significantly strong, the mobility equation for describing the migration behaviour of solutes in the micellar concentration region needstobemodifiedasfollows(44):

KAS (CMC)AS +K AM [M]mc CT >CMC(18) eff = 1+K AS (CMC)+K AM [M]

23 Chapter1: SDSandCMC ______ whereK AS andAS (correspondingtoK solv andsolv ,respectively,inEq. (17))arethebindingconstantandthelimitingmobilityofthecomplexes formed between the neutral solute (A) and surfactant monomers(s). Different mobility equations should be derived for describing the migration behaviour of various types of test solutes in different electrophoretic systems. For example, the effective electrophoretic mobility of a negatively charged solute (A−) in the premicellar and micellar concentration regions, respectively, can be described by the followingequations(36,37): A+K AS[S]AS (belowtheeff = CMC)(19) 1+K AS[S] and A+K AS (CMC)AS +K AM [M]mc eff = (abovetheCMC)(20) 1+K AS(CMC)+K AM[M] where A− is the electrophoretic mobility of the negatively charged solute, K A−S and A−S are the binding constant and electrophoretic mobility, respectively, of the negatively charged solute associated with the anionic surfactant monomers, and K A−Misthebindingconstantof thechargedsolutestothemicelles. Practicalrequirementsformakingcriticalmicelleconcentrationmeasurements:micellar electrokineticchromatographymethodandcapillaryelectrophoresis(mobility)method AsuitablemarkercompoundformakingCMCmeasurementusingCE technique the following features should be met. First, the test solutes shouldhaveahighUVmolarabsorptivityforeasydetectionwhenusing

24 Chapter1: SDSandCMC ______ CEinstrumentswithspectrometricdetection(27).Second,dependingon the nature of surfactants, the test solute should beabletoincorporate into the micelles toacertain extent. Forexample, according to linear solvation energy relationship (LSER) studies (45–47), SDS micelles possess a hydrophobic interior structure with strongly hydrogen bond donatingcharacter.Thus,soluteswithagreaterhydrophobicityand/or withstronglyhydrogenbondacceptingcharacterintendtoincorporate into SDS micelles to a greater extent. This is because the greater the differenceinthebindingconstantsoftheselectedsolutewithsurfactant monomersandwiththemicelleis,themoredramaticthechangeinthe slopeofthecurvesoftheelectrophoreticmobilityasafunctionofthe total surfactant concentration at the CMC is. Consequently, the more precisewillbetheCMCvaluedetermined.Third,a test solute should haveapropersolubilityinamicellarelectrolytesolution,becauselackof solubilitymayresultinalowseparationefficiencyoftheelectrophoretic system and uncertainty in the measurement of migration times, thus leadingtosystematicerrorsinthedeterminationoftheCMCvalue(27). In order to solve solubility problems and/or to improve separation, selectivity and/or resolution in CE, an organic modifier is frequently addedtotheelectrolytesolution.However,additionoforganicmodifiers tothemicellarelectrolytesolutionsmayinducethemodificationofthe micellestructureand/ormicelleproperties.Inordertoobtainconsistent andreproducibleresults,thetemperatureinthecapillaryshouldbewell controlled and the electric field should be kept constant for an experimentset.

25 Chapter1: SDSandCMC ______ Method based on the measurements of electric current using capillaryelectrophoresisinstrumentationcapillaryelectrophoresis (current)method Cifuentesetal.(42)reportedamethodofmeasuringelectriccurrentbya CE instrument, based on the concept that the conductivity of ionic surfactantsinanelectrolytesolutiondependsontheaggregationstateof thesurfactant(48).ThisapproachessentiallyconsistsofaCEversionof thetraditionalmethodofmeasuringtheCMCvaluebyconductivity. Assuming that the micelle is composed of n ionic monomers or amphiphiles(S)anditcarries m coions(e.g.,Na+)inducedwithinthe micelle,atconcentrationnotgreatlyabovethecmc,itcanbewritten:

Eq.21 This equilibrium shows that, at concentration of surfactant c > cmc, amphiphilesaremainlyinamicellarform,i.e., n molecules ofsurfactant plus m coions will aggregate to form a micelle, while at c < cmc, surfactantwillbeinamonomericform,movingfreely insolutionina waysimilartothatofcoionsattheselow concentrations. On the other hand, in a CE instrument, applying a voltage V on a capillaryofradius r andtotallength l, filledwith a surfactant solution, givesanelectriccurrent I accordingtoOhm’slaw(50):

where δ Na+ , δ S, and δ mic are the specific conductivities of the coion, amphiphile,andmicelle,respectively.Itcanbeeasilydeducedfromthe

26 Chapter1: SDSandCMC ______ equilibrium (eq.21), at c < cmc, the main contribution to the overall conductivityofthesolutioncomesfromδNa+ andδ S,whileatc>cmc, themaincontributioncomesfromδ mic ,withalownumberofcoions, e.g.,sodium,movingfreelyinsolutionatthesehighconcentrations.The observeddecreaseinconductivityofsolutionsofionicsurfactantsabove thecmcisexplainedthroughbothinclusionwithinthemicelleofcoions tothatofamphiphilesandtheincreaseinresistancetomigrationofthe micelle caused by the ionic atmosphere of coions surrounding this orderedstructure. Thus, in CE, by plotting electric current against different surfactant concentrationsatagivenvoltage,experimentalpointsmustfitintotwo lines whose slopes should be different depending on the range of c considered.Itcanbeeasilyobservedthattheincreaseofthecirculating currentislinearunderandabovetheCMCvalue;moreover,becauseof thelowerconductivityofthemicellescomparedtomonomer of SDS, theslopeafterthemicellizationislessabrupt.That is, the two slopes correspondtothemonomericandmicellarstatesof the surfactant. In Fig. 3, the plot of the electric current values obtained for different concentrations of SDS in water at 25 °C is shown. As expected, experimentalpointsfitintotwostraightlinesofdifferentslope.Ascan be seen in Figure 3, this variation of slope takes place at a SDS concentrationof~8mM.

27 Chapter1: SDSandCMC ______ [SDS](mol/L)

Fig.3: plot of electrical current vs concentration of SDS Fused silica capillary:75 ími.d.and47cmlength.Temperaturewaskeptat25°C. SDSinwater;currentmeasuredat20kV. Practical requirements for making critical micelle concentration measurements: Capillaryelectrophoresis(current)method. As the electric current of an electrolyte system measured by a CE instrumentisusuallyverysmall,careshouldbetakentomanipulatethe sensitivity of this method by choosing the adequate capillary size. Capillarydiameterandlength,andvoltagetobealliedshouldbechosen inordertoobtaintheadequatecurrentvalues,preferably,inthe1100 A. Especially for lowconductivity surfactant solutions, capillary diameterandvoltageshouldbeincreasedandcapillarylengthdecreased. PropercontrolofJouleheatingalsorequirespowertobekeptdissipated andthetemperatureshouldbestrictlycontrolled.

28 Chapter1: SDSandCMC ______ References: 1) McBain,J.W., Trans.FaradaySoc. 9,99(1913). 2) McBain, J. W., and Salmon, C. S., J. Amer. Chem. Soc. 42, 426 (1920). 3) Hartley, G. S., “Aqueous Solutions of ParaffinChain Salts.” Hermann,Paris,1936. 4) Hartley,G.S.,Collie,B.,andSamis,C.S., Trans.FaradaySoc. 32, 795,(1936) 5) Hiemenz,P.C.,andRajagopalan,R.,“PrinciplesofColloidand SurfaceChemistry,”3rded.Dekker,NewYork,1997. 6) Hunter,R.J.,“FoundationsofColloidScience.”Oxford Univ. Press, 7) NewYork,1987. 8) Tanford, C., “The Hydrophobic Effect. The Formation of MicellesandBiologicalMembranes,”2nded.Wiley,NewYork, 1980. 9) Lasic,D.,“Liposomes:FromPhysicstoApplications.”Elsevier Scientific,Amsterdam,1993. 10) Fendler,J.,“CatalysisinMicellarandMacromolecularSystems.” AcademicPress,NewYork,1975. 11) Myers, D., “Surfaces, Interfaces and Colloids: Principles and Applications.”VCH,NewYork,1991. 12) Leung, R., and Shah, D. O., J. Colloid Interface Sci. 113(2), 484 (1986). 13) G. Brigati, P. Franchi, M. Lucarini, G. F. Pedulli and L. Valgimigli,Res.Chem.Intermed. ,2002,28,131.

29 Chapter1: SDSandCMC ______ 14) Z.ElRassi,R.W.Giese(Eds.),SelectivityandOptimization in CapillaryElectrophoresis,Elsevier,Amsterdam,1997. 15) M. G. Khaledi, HighPerformance Capillary Electrophoresis: Theory,Techniques,andApplications,Wiley,NewYork,1998. 16) E.D.Goddard,G.C.Benson, Can.J.Chem. 35(1957)986. 17) P.R.Martin,G.Prieto,C.Rega,L.M.Varela,F.Sarmiento, V. Mosquera,Langmuir14(1998)4422. 18) A. Dominguez, A. Fernandez, N. Gonzalez, E. Iglesias, L. Montenegro, J.Chem.Educ. 74(1997)1227. 19) J.GarciaAnto,J.L.Guinon, ColloidsSurf. 61(1991)137. 20) S.Rakesh,V.Dharmesh,B.Pratap, J.Dis.Sci.Technol. 24(2003) 53. 21) K.J.Mysels,L.H.Princen, J.Phys.Chem. 63(1959)1696. 22) Y.D. Smet, L. Deriemaeker, E. Parloo, R. Finsy, Langmuir 15 (1999)2327. 23) A.E. Boyer, S. Devanathan, G. Patonay, Anal. Lett. 24 (1991) 701. 24) A.B.Mandal,B.U.Nair, J.Phys.Chem. 95(1991)9008. 25) T.S.Lee,K.W.Woo, J.ColloidInterfaceSci. 169(1995)34. 26) ChingErhLin, JournalofChromatographyA ,1037(2004)467–478 27) J.C.Jacquier,P.L.Desbene, J.Chromatogr.A718(1995)167. 28) J.C.Jacquier,P.L.Desbene, J.Chromatogr.A743(1996)307. 29) D.Myers,Surfaces,Interfaces,andColloids,VCH, NewYork, 1991,p.317. 30) C.E.Lin,W.C.Lin,W.C.Chiou, J.Chromatogr.A 722(1996)333. 31) S.Katsuta,K.Saitoh, J.Chromatogr.A 780(1997)165.

30 Chapter1: SDSandCMC ______ 32) E.S.Ahuja,J.P.Foley, Anal.Chem. 67(1995)2315. 33) C.W.Huie, Electrophoresis 24(2003)1508. 34) M.S.Akhter, ColloidsSurf.A 121(1997)103. 35) Y. Mrestani, Z. Marestani, R.H.H. Neubert, J. Pharm. Biomed. Anal. 26(2001)883. 36) C.E.Lin,M.J.Chen,H.C.Huang,H.W.Chen, J.Chromatogr.A 924(2001)83. 37) C.E.Lin,H.C.Huang,H.W.Chen, J.Chromatogr.A 917(2001) 297. 38) S.Terabe,K.Otsuka,T.Ando, Anal.Chem. 57(1985)834. 39) M.G.Khaledi,S.C.Smith,J.K.Strasters, Anal.Chem. 63 (1991) 1820. 40) J.K.Strasters,M.G.Khaledi, Anal.Chem. 63(1991)2503. 41) S.Terabe,K.Otsuka,K.Ichikawa,A.Tsuchiya,T.Ando, Anal. Chem. 56(1984)111. 42) A.Cifuentes,J.L.Bernal,J.C.DiezMasa, Anal.Chem. 69(1997) 4271. 43) M.G.Khaledi,S.C.Smith,J.K.Strasters, Anal.Chem. 63 (1991) 1820. 44) C.E. Lin, T.Z. Wang, T.C. Chiu, C.C. Hsueh, J. High Resolut. Chromatogr. 22(1999)265. 45) S.Yang,M.G.Khaledi, Anal.Chem. 67(1995)499. 46) S.Yang,M.G.Khaledi, J.Chromatogr.A 692(1995)301. 47) S. Yang, J.G. Bumgarner, L.F.R. Kruk, M.G. Khaledi, J. Chromatogr.A 721(1996)323.

31 Chapter1: SDSandCMC ______ 48) D.C.Tickle,G.N.Okafo,P.Camilleri,R.F.D.Jones,A.Kirby, Anal.Chem. 66(1994)4121. 49) Evans,H.C. J. Chem . Soc .1956,579586. 50) Foret, F.; Krivankova, L.; Bocek, P. In Capillary Zone Electrophoresis ;Radola,B.J.,Ed.;VCH:Weinheim,1993;pp715.

32 ______ Chapter2 : MicellarElectrokineticChromatography

33 Chapter2: MEKC ______ MicellarElectrokineticChromatography Introduction CapillaryElectrophoresis(CE)isoneofthemostimportantseparation techniquesinanalyticalchemistry,comparabletoGasChromatography (GC) and High Performance Liquid Chromatography (HPLC). CE is suitable in the separation of both small solutes and biomolecules (proteins,peptides,DNA)duetoitsuniqueselectivity,highresolution, high efficiency and small sample requirements as well as for the automationoftheanalyticalprocedure. Electrokinetic chromatography (EKC), introduced by Terabe and co workers in 1985 (1,2), belongs to the family of electromigration separationtechniques. According to the IUPAC recommendation (3), EKC is a separation techniques: ‘based on a combination of electrophoresis and interactions of the analytes with additives(e.g.surfactants),whichformadispersedphasemovingatadifferentvelocity […than the analytes (editorial note)]. In order to achieve separation either the analytesorthissecondaryphaseshouldbecharged’. It emplois electrokinetic phenomena (electrophoresis and electroosmosis) for the separation of constituents in a sample. EKC invariablyalsoinvolveschemicalequilibria,forexampledistribution,ion exchangeand/orcomplexformation.Inparticular,EKCisdefinedasa capillary electromigration separation technique employing a separation carrier. The separation carrier, also called pseudostationary phase (microdroplet,amicelle,adendrimer,oradissolvedpolymer),interacts

34 Chapter2: MEKC ______ withthesolutestobeseparatedwhileitsmigrationvelocityis,ingeneral, virtuallyunaffectedbytheinteraction.Ifthesolutestobeseparateddo not posses any charge, , the separation carrier must have an intrinsic electrophoreticmobility. MicellarEKC(MEKC)isa‘specialcaseofEKC,inwhichtheseparation carrerisamicellardispersedphaseinthecapillary’andmicroemulsion EKC(MEEKC)‘isaspecialmodeofEKC,whereamicroemulsionis employedasthedispersedphase’. Micellar electokinetic chromatography (MECK or MECC) can be consideredasanhybridbetweenelectrophoresisandchromatography TheseparationofneutralspeciesbyMEKCisaccomplishedbytheuse ofchargedsurfactantsintherunningbuffer.Ataconcentrationabove the critical micellar concentration (CMC), for example 8 or 9 mM for sodium dodecyl sulfate (SDS), aggregates of individual surfactant molecules (micelles) are formed. Micelles are essentially spherical with thehydrophobictailsofthesurfactantmoleculesoriented towards the centretoavoidinteractionwiththehydropholicbuffer,andthecharged heads oriented toward the buffer. A representation of micelles is depictedin(fig.1).

Fig.1:Ionicmicelles

35 Chapter2: MEKC ______ Dependingonthecharge,themicellesmigrateeitherwithoragainstthe electrosmoticflow(EOF),dependingonthecharge.Anionicsurfactants, suchassodiumdodecylsulfate(SDS)migratetowardtheanode,thatis, intheoppositedirectiontotheEOF.SincetheEOFisgenerallyfaster thanthemigrationvelocityofthemicellesatneutralorbasicpH,thenet movementisinthedirectionoftheEOF.Duringmigration,themicelles can interact with solutes in a chromatographic manner through both hydrophobicandelectrostaticinteractions. Themorethesoluteinteractswiththemicellethelongerisitsmigration timesincethemicellecarriesagainsttheEOF.Whenthesoluteisnotin contact with the micelleit is simply carried with the EOF. The more hydrophobiccompoundsinteractmorestronglywiththemicelleandare retainedlonger. Resolution The separation mechanism of neutral solutes in MEKC is essentially chromatographicandcanbedescribedusingmodifiedchromatographic relationship.Theratioofthetotalmolesofsoluteinthemicelle(pseudo stationaryphase)tothoseinthemobilephase,thecapacityfactor,k’,is givenby:

ts t 0 k= Eq.1 t0 (1ts/t sc ) where t 0= migration time of the surrounding (mobile) phase, the electrosmotic flow (EOF), t s= migration time of the solute zone, t sc = migration time of the front of the separation carrier, in specific the migrationtimeofthemicelles,alsocalledt m.

36 Chapter2: MEKC ______ ThisEquationismodifiedfromthenormalchromatographicdescription ofktoaccountformovementofthepseudostationaryphase.Notethat if t sc (t m) becomes infinite (that is when the micelle becomes truly stationary)theequationreducestoitsconventionalform.

ResolutionoftwospeciesinMEKCcanbedescribedby

( ( ( ( ( ( ( ( 1(t /t ) N1/2 α1 k’2 0 m R= ( ( α (k’ +1 eq .2 4 2 (1(t 0/t m)k

Efficiency Selectivity Retention WhereNisthenumberoftheoreticalplace,αisthe selectivity factor givenbyk 1/k 2,andk 1andk 2aretheretentionfactorsofthesolutes.Itis possibletoseefromeq.2thatresolutioncanbeimprovedbyoptimizing efficiency,selectivityand/orcapacityfactor.Withregardstothecapacity factor,thiscanbeadjustedbyvaryingthesurfactant concentration. A potential problem with the use of ionic surfactants, especially at high concentration,istheincreaseingeneratedcurrent.

Intheseparationofneutralsolutesallthesoluteselutebetweent 0andt m. Neutral hydrophilic compounds that do not interact with the micelle elutewiththeEOFandthosearetotallyretainedbythemicelleselute withthemicelles.Whilethetimewindowisoftenfairlysmall,thepeak capacitycanbeveryhighduetothehighefficiency. It is desirable to employconditionsthatopenthetimewindow,thatis moderate EOF andmicellesexhibitinghighmobility.

37 Chapter2: MEKC ______ Fig.2: Timewindowin MEKC:A)separationinsidethecapillary; B) explanationoftimewindowthroughanelectropherogram. In MEKC, as in capillary zone electrophoresis, the higher the applied voltage,thehighertheNvalueandthehighertheresolution,unlessthe temperature increase too high. Usually a high voltage of 1030 kV is appliedtoperformtheMEKCseparationand100000300000theoretical plates are obtained with a 50cm length and 50m i.d. capillary tube withinarelativelyshorttime. The retention factor k is important in increasing the resolution in MEKC. The optimum k value to give the highest resolution is determinedbythefollowingequation: 1/2 kopt =(t mc /t 0) Eq.3 Theresultgivenbyeq.3suggeststhattheretentionfactorshouldnotbe closetoeitherextremeforseparationbyMEKC. The selectivity factor α is the most important and the most effective termtoincreaseresolutionandcanbemanipulatedthroughselectionof surfactantsandmodificationofthebuffersolution.

38 Chapter2: MEKC ______ Selectivity TheselectivitycanbemanipulatedinMEKC;varyingthephysicalnature (size,charge,geometry)ofthemicellesbyusingdifferentsurfactants,can yielddramaticchangesinselectivity.Surfactantscanbeanionic,cationic, zwitterionicormixtureofeach(table1).

CMC Aggregation Biological detergents (mM) number Anionic SDS 8.0 62 Cationic DTAB 14 50 CTAB 1.3 78 NonIonic Octyglucoside nDodecylβDmatoside 0.16 Triton X100 0.24 140 Zwitterionic CHAPS 8.0 10 CHAPSO 8.0 11 BileSalt Cholic Acid 14 24 Deoxycholic acid 5 410 1015 4 Taurocholic acid Table1:Mostusedsurfactants In all cases, separation parameters such as temperature, buffer concentration, pH, or additives in background electrolyte (urea, metal ions, or cyclodexstrins), can be changed for improving both the selectivityandtheresolutionofthesystem.

39 Chapter2: MEKC ______ ResolutionOptimization Thechoiceofmicelleandofmodifieraddedtotheaqueousphaseisthe mosteffectiveandimportantmeansofenhancingresolution. Another keyparameterthateffectstheresolutionisthetemperature. Choiceofmicelle IonicSurfactant Fortheseparationofneutralanalytes,themicelleusedinMEKCmust beionic,thusobtainedfromionicsurfactantormixtures of ionic and nonionic surfactants. Some typical surfactants with their CMC and aggregationnumberarelistedintable1. Surfactantshaveahydrophobicchainandanionichydrophobicgroup withineachmoleculeandbothgroupsaffectselectivityinMEKC.SDS isthemostwidelyusedsurfactant;itpossessesalongalkylchainasthe hydrophobic group and an sulfate group as the polar group. SDS is devoidofUVvisabsorptionanditcanbesupplemented to the BGE without any cutoff in the spectrophotometric detection. When the analyte is incorporated into the micelle three types of interactions are possible: • The analyte is adsorbed onto the surface of the micelle by electrostaticordipoleinteraction; • The analyte behaves as a surfactant by participating in the formationofthemicelles; • Theanalyteisincorporatedintothecoreofthemicelle. The effect of the surfactant’s molecular structure on the separation selectivitywilldifferaccordingtothetypeofinteractioninvolved.The hydrophilic,orionicgroup,isgenerallymoreimportantindetermining

40 Chapter2: MEKC ______ selectivitythanishydrophobicgroupsincemostanalytesinteractwith themicellesurface. The influence of surfactant type on the separation selectivity can be investigated trough linear salvation energy relationships (LSER) (4). UsingLSERmethodologyusefulinformationaboutthenatureofsolute interactions with different types of surfactant aggregates can be obtained. One result of these studies is the selectivity differences in MEKC between several anionic surfactants are primarily due to hydrogenbondinginteractionsratherthanthedipolarinteractions. Cationicmicellesshowsubstantiallydifferentselectivityforneutraland for ionic solutes, as compared with anionic micelles because of the different polar group on this surfactant (5). Most cationic surfactants have an alkyltrimethylammonium group and their counter ions are halides.Cetyltrimethylammoniumbromide(CTAB)isthemostpopular cationic surfactant used in CE, mainly to reverse the direction of the EOFduetotheadsorptionofthecationicsurfactant on the capillary wall(6).Neverthelessitisnotwidelyusedasamicelleformingsurfactant inMEKC,probablyduetoitsUVabsorptionintheshortwavelength region and the generation of bromine in anodic vial during electrophoresis.However,CTABorthecorrespondingchloride(CTAC) showssignificantlydifferentselectivitycomparedtoanionicsurfactants (7), while the migration order of analytes still follows the order of increasing distribution constant, as in the case of anionic micelles. Accordingtostudiesusingthesolvationparametermodel,CTABdiffer significantlyfromSDSconcerningitshydrogenbondacidityand

41 Chapter2: MEKC ______ basicity.Thereforetheuseofacationicsurfactant instead of SDS is a promisingalternativetochangetheselectivity. Nonionicsurfactant Nonionicsurfactantsthemselvesdonotposseselectrophoreticmobility and cannot be used as a pseudostationary phase in a conventional MEKCofneutralsolutes.Still,nonionicsurfactant micelles are useful fortheseparationofchargedcompounds,especially for peptides with closelyrelatedstructures(8).Sincetheseparationprincipleisthesameas with ionic surfactants, we can classify the technique with nonionic micellesasbeinganextensionofMEKC.Nonionicsurfactantscanbe employedaspseudostationaryphasesinMEKCinacombinationwith ionicsurfactants. BiologicalSurfactantsBilesalts Bile salts which are a group of steroidal surfactants are common biologicalsurfactantsusedinMEKCasanalternative.Someofthebile salts,whichhavebeenemployedinMEKCseparationsincludesodium cholate(SC),sodiumtaurocholate,(STC),sodiumdeoxycholate (SDC) andsodiumtaurodeoxycholate(STDC).Thesesurfactantsareconsidered toformahelicalmicellewithareversedmicelleconformation(9).Also they have a relatively low solubilising power and they are capable of chiraldiscrimination(10). Micellepolymers These additives form monomolecular micelles (aggregation number of 1),sothatenhancedstabilityandrigidityofthemicellecanbeobtained aswellaseasiercontrolofthemicellesizeascompared with micelles formedbyaconventionallowmolecularmasssurfactant.SincetheCMC

42 Chapter2: MEKC ______ of these polymer is essentially zero, the net micellar concentration is constant or independent of the concentration and composition of a buffer,pH,additivesandtemperature,andhencebetterreproducibility inthemigrationtimecanbeexpectedinmicellepolymerMEKCthanin lowmolecularmasssurfactantMEKC(11).Inadditionmicellepolymer MEKCissuitabletobeadaptedforaonlinecouplingofMEKCwith massspectrometry(MS). MixedMicelles It is known that mixed micelles are formed more than two different surfactantsaredissolvedinasolution.Mixedmicellesconsistingofionic andanonionicsurfactantareparticularlyusefulinMEKC.Becausethey havelargersurfaceandlowersurfacechargedensitythanionicmicelles, theyprovidehigherretentionfactorandanarrowermigrationtimeand alsodifferentfromthatofanionicmicelle(12). Choiceofbuffersolution Ingeneral,theconstituentsofthebuffer,inwhichthepseudostationary phaseisdissolveddonotsignificantlyaffecttheresolution,butthepH of the buffer is an important factor in manipulating resolution of ionisableanalytes.Aionizedformoftheanalytehavingthesamecharge asthemicellewillbeincorporatedintothemicelletoalesserextentthan itsunchargedform. ChoiceofTemperature The distribution coefficient is dependent on the temperature and an increaseintemperaturecausesreductionofthemigrationtimebecause ofthedecreaseinthedistributioncoefficient.Thetemperaturerisealso results in increases of the velocity of EOF and micelle by the same

43 Chapter2: MEKC ______ extentowingtotheloweredviscosityoftheseparationelectrolyte.The dependence of the distribution coefficient on temperature is different amonganalytes.Althoughthetemperaturedoesnothave a significant impactonselectivityandresolutionitwillseriouslyaffectthemigration time. It is essential for the reproducibility of the results to keep temperaturepreciselyconstant. ChoiceofAdditives TheaqueousphaseinMEKCcorrespondstothemobilephaseinRPLC andthereforethevariousmobilephasemodifiersdevelopedinRPLCare alsoapplicableinMEKC. Organic Watermiscible organic solvents, such as methanol and acetonitrile, reduce the retention factor and alter separation selectivity. A high concentrationoforganicsolventmaybreakdownthemicellarstructure andthereforeitisrecommendedthatthevolumefractionofthesolvent shouldnotexceed20%.Theadditionoftheorganicoftenreducesthe electrosmotic velocity, thereby extending the migration time window theyincreaseresolution,probablyresultingfromthereducedchargeon themicelleduetoswellingcausedbytheorganicsolvent(13,14). Cyclodextrins Cyclodextrins(CDs)arepopularinthefieldofchromatography.Mostof the techniques using CDs are based on their capability to recognize specific molecules that fit the hydrophobic cavity. Native CDs are devoidofelectrophoreticmobility;howeverCDderivatives with ionic groupsubstituentscanbeusedasapseudostationaryphaseinsteadofa miceller separation carrier in EKC. This is especially effective for the

44 Chapter2: MEKC ______ separation of the number of neutral compounds, including aromatic isomersandracemicmixture(2,CDMEKCchapter). CDs have also been used as additives to micellar solutions for CD modified MEKC (CD/MEKC). When CD is added to a micellar solution,theanalyteisdistributedamongthreephases:micelle,CD,and water (aqueous phase). From the viewpoint of the elctrophoretic separation, CD exerts a remarkable effect on the apparent retention factor between micellar and nonmicellar phases. Highly hydrophobic compounds tend to be almost totally incorporated into the micelle becauseoftheirlowsolubilityinwater.CDiswatersolubleandcapable of including hydrophobic compounds into hydrophobic cavity. The inclusion complex formation equilibrium constant for the analyte depends on steric parameters. Thus a fraction of the hydrophobic analytewillbeincludedinthecavity,eveninthepresenceofmicelles. Therefore the migration time or the apparent retention factor of hydrophobic analyte that forms an inclusion complex with a CD will decrease with an increase in CD concentration. Separation selectivity amonghighlyhydrophobicanalytesdependssolelyonthedifferencein theirdistributionratiobetweenCDandthemicellarphase,becausesuch hydrophobic analytes can be assumed to be insoluble in water. CD MEKC is mainly applied because of the chirality of CD in enantioselectiveanalysisofneutralchiralcompounds. Ionpairreagents The partition process between analytes and ionic micelles depend on theircharge.Iftheyhavethesamechargetheanalyte’sinclusionisnot possible.Ontheotherhandiftheyshowoppositechargetheinteraction

45 Chapter2: MEKC ______ will be too strong. An ionpair reagent will strongly modify the interaction between ionic analytes and ionic micelle. For example, a cationicionpairreagentwillenhancetheinteractionbetweenananionic analyteandananionicmicellesbyformingtheionpairwiththeanalyte andthemicelle.Differently,acationicionpairreagent will reduce the interaction between a cationic analyte and an anionic micelle by competingwiththeanalyteforcombiningwiththemicelle.Theeffectof the ionpair reagent on the migration time or separation selectivity dependsonthemolecularstructureoftheionpairreagentitself. Urea A high concentration of urea is known to increase the solubility of hydrophobiccompoundsinwateraswellastohinder hydrogen bond formationintheaqueousphase.Theadditionofhighconcentrationof urea to the SDS solution enabled the MEKC separation of highly hydrophobiccompounds. References 1) S.Terabe,K.Otsuka,K.Ichikawa,A.Tsuchiya, Anal.Chem. ,56, 1984,111113. 2) S.Terabe,K.Otsuka, Anal.Chem. ,57,1985,834841. 3) Riekkola,ML.;Jönsson,J.Å.;Smith,R.M. PureAppl.Chem .,76, 2004,443451. 4) S.Yang,andM.G.Khaledi, Anal.Chem. 67,1995,499510. 5) K. Otsuka, S. Terabe, and T. Ando, J. Chromatogr. , 332, 1985, 219226 6) C.Fu,M.G.Khaledi, J.Chromatogr.A,1216,2009,1891–1900.

46 Chapter2: MEKC ______ 7) S.Terabe,CapillaryElectrophoresisTechnology,N.A.Guzman (Ed.),MarcelDekker,NewYork,1993. 8) N. Matsubara, K. Koezuka and S. Terabe, Electrophoresis , 16, 1995,580583. 9) R.O.Cole,M.J.Sepaniak,W.L.Hinze,J.GorseandK.Oldiges, J.Chromatogr. ,557,1991,113123 10) S.Terabe,M.ShibataandY.Miyashita, JournalofChromatography , 480,1989,403411. 11) CexiongFu,MortezaG.Khaledi, JournalofChromatogr.A ,1216 , 2009,Pages18911900. 12) H.T. Rasmussen, L.K. Goebel, H. McNair, J. Chromatography , 517,1990,549555. 13) M. J. Sepaniak, D.F.Swaile and A.C. Powell, J. Chromatography , 480,1989,185196. 14) A.T. Balchunas and M.J. Sepaniak, Anal.Chem.,60,1988,617 622. 15) Electrokinetic Chromatography. Theory, instrumentation and applications;Pyell,U.,Ed.;Wiley:Chichester,UK2006.

47 ______ Chapter3 : Cyclodextrins

48 Chapter3: CDs ______ Cyclodextrins Introduction Supramolecularchemistryisadisciplineofchemistrywhichinvolvesall intermolecular interactions where covalent bonds are not established between the interacting species: i.e., molecules, ions, or radicals. The majority of these interactions are of the hostguest type. Among all potentialhosts,thecyclodextrinsseemtobethemostimportantones, forthefollowingreasons: (1) They are seminatural products, obtained from a renewable natural material,starch,byarelativelysimpleenzymaticconversion. (2) They are produced in thousands of tons per year amounts by environmentallyfriendlytechnologies. (3)Asaresultofpoint2,theirinitiallyhighpriceshavedroppedtolevels wheretheybecomeacceptableformostindustrialpurposes. (4) Through their inclusion complex forming ability, important properties of the complexed substances can be modified significantly. Thisunprecedented“molecularencapsulation”isalreadywidelyutilized inmanyindustrialproducts,technologies,andanalyticalmethods. (5) Any of their toxic effect is of secondary character and can be eliminatedbyselectingtheappropriateCDtypeorderivativeormodeof application. (6) As a result of point 5, CDs can be consumed by humans as ingredientsofdrugs,foods,orcosmetics.

49 Chapter3: CDs ______ DiscoveryPeriod:From1891tothe1930s. The first reference to a substance which later proved to be a cyclodextrin,waspublishedbyVilliers(1),in1891.Digestingstarchwith Bacillusamylobacter(whichprobablywasnotapure culture, but also containedheatresistantsporesofBacillusmacerans),heisolatedabout3 g of a crystalline substance from 1000 g starch, and determined its composition to be (C 6H10 O5)2•3H 2O. Villiers named this product “cellulosine”,becauseitresembledcellulosewithregardtoitsresistance againstacidichydrolysisandbecauseitdidnotshowreducingproperties. Evenatthattime,heobservedthattwodistinctcrystalline“cellulosines” wereformed,probablyαand βCDs.Twelveyearslater,Schardinger(2), whostudiedvariousisolatedstrainsofbacteriathatsurvivedthecooking processandwhichwerethoughttoberesponsibleforcertaincasesof food poisoning, published a report that digesting starch with such a microorganism resulted in the formation of small amounts of two different crystalline products. These substances seemed to be identical withthe“cellulosines”ofVilliers.Schardingercontinuedtostudythese crystallized dextrins, with the expectation that they would shed some lightonthesynthesisanddegradationofstarch.Henamedtheisolated microbe Bacillusmacerans(3,4).Heobservedthatthecrystallinedextrins formedcharacteristiciodineadductsupontheadditionofiodineiodide solution. He reported that about 2530% of the starch could be converted to crystalline dextrins (with an additional larger amount of amorphous dextrins). In all of his experiments, the major crystalline productwasthesocalledβdextrin.Thesimplestmeanstodistinguish betweentheαandβdextrinswastheiodinereaction.Thecrystallineα

50 Chapter3: CDs ______ dextrin/iodinecomplexinthinlayersisbluewhendampandgraygreen when dry while the crystalline βdextrin/iodine complex is brownish (redbrown) damp or dry(5). It can be said that the fundamentals of cyclodextrinchemistrywerelaiddownbySchardinger. Inthe24yearsfollowingSchardinger’slastCDpublication(in1911),it was Pringsheim (6,7), who played the leading role in cyclodextrin research. He published extensively, with a number of coauthors, but theirpapersareoflimitedvalue.Thegreatestweaknessinthesestudies liesinthefactthattheyworkedwithincompletely separated fractions, and used inadequate methods, e.g., cryoscopic molecular weight determinations.Pringsheim’snumerouspaperscontainmanyunfounded speculations, and the majority of the published experimental data are unreliable. This group’s merit is, however, the discovery that the crystalline dextrins and their acetates have a high tendency to form complexeswithvariousorganiccompounds . During the following 35 years, until encouraging results of adequate toxicologicalstudiesbecameavailableandthesedeterredmanyscientists fromdevelopingCDcontainingproductsforhumanuse.Bytheendof the 1960s, the methods for the laboratoryscale preparation of cyclodextrins,theirstructure,physicalandchemicalproperties,aswellas their inclusion complex forming properties had been discovered. Summarizingtheliteratureavailableatthattime,theconclusionscould becondensedintothreepoints: (a) Cyclodextrins are very interesting, promising molecules, worth furtherstudy,particularlybecauseoftheirindustrialpossibilities.

51 Chapter3: CDs ______ (b) Cyclodextrinsareveryexpensivesubstances,availableonlyinsmall amountsasfinechemicals. (c) Cyclodextrins are apparently highly toxic; therefore, their utilizationsforhumanconsumptionseemstobequestionable. StructuralFeatures Cyclodextrins comprise a family of three well known industrially produced major, and several rare, minor cyclic oligosaccharides. The threemajorcyclodextrinsarecrystalline,homogeneous,nonhygroscopic substances, which are toruslike macrorings built up from glucopyranose units. The αcyclodextrin comprises six glucopyranose units,βCDcomprisessevensuchunits,andγCDcompriseseightsuch units.ThemostimportantcharacteristicsoftheCDsaresummarizedin Table 1. The nomenclature of CDs is not exact. Maltose is a disaccharide, i.e., a cyclomaltopentaose could be interpreted as a 10 glucopyranose containing cyclic oligosaccharide. Otherwise, this is the fivememberedpreαCD. Table1:Structuralcharacteriscticofα,β,γCD(28).

52 Chapter3: CDs ______ Asaconsequenceofthe 4C1conformationoftheglucopyranoseunits, allsecondaryhydroxylgroupsaresituatedononeofthetwoedgesofthe ring,whereasalltheprimaryonesareplacedontheotheredge.Thering, in reality, is a cylinder, or better said a conical cylinder, which is frequentlycharacterizedasadoughnutorwreathshapedtruncatedcone. The cavity is lined by the hydrogen atoms and the glycosidic oxygen bridges, respectively. The nonbonding electron pairs of the glycosidic oxygenbridgesaredirectedtowardtheinsideofthecavityproducinga high electron density there and lending to it some Lewis base characteristics. The C2OH group of one glucopyranoside unit can form a hydrogen bond with the C3OH group of the adjacent glucopyranoseunit.IntheCDmolecule,acomplete secondary belt is formedbytheseHbonds,thereforetheβCDisaratherrigidstructure. This intramolecular hydrogen bond formation is probably the explanationfortheobservationthat βCDhasthelowestwatersolubility ofallCDs.ThehydrogenbondbeltisincompleteintheRCDmolecule, becauseoneglucopyranoseunitisinadistortedposition.Consequently, insteadofthesixpossibleHbonds,onlyfourcanbeestablishedfully. The γCDisanoncoplanar,moreflexiblestructure;therefore,itisthe moresolubleofthethreeCDs.

Fig. 3. Schematic representation of the hydrophobic and hydrophilic regionsofanαCDcylinder(28).

53 Chapter3: CDs ______ Figure3showsasketchofthecharacteristicstructuralfeaturesofCDs. On the side where the secondary hydroxyl groups are situated, the diameter of the cavity is larger than on the side with the primary hydroxyls,sincefreerotationofthelatterreducestheeffectivediameter ofthecavity.Foralongtime,onlythethreeparent(ormajor)CDs(α, β, and γCD) were known and well characterized. During the past decade,aseriesofthelargerCDshasbeenisolatedandstudied(30).For example,theninemembered δCDwasisolatedfromthecommercially available CD conversion mixture by chromatography. The δ CD had greateraqueoussolubilitythanthe βCD,butlessthanthatofαandγ CD. It was the least stable among the CDs known at that time; their hydrolysisrateincreasesintheorderofαCD< βCD<γCD< δCD. The δCDdidnotshowanysignificantsolubilizationeffectonslightly solubledrugsinwater,exceptinthecasesofsomelargeguestmolecules suchasspironolactoneanddigitoxin,e.g.thesolubilityofspironolactone increasedabout30foldinthepresenceof δCD(30).Table2illustrates the complexforming ability of the larger CDs. These results are in accordwiththeresultsofcomputergraphicstudies.ThelargerCDsare notregularcylindershapedstructures. Table 2: inclusion complexing capacity of different CDs, studied by CapillaryElectrophoresis(28)

54 Chapter3: CDs ______ Theyarecollapsed,andtheirrealcavityisevensmallerthaninthe γCD (Figure4).

Fig.4. “Collapsedcylinder”structureofthe δCD(28). Thedrivingforceofthecomplexformation,thesubstitutionofthehigh enthalpywatermoleculesintheCDcavity,isweakerinthecaseoflarger CDs; therefore, their utilization as inclusion complexing agents will probablyremainratherrestricted. CDInclusionComplexes Inanaqueoussolution,theslightlyapolarcyclodextrincavityisoccupied by water molecules which are energetically unfavoured (polarapolar interaction), and therefore can be readily substituted by appropriate “guest molecules” which are less polar than water. (Figure 5.) The dissolvedcyclodextrinisthe“host”molecule,andthe“drivingforce”of the complex formation is the substitution of the high enthalpy water molecules by an appropriate “guest” molecule. One, two, or three cyclodextrin molecules contain one or more entrapped “guest” molecules.Mostfrequentlythehost:guestratiois1:1.However2:1,1:2, 2:2,orevenmorecomplicatedassociations,andhigherorderequilibria exist,almostalwayssimultaneously. The formed inclusion complexes can be isolated as stable crystalline substances. Upon dissolving these complexes, an equilibrium is established between dissociated and associated species, and this is

55 Chapter3: CDs ______ expressedbythecomplexstabilityconstant K1:1 .Theassociationofthe CD and guest (D) molecules, and the dissociation of the formed CD/guestcomplexisgovernedbyathermodynamicequilibrium.

Themostimportantprimaryconsequencesoftheinteractionbetweena poorlysolubleguestandaCDinaqueoussolutionareasfollows:  The concentration of the guest in the dissolved phase increases significantly,whiletheconcentrationofthedissolvedCDdecreases. Thislatterpointisnotalwaystrue,however,becauseionizedguests, or hydrogenbond establishing (e.g. phenolic) compounds may enhancethesolubilityoftheCD.  Thespectralpropertiesoftheguestaremodified.Forexample,the chemicalshiftsoftheanisotropicallyshieldedatomsaremodifiedin the NMR spectra. Also when achiral guests are inserted into the chiral CD cavity, they become optically active, and show strong induced Cotton effects on the circular dichroism spectra. SometimesthemaximumoftheUVspectraareshiftedbyseveral nm and fluorescence is very strongly improved, because the fluorescingmoleculeistransferredfromtheaqueousmilieuintoan apolarsurrounding.  Thereactivityoftheincludedmoleculeismodified.Inmostcases thereactivitydecreases,i.e.,theguestisstabilized,butinmanycases the CD behaves as an artificial enzyme, accelerating various reactionsandmodifyingthereactionpathway.

56 Chapter3: CDs ______  Thediffusionandvolatility(incaseofvolatilesubstances) of the includedguestdecreasestrongly. Andinthesolidstate:  The formerly hydrophobic guest, upon complexation, becomes hydrophilic;thereforeitschromatographicmobilityisalsomodified.  Thecomplexedsubstanceismolecularlydispersedinacarbohydrate matrix,formingamicrocrystallineoramorphouspowder,evenwith gaseousguestmolecules.  Thecomplexedsubstanceiseffectivelyprotectedagainstanytypeof reaction,exceptthatwiththeCDhydroxyls,orreactionscatalyzed bythem.  Sublimationandvolatilityarereducedtoaverylowlevel.  Thecomplexishydrophilic,easilywettable,andrapidlysoluble. When,inanaqueoussystem,theformationoftheCDinclusioncomplex can be detected, e.g. by NMR or circular dichroism, or through a catalytic effect; this does not mean that a welldefined crystalline inclusion complex can be isolated. The two main components of the drivingforceoftheinclusionprocessaretherepulsiveforcesbetween theincludedwatermoleculesandtheapolarCDcavityononehand,and betweenthebulkwaterandtheapolarguest,ontheotherhand.This secondfactordoesnotexistinthecrystalline(dry)state.Thereforeitis not uncommon that thecomplex formation is convincingly proved in solution,butneverthelesstheisolatedproductis nothing other thana veryfinedispersionoftheCDandtheguest.

57 Chapter3: CDs ______

Fig.5. SchematicrepresentationofCDinclusioncomplexformation. p Xylene is the guest molecule; the small circles represent the water molecules(28). Applications Several researches are addressed to the study of the CD inclusion phenomena. These works are generally not directly practiceoriented, dealingwithenergeticandkineticsofinclusion,Xray,FTIR,liquidand solidphase NMR, EPR, circular dichroism, Raman spectroscopy, enhancement of luminescence and phosphorescence, thermal analysis, interactionofCDSwithspecificguesttypes,enzymemodelingwithCDs andCDderivatives,preparation,analysisofcyclodextrincomplexes,etc. Thesemethods,aswellasthecorrelationbetweenthecomplexationand variousstructuralandexternalparametersformthebasisforallpractical applicationsofCDs. Most of the investigations are dedicated to the pharmaceutical applicationofCDs.Themajorityofdrugmoleculesarepoorlysolublein water,consequentlytheirbiologicalabsorptionisslowandfrequentlyfar from being complete. Moreover many drug molecules are rather sensitive to oxidation, thermodecomposition, light, ions, other ingredientsofthepharmaceuticalformulation,etc.

58 Chapter3: CDs ______ Most drug molecules are ideal complexforming partners for cyclodextrins, because their polarity, molecular mass, and structure enablethemtogetincludedintotheCDcavity.Thisisaveryproductive field,andconsideringthelengthydevelopmentandstrict requirements forapprovalofanewchemicalentity(acyclodextrincomplexofawell knowndrugmoleculeisalwaysconsideredtobeanewchemicalentity)it mustbeconsideredasasignificantachievementthatmorethanadozen drugs are already approved and marketed in cyclodextrincomplexed form. In the coming years this field will display the most intensive development. Noteverycyclodextrinorcyclodextrinderivativecanbeadministeredto humans, partly because some of those cyclodextrins have such a high affinitytowardthecellmembranelipidcomponentsoftheorganismthat dependingontheirconcentration,mayresultinhaemolysis,orelsetheir synthesisistooexpensive. References: 1) Villiers,A. Compt.Rend .1891, 112 ,536. 2) Schardinger,F.Z. Unters.Nahr.u.Genussm .1903, 6,865. 3) Schardinger,F. Wien.Klin.Wochenschr .1904, 17 ,207. 4) Schardinger, F. Zentralbl. Bakteriol. Parasintenk. Abt. 2 1905, 14 , 772. 5) Schardinger, F. Zentralbl. Bakteriol. Parasitenk. Abt. 2 ,1911, 29 , 188. 6) Pringsheim, H. Chemistry of the Saccharides ; McGrawHill: New York,1932;p280.

59 Chapter3: CDs ______ 7) Pringsheim,H. AComprehensiveSurveyofStarchChemistry ;Walton, R.P.,Ed.;ChemicalCatalogueCo.,Inc.:NewYork,NY,1928;p 35. 8) KarrerP.;Na¨geliC. Helv.Chim.Acta 1921, 4,169. 9) Miekeley,A. Ber.Dtsch.Chem.Ges. 1932, 65 ,69. 10) FreudenbergK.;RappW. Ber.Dtsch.Chem.Ges. 1936, 69 ,2041. 11) Freudenberg,K.;Boppel,H.MeyerDelius,M. Naturwissenschaften 1938, 26 ,123. 12) Freudenberg K.; MeyesDelius, M. Ber. Dtsch. Chem. Ges. 1938, 71 ,1596. 13) Freudenberg,K.;BlomquistG.;Ewald,Lisa;Soff,K. Ber.Dtsch. Chem.Ges. 1936, 69 ,1258. 14) Freudenberg,K.;Cramer,F. Z.Naturforsch .1948, 3b ,464. 15) French,D. Adv.Carbohydr.Chem .1957, 12, 189. 16) Cramer, F. Einschlussverbindungen (Inclusion Compounds) ; Springer Verlag:Berlin,1954. 17) Freudenberg, K.; Cramer, F.; Plieninger, H. Ger. Patent 895, 769,1953. 18) Thoma, J. A.; Stewart, L. Starch, Chemistry and Technology I. ; Whistler,R.L.,Paschall,E.F.,Eds.;AcademicPress:NewYork, 1965;p209. 19) Caesar,G.V. StarchanditsDerivatives ;Radley,J.A.,Ed.;Chapman andHall:London,1986;ChapterX,p290. 20) Szejtli,J.,Ed.; Proc.1stInt.Symp.onCyclodextrins,Budapest , 1981 ;D. ReidelPubl.:Dordrecht,1982.

60 Chapter3: CDs ______ 21) Atwood,J.L.,Davies,J.E.D.,Osa,T.,Eds. ClathrateCompounds, MolecularInclusionPhenomenaandCyclodextrins ;Proc.ofThirdInt. Symp.onClathrateCompoundsandMolecular Inclusionandthe Second Int. Symp. on Cyclodextrins; Tokyo, 1981, D. Reidel Publ.Co.:Dordrecht,1985. 22) Atwood,J.L.,Davies,E.D.,Eds. InclusionPhenomenainInorganic, Organic and Organometallic Hosts , Proc. Third Int. Symp. on Inclusion Phenomena and the Third Int. Sympt. On Cyclodextrins;Lancaster,1986;D.ReidelPubl:Dordrecht,1987; p455. 23) Huber,O.,Szejtli,J.,Eds. Proc.FourthInt.Symp.onCyclodextrins , Munich,1988;KluwerAcademicPubl.:Dordrecht,1988. 24) Duchene, D., Ed. Minutes of the Fifth Int. Symp. on Cyclodextrins , Paris,1990;EditionsdeSante´:Paris,1990. 25) Hedges,A.R.,Ed. MinutesoftheSixthInt.Symp.onCyclodextrins , Chicago,1992;EditionsdeSante´:Paris,1992. 26) Osa, T., Ed. Proceedings of the Seventh International Cyclodextrin Symposium , Tokyo, 1994; Publ. Office of Business Center for AcademicSocietiesofJapan,1994. 27) Larsen, K. L.; Ueda, H.; Zimmermann W. 8th European CongressonBiotechnology,Budapest,1721August,1997. 28) Jo´zsefSzejtli, Chem.Rev. ,98, 1998, 17431753.

61 ______ Chapter4: CyclodextrinsModifiedMicellar ElectrokineticChromatography

62 Chapter4: CDMEKC ______ Cyclodextrinmodifiedmicellar electrokineticchromatography(CDMEKC) Introduction In conventional MEKC, highly hydrophobic compounds tend to be totallyincorporatedintomicelleandhencemigrateatthesamevelocity asthatofthemicelleandtheycannotbeseparated. Tosolvethisproblemseveralapproacheshavebeenapplied:additionof organic solvents (1,2), use of bile salts instead of a long alkyl chain surfactant (3,4) and addition of CDs and addition of urea (5) to the micellarsolution. Among these methods, CDmodified MEKC (CDMEKC) (6), which employs CD together with an ionic micellar solution has been demonstrated to be useful in the separation of hydrophobic complex mixtures,butalsointheseparationofenantiomericcompounds(7). In CDMEKC, usually, negatively charged micelles are employed and theymigrateinthedirectionoppositetotheEOF,whileunchargedCDs migratewiththesamevelocityoftheEOF. AsCDiselectricallyneutral,itmigratesatanidenticalvelocitywiththe bulk solution. Therefore, the distribution of the analyte between the micelleandthenonmicellaraqueousphaseincludingCDdirectlyaffect the resolution. Addition of CD to the micellar solution reduces the partitioningoftheanalytetothemicellebyincreasingthefractionofthe analyte in the non micellar aqueous phase. If major fraction of the

63 Chapter4: CDMEKC ______ analytesisincorporatedintothemicelleoriscompletelyincludedinto CD,theseparationwillbeunsuccessfully. Thecapacityfactor,k,ofahighlyhydrophobicsoluteinCDMEKCis givenby: nmc Vmc Eq.1k==K nCD VCD wheren CD andn mc arethetotalamountsofthesoluteincludedbyCD andthoseofthesolutesincorporatedbythemicelle,V CD andV mc arethe volumesofCDandthemicellesandKisthedistributioncoefficient.

Fig.1:Schematicillustrationoftheseparationprinciple ofCDMEKC. Filled arrows indicate the electrophoretic migrationofthemicelleand openarrowstheelectroosmoticmigrationofCD(6). Thecapacityfactorisproportionaltothephase(volume) ratio of the micelletoCD.Thedistributioncoefficientmeanstherelativeaffinityof the solute between CD and the micelle. The ratio of the solute incorporated in the micelle depends on its hydrophobicity but the inclusioncomplex formation of the solute with CD depends on the concordanceofthesolutemolecularsizewiththecavitydiameterofCD inadditiontothehydrophobicity.Consequently,theselectivityinCD

64 Chapter4: CDMEKC ______ MEKCwillbemostlydeterminedbythetendencyofthesolutetoform aninclusioncomplexwithCD. Fig. 2 shows the separation of a mixture of naphthalene and four tricyclic and three tetracyclic aromatic hydrocarbons by γCDMEKC. TheordermeansthatsmallerPAHsaremoreeasilyincludedin theCDcavityorthelargerPAHsareincorporatedbytheSDSmicelleto agreaterextent.

Fig. 2: γCDMEKC separation of a mixture of naphthalene and four tricyclicandthreetetracyclicaromatichydrocarbons:1=naphthalene;2 =acenaphthene;3=anthracene;4=fluorene;5=phenanthrene;6= chrysene;7=pyrene;8=fluoranthene.Separationsolution,30mMy CD,100mMSDSand5mMureain100mMboratebuffer(pH9.0); appliedvoltage,20kV(6) ThreeCDs,α,βandγCDarethemostpopular,butvariousderivates havealsobeendevelopedformodifyingtheselectivityorincreasingthe solubilityinwater.

65 Chapter4: CDMEKC ______ βCD and its derivates, such as the methylated ones, have cavity size suitableforinclusionofawildrangeofanalytes. CDs are also useful for enantiomeric separation: one important conceptual point in enantioselective capillary electrophoresis is that enantioseparation is commonly not based on the principle of zonal electrophoretic separation. In fact, is based on the result of different migrationvelocitiescausedbydifferentchargedensitiesofanalytes.The enantiomersofachiralcompoundspossessthesame charge densities. Therefore none of the potential migration forces in CE, such as the electrophoreticmobilityoftheanalyte,theEOF,theircombinationora transport by nonenenatioselective carrier (as a SDS’s micelle) is, in principle,abletodifferentiatebetweentheenantiomers.Theprerequisite for separation of enantiomers is , thus, the enantioselctive interaction withchiralselectorsincludedintheelectrophoreticbackground. CDsandSDS:inclusioncomplex A significant property of CDs is the ability in including organic or inorganic compounds into their cavity, both in the solid state and in solutions,toforminclusioncomplex(8,9).Theyarealsoabletoinclude surfactantmolecules.Inclusioncomplexes,betweenCDsandsurfactants monomers, as SDS, with a 1:1 stoichiometry are usually assumed, althoughinclusioncomplexeswitha2:1stoichiometrymayoccasionally bereported(10,11).TheadditionofβCDtothepremicellar solution system appears to encapsulate surfactant molecules and to shift the equilibrium in favor of the formation of inclusion complexes. Thus, influencing considerably the micellization of surfactant. (12). As a

66 Chapter4: CDMEKC ______ consequence, the CMC value of a surfactant increases with increasing concentrationof,forexample,βCD. ThestudyoftheassociationofCDs/surfactants(SDS)hasbeencarried out e.g. by a conductivity technique. (13). This field of investigation involoved not only the analytical chemistry aspect, but also those of biologicalchemistry;infacte.g.interestingstudiesareinherenttothe effectofCDsonphospholipids,asmajorconstituentofcellmembranes (14). Conductometric study of the association of CDs with ionic surfactants The conductance method is based on the electrolytes proprieties of conductingelectricity.Theconductivityisduetoionsmigrationanditis regulatedbyOhm’slow: I=V/R(Eq.1) whereVisthepotentialdifferenceandRistheresistance.Theresistance reciprocalistheconductance,measuredin1(Siemens).Itisdependon theconcentrationandonthemobilityoftheionspresentinthesolution andonthetemperature. When the conductance of an electrolyte is considered, it is useful to measuretheequivalentconductivity,Λ,thatmeansacertainvolumeV e in which a equivalent gram of electrolyte is dissolved and it can be measuredbytwoelectrodes(conductometriccell)atadistanceof1cm 2 andhavinganareaofV ecm . Itcanbedefinedalsothemolarconductivity,thatisstrictlyconnectedto themolarconcentrationoftheelectrolytepresentinthesolution.

67 Chapter4: CDMEKC ______ Bymeansthistechniquethestoichiometryandtheinclusioncomplexof CDinpresenceofdifferentsurfactantswereassumed. In1985,Satakeetal,bydevelopingaconductometricandpotentiomeric method,foundtheassociationconstantofαCDwith ionic surfactant (15).

Fig. 3: Plots of ΛF– Λ vs CD concentration (C h) for sodium 1 nonasulfonatesolutionat25°C.Thesolidlineiscalculatedfromeq.5 (15) Inthisstudythedifferenceofequivalentconductanceofthesurfactant monomerinpresenceandinabsenceofαCDhasbeenplottedagainst theincreasingconcentrationofthecyclodextrin. Byassuminga1:1reactionscheme: R+αCD↔αCD•R whereRreferstotheamphiphilicion,theassociationconstantKcanbe writtenas: K=[RαCD]/[R][αCD],

68 Chapter4: CDMEKC ______ Itcanbedescribed: [R]=C[RαCD]

[αCD]=C h[RαCD]

WhereCisthetotalconcentrationoftheionicsurfactant,andC histhe concentrationoftheCD. ThefractionofRassociatedwithαCDcanbeexspressedas: f=[RαCD]/[R] so: [R]=CfC=C(1f)

[αCD]=C hfC; Theassociationconstant,K,canbewrittenas:

K=fC/[C(1f)(ChfC) Thatcanbeformulatedas:

K=f/(1f)(C hfC)Eq.3 IfwedenoteatheionicequivalentconductivitiesofRandαCD•R byλfandλa,wemaywrite:

ΛF–Λ=f(λfλa)Eq.4

Theuseofeq.2and3fortheevaluationofKrequiresaknowledgeofλa.

Unfortunately,however,thevalueofλaissomewhatdifficulttoestimate, since Λ decreases slightly but continuosly even at higher αCD concentrations.ItfollowsimmediatelyfromEq.2and3that: λfλa 2 2 ΛF–Λ=[K(C+C h)+1√{K(C+Ch)+1} 4K CC h]Eq.5 2KC

OnthebasisofEq.5,thevaluesofKandλfλa canbeassumedfromthe plotofΛF–Λvs. C hbyusinganonlinearleastsquaresmethod(Gauss Newton algorithm). The fig.3 shows the calculated conductivity curve

69 Chapter4: CDMEKC ______ from eq.5. The agreement between experimental point and calculated curves(line)isquitesatisfactoryoverawholerangeofC hindicatingthe validityofa1:1reactionscheme. The association constants and the conductometric parameters thus determined are summarized in table 1. In this table is also given the standardfreeenergychangeofcomplexformation,∆G ○.

Table1:TheConductometricandThermodynamicParametersofβCD Amphiphilicsystems(15). Other studies were carried out to determine the binding ratio of β cyclodextrin to various surfactants and to ascertain the effect this inclusionprocesshaduponmicellization. Conductance measurements were undertaken to determine the stoichiometry and association constants of CDsurfactant inclusion complexesinthepreCMCandpostCMCregions(16). Figure4showstheeffectuponthemolarconductancesofpremicellar SDSsolutionsafteraddingofβCD.

70 Chapter4: CDMEKC ______

Fig.4: Molar conductivity of SDS in βCD solutions below the CMC: opensquares,1.00xmoldm 3SDS; closedcircles,5.00xmoldm 3SDS (16). ThemolarconductancedecreasedsharplyasβCDwasaddedpresumably becausethedodecylsulfateionhavingbeencomplexedbyβCDwasless effective as a charge carrier. At a certain concentration in βCD, this linear decrease of molar conductance with βCD concentration halted ratherabruptlytoshownoorlittlefurtherdecreasewith further βCD additions. Thestoichiometryatwhichthishaltoccurredwas1.2:1βCD:SDSfor 1x10 3moldm 3 SDS; 1.1: 1 for 2.00x10 3moldm 3SDS; 1.1:1 for 3.00x10 3moldm 3 SDS; and 1.1: 1 for 5.00x10 3moldm 3 SDS. This

71 Chapter4: CDMEKC ______ indicatesthatthechiefinclusioncomplexofβCDwithSDSinthisrange is1:1withpossiblyalittle2:1complexalsopresent.Theplateauin themolarconductancebeyondthe1:1stoichiometryindicatesthatthe SDShasbeenalmosttotallycomplexed.Themolarconductanceatthis stage is due only to the charged inclusion complex and Na+ ions originatingfromthesurfactant. Above the CMC, the molar conductance pattern for SDS solutions containing βCD is less simple, but consistent as a function of SDS concentration. Figure 5 demonstrates this for three postCMC SDS systems. The consistent trend in all four systems was a sharply rising conductancewithβCDadditiontoamaximum,whichwasmoreswiftly reachedinmoredilutemicellarsystems,followedafterwardsbyadropin conductanceinwhichtwolinearportionscouldbediscernedaswiththe preCMCSDSsystems.

72 Chapter4: CDMEKC ______

Fig. 5: Molar conductivity of SDS in βCD solutions above the CMC: closedcircles,0.95x10 2moldm 3SDS; opensquares,1.20x10 2moldm 3 SDS; opencircles,2.00x10 2moldm 3SDS(16). TheadditionofβCDtothemicellarSDSthusappearstobreakupthe micelles releasing monomeric SDS and given Na+ ions. The former subsequentlycomplexwithβCDinthe1:1stoichiometryobservedinthe preCMC range and the latter largely give rise to a marked increase in conductance. At the maximum of the curve, the micelles have disappearedandsubsequentadditionofβCDsimplyremovesfreeSDS anionslargelyina1:1complex. ThemaximumofthecurvemaythusbeinterpretedastheCMCofthe mixedsurfactantsystem.

73 Chapter4: CDMEKC ______ ThesevaluesareplottedinFig.6anditcanbesaid that addition of cyclodextrinstoSDSsystemsgenerallyleadstoanincreaseintheCMC.

Fig.6:EffectofβCD ontheCMCvaluesofSDS andTTAB(16). References: 1) K.Otsuka,S.TerabeandT.Ando, Nippon Kagaku Kaishi , 1986, 950. 2) A.T.BalchunasandM.J.Sepaniak, Anal.Chem. ,59,1987,1466. 3) H.Nishi,T.FukuyamaandS.Terabe, J.Chromatogr. ,513,1990, 279. 4) R.O.Cole etal. , J.Chromatogr. ,557,1991,113. 5) S.Terabe etal. , J.Chromatogr. ,545,1991,359. 6) S.Terabe etal. , J.Chromatogr. ,516,1990,23. 7) S.Terabe etal., J.Chromatogr ,636,1993,47. 8) W. Saenger, in: J.C. Atwood, J.E.D. Davies, D.D. MacNicol (Eds.), Inclusion Compounds , Vol. 2, Academic Press, London, 1984.

74 Chapter4: CDMEKC ______ 9) M.L. Bender, M. Komiyami, Cyclodextrin Chemistry , Springer, Berlin,1978,chapter3. 10) D.W. Armstrong, F. Nome, L.A. Spino, T.D. Golden, J. Am. Chem.Soc. ,108,1986,1418. 11) E.Junquera,G.Taradajos,E.Aicart, Langmuir ,9,1993,1213. 12) P. Mukerjee, K.J. Mysels, Critical Micelle Concentration of Aqueous Surfactant Systems , National Bureau of Standards, Washington, DC,1970. 13) A.J.M. Valente, C.J.S. Dinis, R.F.P. Pereira, A.C.F. Riberiro, V.M.M.Lobo, PortugaliaeElectochimicaActa ,24,2006,129. 14) V.C.Reinsbourgh, Langmuir ,11,1995,2476. 15) I.Satakeetal., Bull.Chem.Soc.Jpn. ,58,1985,2746. 16) R. Palepu, V.C. Reinsbourgh, Can. J. Chem. , 66, 1988, 325.

75

76

ExperimentalPart

Studiesontheinteractionofsurfactantsand cyclodextrinsbycapillaryelectrophoresis.Application

tochiralanalysisinrealsample.

77

Abstract Inthepresentstudy,mixedsystemscomposedofSDSinthepresenceof neutralcyclodextrinswereconsidered.Firstly,theeffectoftheCDson the CMC of the surfactant was evaluated by CE experiments. Furthermore,anewCEapproachbasedonelectriccurrentmeasurement wasdevelopedfortheestimationofthestoichiometryaswellasofthe binding constants of SDSCDs complexes. The results of these investigations were compared to those obtained with a different technique, electronic paramagnetic resonance (EPR). The obtained resultssuggestedthatmethylatedCDs,inparticular(2,6diOmethyl)β cyclodextrin (DMβCD), strongly affect the micellization of SDS in comparison to the other studied CDs. This effect also paralleled the chiralCDMEKCperformance,asindicatedbytheenantioresolutionof (±)Catechin, which was firstly selected as a model compound representative of important chiral phytomarkers. Then a CDMEKC system,composedofsodiumdodecylsulfateassurfactant(90mM)and hydroxypropylβcyclodextrin (25 mM) as chiral selector, under acidic conditions(25mMborate–phosphatebuffer,pH2.5)wasappliedto study the thermal epimerisation of epistructured catechins, () Epicatechinand( )Epigallocatechin,tononepistructured( )Catechin and ( )Gallocatechin. The latter compounds, being nonnative molecules,wereforthefirsttimeregardedasusefulphytomarkersoftea sampledegradation.Theproposedmethodwasappliedtotheanalysisof morethantwentyteasamplesofdifferentgeographicalorigins(China, Japan, Ceylon), having undergone different storage conditions and manufacturingprocesses.

78

Chapter5: Capillaryelectrophoreticstudyontheinteraction betweensodium dodecylsulfateandneutralcyclodextrins.Applicat iontochiral separations.

79 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. Experimental Materials Sodium dodecyl sulfate (SDS), αcyclodextrin ( αCD), βcyclodextrin (βCD), γcyclodextrin ( γCD), (2hydroxypropyl)βcyclodextrin (HP βCD) were from Fluka (Milan, Italy). Heptakis (2,6diOmethyl)β cyclodextrin (DMβCD), pentylphenylketone (PFK) and 4’tert butylacetophenone (TBA) were form Aldrich (Milan, Italy). Tert butylbenzylketone(BBK)wassynthesizedaspreviouslydescribed(19). (±)Catechin,( ±)Ibuprofenand( ±)KetorolacwerefromSigma(Milan, Italy).Methanol,phosphoricacid,sodiumhydroxide,sodiumhydrogen phosphateandalltheotherchemicalswerefromCarloErbaReagenti (Milan,Italy).Waterusedforthepreparationofsolutionsandrunning buffers,waspurifiedbyaMilliRXapparatus(Millipore, Milford, MA, USA). Apparatus Electrophoretic experiments were performed on a HP 3D CE capillary electrophoresis instrument from Agilent Technologies (Waldbronn, Germany).Fusedsilicacapillaries(50 mid,38.5cmtotallength,30cm lengthtothedetector)werefromCompositeMetalService(Ilkley,UK); the data were collected on personal computer equipped with the integrationsoftwareAgilentRev.A.09.01. Methodologicalapproaches Prior to the first use, fusedsilica capillaries were washed sequentially withNaOH1M,NaOH0.1Mandwater.Eachofthewashingcycles was carried out for ten minutes at 60 °C. The experiments for the determinationof:(i)CMCofSDSinthepresenceofcyclodextrins,(ii)

80 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. associationconstantsandstoichiometryofthecomplexesSDS:CDand (iii) mobility of selected neutral solutes in SDS/CD running buffers, werecarriedoutbytheexperimentalproceduresdescribedbelow. CMCdeterminationbytheelectriccurrentmethod. Firstly,acapillaryconditioningcyclewasperformedflushingwithboth NaOH0.1Mandwaterforfiveminutes.Thesolutionstobetestedwere flushedintothecapillaryfor5minandavoltageof20kVwasappliedat constant temperature (25 ˚C). The electric current circulating in the capillarywasmeasuredbytheCEinstrumentationafteranequilibration time of 2 min and the obtained values were plotted against the concentration of SDS (mM). The regression lines in submicellar and micellarregionsweredeterminedbytheleastsquaremethodusingthe software package OriginPro 7.5. The intersection point of the two regressionlineswasassumedastheCMC. Estimationoftheassociationconstantandcomplexstoichiometry(SDS:CD). The determination of association constants and stoichiometry of complexes SDS:CD, were carried out using the CE apparatus, by measuringthedecreaseinelectriccurrentofasubmicellarSDSsolution whenitissupplementedbyincreasingamountofneutralCD.Precisely, theexperimentswereperformedat25°Cafteracapillaryconditioning cycle(5minatthepressureof50mbar)withthesolutiontobetested. Theelectriccurrentwasmeasuredaftera2minequilibrationtimeata constantvoltageof30kV.Firstly,theexperimentwascarriedoutonan aqueoussolutionofSDS2.5mM(Cs)(thecontrolsolution);successively theexperimentswereconductedonsolutionsobtainedbysupplementing thecontrolsolutionwiththeselectedCDatincreasingconcentrationsin

81 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. the range 0.5 – 10 mM. The electric current decrease respect to the controlsolution( I),occasionedbytheadditionoftheCD,wasplotted asfunctionofCDconcentration(Cc),andthedatawereelaboratedby MatLab7.1(Austin,TX,USA). ElectrophoreticmobilityofneutralprobesinSDS/CDssolutions.

Effective electrophoretic mobility ( e) was determined for the neutral analytes BBK, PFK and TBA, each dissolved at 0.01 mg/mL concentrationinawater/methanolsolution(90/10, v/v).The level of methanolinthesolutionwaschosentobethelowestallowingforthe complete dissolution of the analytes; the presence of methanol in the samples solutions was exploited, as the neutral marker, in the determination of the electroosmotic flow (EOF). The effective electrophoreticmobilitywascalculatedusingtheconventionalequations. Priortheanalysis,thecapillarywasconditionedwithNaOH0.1M,water andtherunningbuffer,for5min.Thesamplesolutionswereloadedinto the capillary by hydrodynamic injection at 50 mbar for 2 s. The UV detectionwavelengthwas210nmandtheappliedvoltagewas30kV. The running buffer was sodium phosphate 10 mM (pH 8.0) supplementedwiththestudiedcyclodextrins( βCD,HPβCDandDM βCD)at20mMconcentration.TheconcentrationofSDS was varied withinawiderange(17–164mM)andthecalculatedeffectivemobility for each of the studied analytes was plotted against the SDS concentration. EPRexperiments Tert butylbenzyl nitroxide (TBBN) radical is generated by mixing a solutionofthecorrespondingamine( tert butylbenzylamine;0.8mM)

82 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. with a solution of the magnesium salt of monoperoxyphthalic acid (Aldrich,technicalgrade)0.8mM.Inordertoachieveasufficientlylarge radicalconcentration,themixedsolutionisgenerallyheatedat60°Cfor 12min.Aliquotsfromaconcentratedsurfactantand CD solution are addedtothesolutionofnitroxidetoyieldtherequiredconcentrations. Samplesarethentransferredincapillarytubes(1mmi.d.)andtheEPR spectraarerecorded.DigitizedEPRspectraaretransferredtoapersonal computer for analysis using digital simulations carried out with a program developed in our laboratory and based on a Monte Carlo procedure(20). Chiralseparations ChiralCEanalysisof( ±)Catechin,( ±)Ibuprofenand( ±)Ketorolacwas performed using the “shortend” injection mode (effective capillary lengthwas8.5cm;totallengthwas38.5cm)attheconstantvoltageof15 kV.Thetemperaturewasmaintainedat15°CandtheUVdetectionwas fixedat200nm.Hydrodynamicinjectionofaqueoussamplesolutionsof the analytes (0.01 mg/mL) was carried out at 25 mbar for 2 s. The runningbufferwasanaqueous50mMphosphoricacidsolutionatpH 2.5(adjustedwithNaOH0.1N).Thiswassupplementedwith20mMof the studied CDs; the BGE contained also SDS at different concentrationsintherange30–70mM.

83 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. Results EffectofCDsonthecriticalmicelleconcentration(CMC)ofSDS. TheCMCofionicsurfactantscanbeconvenientlydeterminedbyusing CEinstrumentation(chapter1). Inthepresentstudy,inordertotestthereliability of the method, the CMCofSDS waspreliminaryevaluatedindeionizedwater;theCMCwasfoundtobe 7.9mM(RSD%2.1;n=3)ingoodagreementwiththevaluesreported intheliterature(14,23).Successively,theCMCofSDSwasdetermined inthepresenceof αCD, βCD, γCD, HPβCD, DMβCD. In Fig. 1 a representativeplotcurrentSDSconcentrationintheabsenceandinthe presenceofeither βCDandDMβCD(10mM)isdepicted.Asexpected andaccordingtopreviousreports(1016),thepresenceofcyclodextrin significantlyincreasedtheCMCofSDS.

35

30

25

20 A NoCD 15 βCD10mM DM βCD10mM 10

5

0 0 5 10 15 20 25 30 35 40 45 50 SDSmM Fig.1:PlotoftheCEcurrent(A)versustheSDSconcentration(mM). Experimental conditions: Total capillary (id 50m) lengths: 38.5 cm;

84 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. appliedvoltage20kV;temperature25°C.▲inwater;●inpresenceof DMβCD(10mM),■inpresenceofβCD(10mM) Table 1 shows the obtained CMC values of SDS, determined in the presenceofdifferentCDseachattheconcentrationof10mM.Itcanbe observedthattheinhibitionofmicellizationcanberelatedtothenature oftheCD.Inparticular, βCDandHPβCDshowedsimilarmicellization inhibitionwhereastheCMCvaluesobtainedwithmethylated CD was hardlydeterminedbecausetheslopesofthestraightlinesdidnotvary abruptly (Fig. 1); this effect was particularly pronounced at CD concentrationshigherthan15mM. CDtype CMC*(mM) noCD 7.9 αCD 13.3 βCD 15.1 γCD 21.4 HPβCD 14.6 DMβCD 34.0 Table 1. CMC values of SDS in the presence of CDs (10 mM), determinedbytheelectriccurrentmethod. *Theobtainedvaluesarethemeanofthreedeterminations(n=3;RSD %<1.8).

85 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. AfurtherinvestigationwascarriedouttoevaluatetheeffectoftheCD concentrationontheCMCvalues.Intheseexperiments βCD,HPβCD andDMβCDwereusedintheconcentrationrangeof2–15mMand the CMC of SDS was estimated by the electric current method. By plottingtheobtainedCMCversustheCDsconcentration,lineartrends (Fig.2)wereobtained(r>0.999)for βCDandHPβCD,whereasusing DMβCD, the variation of CMC did not follow a linear profile, suggestinganunconventionalabilityinmicellizationinhibition. 55.0 50.0 45,0 40.0 CMCvalue 35.0 (mM) 30.0 25.0 20.0 15,0 10.0 5.0 0.0 0 2 4 6 8 10 12 14 16 CDconcentration(mM) Fig. 2: Variation of the CMC of SDS in the presence of different concentration of CDs. Experimental conditions: Total capillary (id 50m) lengths: 38.5 cm; applied voltage 20 kV; temperature 25 °C. Symbols: ○DMβCD;□βCD; x HPβCD.

86 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. Studyoftheassociationof βCDsandSDSbyCE In order to achieve information on the micellization of SDS in the presenceofCDs,thestoichiometryofthecomplexesSDS:CDsandthe relatedassociationconstantsneededtobeestimated.Tothispurposean originalapproachbasedonCEelectriccurrentmeasurementshasbeen developed.Themethodisbasedonthevariationobservedintheelectric current circulating in the CE capillary filled with a submicellar SDS solution, when increasing CD amounts were added. Precisely, the surfactantconcentrationwaskeptconstantatalowlevel(2.5mM)and theCDconcentrationwasprogressivelyincreasedintherange0.5–10 mM. Because of the association of ionic surfactant monomers to the cyclodextrin, a decrease of electric current is observed. In fact, the electriccurrentparallelsthebehaviourofconductance,whichhasbeen widelyreportedasaparameterusedinseveralstudies on surfactant – cyclodextrininteraction(9,11,24–26).AccordingtoOhm’slaws,the current intensity I circulating in a capillary filled with ionic surfactant solutionatsubmicellarlevel,isproportionaltotheionicconductivity κ. Intheseexperimentslowcurrentintensityvaluesareobserved,however theCEinstrumentationallowstheelectriccurrenttobemeasuredwith adequate sensitivity and precision ( ± 0.1 A) under controlled temperature ( ± 1 °C); these conditions allowed for reliable determinations. Further, the small sample volume required and the opportunity of automation, represent valuable advantages over the conventionalconductanceexperiments. OncetheelectriccurrentoftheSDSsolutionwasrecorded as a base value (absence of CD), the decrease ( I) values, occasioned by

87 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. supplementingtheplainsolution(controlsolution)withthestudiedCD, weredetermined.Theinvestigationwascarriedoutusing βCD,HPβCD andDMβCD.The Ivaluesobtainedrespecttothebasecurrent,were plotted against the correspondent CD concentrations; the stoichiometries of the inclusion complexes were deduced form the breaksinthecurrentprofiles.Moreover,theassociationconstantsKfor 1:1complexationcanbeobtainedbyapplyinganonlinear leastsquare regressiontoanequation(Eq.1),derivedinanalogywiththatproposed bySatake etal .forconductanceexperiments(22,23).

i 1 I K C C K C C 2 K 2C C 2 = {()( s + c ) +1− ()[]s − c +1 − 4 s c } (Eq.1) 2KC s where i (difference in the ionic equivalent electric current) is proportionaltotheionicequivalentconductivityas Iisproportionalto theequivalentconductivity( Λ);C sisthesurfactantconcentration(inthe control solution) and C c the CD concentration. In Fig. 3a the graph relatedtotheexperimentsusing βCDisillustrated. Fig.3 0.40 0.35 0.30 2 vs.

0.25 0.20 I(A) 0.15

0.10 0.05 0.00

0 1.0 2.0 3.0 4.0 5.0 6.0 βCD(m M)

88 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. Fig3.PlotsofthedecreaseofCEelectriccurrent( I; A) versus theβ CD concentration (mM). The measurements were carried out at a constant concentration of SDS (2.5 mM) in water. Conditions: total capillary (id 50 m) length: 38.5 cm; applied voltage of 30 kV; temperature 25°C. Thedata points represent the experimental values andthelinerepresentsthecalculatedcurvefromEq.1. The solid line shows the calculated electric current curve form the reportedequation,whereasthepointsshowtheexperimentaldata.The obtainedregressioncoefficient(r 2=0.9843)suggestsagoodfitwiththe proposed1:1stoichiometry.Thus,theestimatedassociationconstant K (3021 M 1 ± 98; n = 3) can be reasonably assumed as a reliable data which,infact,wasfoundtobeinagreementwiththosereportedinthe literature(25,26).ConcerningHPβCD(Fig.4),the1:1stoichiometry wasalsoconfirmedbythegoodcorrelationcoefficient(r 2=0.9876)and the Kvaluewasfoundtobe2871M 1±107(n=3). Fig.4 0.45

0.40 0.35 0.30 0.25 0.20

I(A) 0.15 0.10 0.05 0.00

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 HPβCD(mM) 89 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. Fig.4.PlotsofthedecreaseofCEelectriccurrent( I; A) versus theβ CD concentration (mM). The measurements were carried out at a constant concentration of SDS (2.5 mM) in water. Conditions: total capillary (id 50 m) length: 38.5 cm; applied voltage of 30 kV; temperature 25°C. Thedata points represent the experimental values andthelinerepresentsthecalculatedcurvefromEq.1. Itisnoteworthythatthesimilarityofthedataobtainedforthe Kvalues of βCDandHPβCDareparalleledbytheCMCvalues(Table1).This observationcanproveboththereliabilityoftheproposedmethodsand the analogy of the interaction of βCD and HPβCD with SDS. Differently, the experiments carried out with DMβCD showed a characteristicprofile(Fig.5)thatdidnotfitwith theproposedmodel (Eq. 1), according to a 1:1 stoichiometry. Thus, in order to better characterize the interaction between SDS and DMβCD our attention wasfocusedontheestimationofthepartitioningrateofaradicalprobe inthedifferentpseudophasesbyusingEPRmethods. 0.45 0.40 0.35 0.30

0.25

0.20 I(A) 0.15

0.10 0.05 0.00 0 2.0 4.0 6.0 8.0 10.0 DMβCD(mM) Fig.5 90 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. Fig.5: Plot of the decrease of CE electrical current (I; A) versus the DMβCD concentration (mM). The measurements were carried out at theconstantconcentrationofSDS(2.5mM)inwater.Conditions:total capillary(id50m)lengths:38.5cm;appliedvoltage30kV;temperature 25°C.Thedatapointsrepresenttheexperimentalvalues. EPRstudiesontheinteractionofSDSandneutralcyclodextrins. WehaverecentlyshownthatEPRspectroscopyissuitableforstudying the partitioning rate of a dialkyl nitroxides, namely , in CD/micelle systems(27).Themethodisbasedonthesignificantdifferencesinthe EPR parameters shown by TBBN when it experiences water, cyclodextrincavityormicellarenvironment.Undertheseconditions,the EPRspectraalsoshowastronglinewidthdependenceontemperature bothinthepresenceofSDSmicelleandCD,indicatingthatthelifetime oftheradicalintheassociatedandfreeformiscomparabletotheEPR timescale. Because of this favourable feature, the analysis of the line shapemakespossibletomeasuretherateconstantsforthepartitionof theprobeinthepseudophases. N

O tert butylbenzylnitroxide(TBBN)

91 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. The EPR spectra at 25°C of TBBN, produced by reaction of the magnesium salt of monoperoxyphthalic acid (0.8 mM) with tert butyl benzyl amine (0.8 mM) in the presence of SDS/ βCD, SDS/HPβCD andSDS/DMβCDinwater,areshowninFigure6.

Fig.6.EPRspectraofTBBNrecordedinwaterat298Kinthepresence ofSDS49mM.(a)βCD16mM;(b)HPβCD16mM;(c)DMβCD16 mM. Allthespectracanbecorrectlyreproducedonlybyassumingthekinetic schemereportedinScheme1inwhichtheradicalprobeisexchanging, witharatecomparabletotheEPRtimescale,betweenthewaterphase andboththeCDcavityandthemicellarpseudophase.Simulationofthe exchangebroadened EPR spectra, assuming a threejump model as illustratedinScheme1,ledtothedeterminationof the rate constants (seeTable2)oftheexchangeprocesses.

92 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. [SDS]/mM CD k MIC k MIC ON /s 1 OFF /s 1 33 noCD 6.2 ×10 6 3.9 ×10 6 26 βCD 8.0 ×10 5 3.9 ×10 6 33 “ 3.0 ×10 6 3.9 ×10 6 49 “ 6.2 ×10 6 3.9 ×10 6 26 HPβCD 7.8 ×10 5 5.0 ×10 6 33 “ 2.9 ×10 5 5.0 ×10 6 49 “ 6.0 ×10 5 5.0 ×10 6 33 DMβCD 1.6 ×10 7 4.4 ×10 7 49 “ 1.5 ×10 7 2.8 ×10 7 74 “ 1.5 ×10 7 1.5 ×10 7 Table2.EPRrateconstantsat298KforthepartitionofTBBNinthe micellarlocation([CD]=16mM).

Scheme1. CEmobilityofneutralanalytesinmixedsystems(SDS/CDs).

93 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. ThethreedifferentsystemsinvestigatedbyEPR(SDS/ βCD,SDS/HP βCDandSDS/DMβCD)wereusedasBGEsintheseparationofthree differentneutralanalytes,namely: tert butylbenzylketone(BBK),pentyl phenylketon (PFK) and 4’tert O butylacetophenone(TBA).

O tert butylbenzylketone(BBK) 4’ tert butylacetophenone(TBA) O pentyl phenylketon(PFK) Fig.7.Chemicalstructureofthethreeprobeusedinmobilitystudies. CompoundBBKrepresentedthediamagneticanalogueofTBBNused inEPRexperiments,whereasPFKandTBAwererelatedisomers.The calculated (28) Log P values resulted to be 3.12, 3.76 and 3.68, respectively;theyweresimilartothatofnaphthalene(3.40),reportedto

94 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. beoneofthemostsuitablemarkerforstudiesofCMCbyCEmobility methods(29). TheCEmobilityoftheneutralprobeswasdeterminedatafixedCD level(20mM)inthepresenceofSDS,whichwasvariedinawiderange ofconcentration.Thevariationoftheeffectiveelectrophoreticmobility of neutral analytes in CDMEKC systems, was plotted versus the surfactant concentration. The calculation of the effective mobility ( e) onlyrequiredtheelectroosmoticmobilitytobemeasured,whereas the mobility of the micelle may be neglected (3, 14, 29). This aspect simplified the study being the micelle mobility measurements very questionable in complex systems such as a mixture surfactant – cyclodextrin. AsshowninFig.8a,inthepresenceof βCDthemobilityprofilesofthe selectedprobesshowamarkedbreakpoint,whereasinthepresenceof HPβCD(Fig.8b)andmostofall,usingDMβCD(Fig.8c),thechange ofmobilityis,ingeneralmoregradual.

95 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. 0.5 BBK 0.0 TBA PFK 0.5 1.0 /secV) 2

1.5

(a) (cm

4 2.0

2.5 X10

3.0

3.5 4.0 20 40 60 80 100 120 140 160 SDS(mM) 0.5 0.0 0.5

1.0 /secV) 2 1.5

(cm

(b) 4 2.0

X10 2.5 3.0

3.5

4.0 20 40 60 80 100 120 140 160 SDS(mM) 0.5 0.0

0.5

1.0 (c)

/secV) 1.5 2

2.0 (cm 4 2.5 X10 3.0 3.5 4.0 20 40 60 80 100 120 140 160 SDS(mM) Fig.8

96 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. Fig.8.EffectofSDSconcentrationontheeffectivemobilityofneutral analytes(BBK,TBAandPFK,0,01mg/mL)atacostantconcentration of:(a)βCD(20mM);(b)HPβCD(20mM)and(c)DMβCD(20mM). Conditions:Totalcapillary(id50m)lengths:38.5cm(30cm,effective length);appliedvoltage30kV;hydrodynamicinjection,50mbarx2s; UVdetectionat210nm;temperature25 ◦C.BGE:sodiumphosphate10 mM,pH8.0. Applicationtochiralseparations. The three studied systems, namely SDS/ βCD, SDS/HPβCD and SDS/DMβCD were used in enantioselective CDMEKC analysis of (±)Catechin, which was chosen as a model compound. There are importantevidencesthatcatechins(naturalpolyphenolsfromgreentea, wine,fruitsetc.)havearoleagainstcancer,cardiovasculardiseasesand otherdegenerativediseases(30);thechiralanalysisofthesecompounds isrecentlybecomeofinterestbecauseitwasshownthat( −)Catechincan beconsideredasanonnativeenantiomeranditspresenceinfoodand nutraceuticalsshouldbeascribedtoepimerisationreactionsoccurringin manufacture processes involved in food technologies (18, 31, 32). Furthermore, it was found that the native ( +)enantiomer is more bioavailablethanthe( −)distomer(32,33).Thustheenantioresolutionof (±)Catechin was tried in order to evaluate the effectiveness of the studied SDS/CD systems as potential chiral BGEs. Under acidic conditions (pH 2.5 in a 10 mM phosphate buffer), Catechin is undissociatedandthemobilityofitsenantiomershastobeascribedonly to their different partition/inclusion in the complex, chiral pseudostationaryphase.Inaddition,theEOFwasstrongly suppressed

97 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. becauseoftheacidicpHand,inthepresenceofanionicSDSmicelles, higherwastheSDSconcentrationandfasterwastheanodicmigrationof theneutralsolute.Thechiralseparationof( ±)Catechinwascarriedout atconstantconcentrationofCDs(20mM)whereastheSDSlevelwas varied(50,60and70mM);theobtainedelectropherogramsareshownin Fig.9.UsingHPβCDinthepresenceoftherelativelylowestamountof SDS,themigrationofCatechinenantiomerswasnotachievedwithin30 min(Fig.9b);thisresultsuggestsastrongcompetitionoftheCDover the anionic carrier, in the sequestering ability exerted on the analyte. Differently, in the presence of βCD and DMβCD the Catechin enantiomers migrated in short time with good resolution (Fig. 9a and 9c).Asexpected,theincreaseofSDSconcentrationallowedforafaster migrationoftheenantiomersinallthesystems(Fig.9ac).Interestingly, as shown in the figures 9a and 9b, baseline enantioresolution was maintained also at high SDS concentration using either the βCD and HPβCD. Differently, in the presence of DMβCD high enantioresolution was achieved only at low SDS concentration; the increase of SDS diminished the migration time but a considerable deteriorationofseparationwasobserved.

98 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. 70mMSDS,(Rs=2.1) 60mMSDS,(Rs=2.3) 50mMSDS,(Rs=2.4) (a) 0 5 10 15 20 min 70mMSDS,(Rs=2.3) 60mMSDS,(Rs=2.5) (b) 50mMSDS 5 10 15 20 25 30 35 40 min 70mMSDS,(Rs=1.2) 60mMSDS,(Rs=1.6)

(c) 50mMSDS,(Rs=2.7) 0 5 10 15 20 min Fig 9. Electropherograms of ( ±)Catechin (0.01 mg/mL) under CD MEKCconditionsusingdifferentCDs(at20mM):(a) βCD, (b) HP

99 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. βCDand(c)DMβCD,inthepresenceofdifferentSDSconcentrations. Conditions.Totalcapillary(id50 m)length:38.5cm(8.5cm,effective length);appliedvoltage,15kV;hydrodynamicinjection,25mbarx2s; UVdetectionat200nm;temperature,15°C.BGE:sodiumphosphate 50mM,pH2.5. Discussion AssociationofSDStoCDbyelectriccurrentCEexperiments. In mixed systems such as surfactant CD, it is assumed that the surfactantaggregationoccursonlywhenalltheavailableCDcavitiesare occupiedbythesurfactantmonomers.Thus,theCMC(CMC app )willbe equivalenttothecombinedconcentrationsofthesurfactantmonomers associated to the CD and of free dissolved monomers in equilibrium withthemicellizedsurfactant(CMC real )(12).However,asshownbythe CMCvaluesdeterminedbytheCEcurrentmethodinthepresenceofa constantamountofdifferentCDs(Table1),thenatureoftheCDplays an important role in micellization inhibition. In particular, using DM βCD, the CMC was strongly increased compared to the other CDs. Furthermoretheslopesofthestraightlinesdescribingthevariationof CEelectriccurrentunderincreasingSDSconcentration,showedaslight slope variation between the submicellar and micellar regions, in the presence of the methylated CD. In Fig. 1 the described behaviour is shownforDMβCDincomparisonto βCD.Thelimiteddifferencein theslopesbetweenthetwopartsofthegraphforDMβCD,couldbe explainedbyinvokingasmalldifferencebetweenthemicellesize(above theCMC)andthesizeofSDSaggregatesinthesubmicellarregion.This behaviour was in fact also reported in micellization of SDS in the

100 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. presenceoforganicsolventssuchasacetonitrile.Inthelattercase,the generationofsmallsurfactant–solventmixedaggregateswassuggested toberesponsibleforthegradualchangeinelectriccurrentagreeingwith the multiple equilibria model (stepwise aggregation model) (15, 34). Accordingly,itshouldbehypothesizedthatthestronginhibitioneffect ofthemethylatedCDonthemicellizationofSDS,might lead to the formation of intermediates aggregation states of the surfactant monomers. AfurtherevidenceoftheunusualinteractionofDMβCDwithSDSis providedbytheresultsshowninthegraphsofFig.2.TheCMCofSDS increases linearly with the increasing concentration of βCD and HP βCD;intheseinstancesitcouldbeproposedthattheabilityoftheCD inpreventingthemicellization(micellizationinhibition)canbeexpressed bytheslopeofthestraightline.Fromthispointofview βCDandHP βCD behave similarly; differently, the experimental data distribution shown in Fig. 2 for DMβCD, can suggest that the micellization inhibitionisstronglyrelatedtotheCDconcentration.Onthisbasis,the unusuallyhighCMCofSDSobservedinthepresenceofrelativelyhigh DMβCD concentrations, could be the result of high association constants, complexation stoichiometries different from the simple 1:1 modeland/ormodificationofthemicelleaggregationnumber. The complexation stoichiometry of SDS to CD, appeared to be as a fundamentalparameterinthisstudyanditwasapproachedbymeansof an original method based on CE electric current measurements. The obtainedresultsconfirmedthattheinteractionofDMβCD with SDS

101 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. significantlydeviatedfromthebehaviourof βCDandHPβCD(Fig.3 andFig.4).Infact,whilethemathematicalanalysisoftheexperimental data obtained for βCD and HPβCD was simple and suggested a complexation pattern 1:1, that for DMβCD led to a non unique numerical solution. Similar situations are often encountered in solving thermodynamicequationsdealingwithinclusioncomplexationinvolving cyclodextrins. In such cases, more sophisticated models with variable stoichiometrycouldbeinvoked,andthepossibility of dimerization of 1:1complexesshouldnotbeexcluded(35).Bytheseconsiderationsand due to the lack of further information about more sophisticated data treatmentsaswellasotherphysicochemicaldata,weeventuallydidnot apply models deviating from the simple 1:1 stoichiometry. This study was thus approached by using EPR, a spectroscopic technique which could offer a different perspective on the aggregation organization of SDS/CDsystems. EPRstudies. EPRdatacanbeemployedinthedeterminationofthermodynamicand kinetic parameters of an organic spin probe in the three different “pseudo phases” (SDS, CD and water). The rate constant for the partitioningofTBBNradicalinwater,SDSandcyclodextrincavities(see Table2)indicatesthatthechangeinthenatureofthemacrocyclichost hasadramaticeffectonthepartitioningbehaviouroftheradicalprobe. Actuallyadramaticreductionoftheresidencetimeoftheradicalguestin themicelleisobservedalongtheseries βCD,HPβCD,DMβCD.With

MIC βCDandHPβCDtherateofescape( k OFF )fromthemicelleisnot affectedbytheCDconcentrationandtheincreaseintheradicalprobe

102 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. fraction partitioned in the micellar phase observed by increasing the concentrationofSDSisduetoanincreaseofthepseudofirstorderrate

MIC ofsolubilization(k ON ).Onthecontrary,inthepresenceofDMβCD the increase of theamount ofTBBN partitioned in the micellar phase observed when increasing the concentration of SDS is related to the MIC decreaseoftherateofescape( k OFF )fromthemicelle.Thislastresult isaclearindicationthatmethylatedCDisstronglyinteractingwithSDS micelle,verypresumably,byalteringthemicellarstructureinagreement with the results found by CE experiments. On the other hand, these hypothesisisparalleledbytheEPRevidencesshowing that DMβCD significantly alters the structure of the micelles by lowering their aggregationnumberaswellasthepolydispersivityandbyincreasingthe solventpenetration(27). CEmobilitystudies. Studies on CE mobility of selected neutral probes as well as on enantioseparation of bioactive compounds, were performed to investigate on the applicative repercussions of the different SDS/CD systems. InCDMEKCexperimentsinvolvingbothneutralsolutesandCDs,the effectiveelectrophoreticmobilityoftheanalytescouldapproachtozero (equaltotheEOF)if:(i)theCMCisnotachieved,or(ii)thesolutesare stronglyretainedintotheCDcavitiesalsointhe presence of charged micelles. The inclusion of a solute into the CD cavity is a process in competition with its partitioning into the micelle; these two coupled equilibria are affected by the nature of the solute, thus in our investigationdifferentprobeswereconsidered.

103 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. Under variation of SDS level, the mobility of the probes varied by following the hydrophobicity order (PFK the most retained into the micelleandBBKthelessretained)independentlyfromtheusedCDtype (Fig.8).Furthermore,alltheneutralmarkersmigratedconcomitantlyto the EOF ( e = 0) approximately at the same SDS concentration independentlyfromtheCDnature.Precisely,below25mM(SDS)the mobilityoftheprobesresultedtobenearlyoverlapped to the system peakassignedtotheEOF.Thisfindingconfirmedthat the CMC real is lowerthanCMC app ,thelatterestimatedasthesumofCDconcentration plustheCMCofSDSinwater( ≈8mM).Afurtherobservationwas related to the very different trend of the mobility profiles that were foundtobestronglydependentontheCDtype.UsingDMβCD(Fig. 8c)themobilityoftheprobesdecreasedmoregraduallycomparedtothe decreaseobservedwithHPβCD and βCD(Fig.8aandFig.8b).This behaviour suggests that the methylated cyclodextrin could affect the micellizationofthesurfactantbypromotingtheformationofaggregates characterizedbyalowerpartitioningabilitytowardthesolutes.Onthe otherhand,thesehypothesisisparalleledbytheEPRevidencesshowing that DMβCD significantly alters the structure of the micelles by loweringtheiraggregationnumberaswellasthepolydispersivityandby increasingthesolventpenetration. Applicationtochiralseparations. Thechiralseparationof( ±)CatechinwasperformedunderacidicpHin ordertosuppressthedissociationofphenolicmoieties;thecompound resulted in its neutral form and, under these conditions, the enantioseparationcanbeassumedmerelyastheresultofthepartitioning

104 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. behaviouroftheenantiomersbetweenSDSandCD.Simple analytical parameters, namely the migration time and chiral resolution of the racemic compound, could be considered useful in describing the organizationofthecomplexmixedmedium. AsshownintheelectropherogramsofFig.9,( ±)Catechinresultedtobe enantioresolvedusingeachofthestudiedneutralCD;thiscouldsuggest asimilarityintheinteractionofthesolutewiththethreedifferentCDs. By supplementing these systems with increasing SDS amounts, a competitionbetweenthesoluteandtheSDSmonomersingainingthe CD cavity, takes place. The lost in enantioresolution observed at increasingSDSconcentrationscanbeassumedasaparameterwhichis relatedtothebindingSDSCD.Theelectropherograms(Fig.9aand9b) suggest that the enantioselectivity of βCD and HPβCD was poorly affectedbythevariationinSDSconcentration.Inthese examples, the interaction between SDS and βCD or HPβCD, seems to be slightly affectedbythevariationoftheirmutualconcentrationsanditcouldbe hypothesizedthatoncethesaturationofCDbySDS(1:1stochiometry) hasoccurred,thetwo“pseudostationaryphases”,CD and micelle, are notinvolvedinfurthercoupledequilibria(secondarycomplexequilibria). Differently,inthesystemsusingDMβCD,themutualvariationofthe concentrationofboththe“pseudostationaryphases”,couldleadtowards acontinuousalterationofthecombinationpatternSDS:CDthataffects theenantioselectivity. Although these findings are far from a description of a general behaviour,fromourexperimentsusing( ±)Catechin, βCDandHPβCD provedtobesuitableindevelopingCDMEKCsystemswithrelatively

105 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. easeenantioselectivitytuningbymeansofchangingtheconcentrationof both SDS and CD in awide range (18). On the contrary the system involvingDMβCDshowedtobelessrobustandversatile;inparticular, the enantioseparation was obtained in a restricted range of SDS concentration. Ontheotherhand,itisworthconsideringthepotentialofDMβCDin appropriateselectedconditions.Infact,inaexploratoryexperimentthis cyclodextrinwasfoundtobeenantioselectivefor(±)Ibuprofenand( ±) Ketorolac(Fig.10)whereasHPβCDand βCDfailedinthisattempt.

2mAU 9 10 11 12 13 14 time(min) 5mAU 8 9 10 11 12 13 time(min) Fig.10.Electropherogramsof(a)racKetorolac(0.01mg/mL)and(b) racIbuprofen(0.01mg/mL)underCDMEKCconditionsusingDM

106 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. βCD(20mM)aschiralselector,inthepresenceofSDS50mM. Conditions:Totalcapillary(id50 m)length:38.5cm(8.5cm,effective length);appliedvoltage,15kV;hydrodynamicinjection,25mbarx2s; UVdetectionat200nm;temperature,15°C.BGE:sodiumphosphate 50mM,pH2.5. Conclusion Capillaryelectrophoresishasbeendemonstratedto be a useful tool to study the interaction between the ionic surfactant SDS and neutral cyclodextrins. Electric current measurements performed by CE instrumentationwereappliedinthedeterminationofCMCofSDSin mixedsystemsinvolvingthepresenceofCDs.Further,forthefirsttime, a similar approach was proposed for the estimation of inclusion complexationconstantsofneutralCDswithSDSastheguest.Fromthe data obtained, DMβCD was shown to deviate from the simple 1:1 complexmodelthatwasobservedtobevalidfor βCDandHPβCD;the complex interaction of DMβCD and SDS was confirmed by EPR studies. TheresultssuggestthatthemacrocycleDMβCDcanbeconsideredless suitableinthedevelopmentofrobustchiralCDMEKCsystems.Onthe otherhand,itshouldbepointedoutthatDMβCDatrelativelylowSDS concentrationlevels,maintainsachiraldiscriminationabilitywhichcan be usefully exploited. These results underline the importance of an adequate understanding of the micelleCDs interactions in order to properly apply this complex systems able to enhance the general

107 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. selectivity and in particular the enantioselectivity toward biologically importantcompounds. References: 1) Terabe, S.; Otsuka, K.; Ichikawa, K.; Tsuchiya,A. Anal. Chem . 1984, 56 ,111113. 2) Riekkola,ML.;Jönsson,J.Å.;Smith,R.M. PureAppl.Chem .2004, 76 ,443451. 3) ElectrokineticChromatography.Theory,InstrumentationandApplications ; Pyell,U.,Ed.;Wiley:Chichester,UK,2006. 4) Terabe,S. Anal.Chem .2004, 76 ,240A246A. 5) Silva,M. Electrophoresis 2007, 28 ,174192. 6) Nishi,H.;Fukuyama,T.;Terabe,S. J.Chromatogr .1991,553 ,503 516. 7) Terabe,S.;Miyashita,Y.;Ishihama,Y.;Shibata,O. J.Chromatogr. 1993, 636 ,4755. 8) Copper,C.L.;Sepaniak,M.J. Anal.Chem .1994, 66 ,147154. 9) Palepu,R.;Richardson,J.E.;Reinsborough,V.C. Langmuir 1989, 5,218221. 10) Junquera, E.; Tardajos, G.; Aicart, E. Langmuir 1993, 9, 1213 1219. 11) HerreroMaeso,M.;PazGonzález,S.;BravoDíaz,C.;González Romero,E. ColloidSurfaceA 2004, 249 ,2933. 12) Dorrego,A.B.;GarcíaRío,L.;Hervés,P.;Leis,J.R.;Mejuto,J.C.; PérezJuste,J. Angew.Chem.Int .Ed.2000, 39 ,29452948.

108 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. 13) CabaleiroLago, C.; GarcíaRío, L.; Hervés, P.; Mejuto, J.C.; PérezJuste,J. J.Phys.Chem.B 2006, 110 ,1583115838. 14) Lin,CE. J.Chromatogr.A 2004, 1037 ,467478. 15) Cifuentes, A.; Bernal, J.L.; DiezMasa, J. Anal. Chem . 1997, 69 , 42714274. 16) Lin,CE.;Huang,HC.;Chen,HW. J.Chromatogr.A 2001, 917 , 297310. 17) Yáñez,J.A.;Andrews,P.K.;Davies,N.M. J.Chromatogr.B2007, 848 ,15981. 18) Gotti,R.;Furlanetto,S.;Pinzauti,S.;Cavrini,V. J.Chromatogr.A 2006, 1112 ,345352. 19) Perez, F.; Jaime C.; SánchezRuiz, X. J. Org. Chem. 1995, 60 , 38403845. 20) Lucarini,M.;Luppi,B.;Pedulli,G.F.;Roberts,B.P. Chem.Eur. J. 1999, 5,20482054. 21) Tickle, D.C.; Okafo, G.N.; Camilleri, P.; Jones, R.F.D.; Kirby, A.J. Anal.Chem .1994, 66,41214126. 22) Gotti,R.;Fiori,J.;Mancini,F.;Cavrini,V. Electrophoresis 2005, 26 , 33253332. 23) Mukerjee, P.; Mysels, K.J. Critical Micelle Concentration of Aqueous SurfactantSystem ;NationalBureauofStandards:Washington,DC, 1970. 24) Satake,I.;Ikenoue,T.;Takeshita,T.;Hayakawa,K.; Maeda, T. Bull.Chem.Soc.Jpn .1985, 58 ,27462750. 25) Satake,I.;Yoshida,S.;Hayakawa,K.;Maeda,T.;Kusumoto,Y. Bull.Chem.Soc.Jpn .1986, 59 ,39913993.

109 Chapter5: CEstudyontheinteractionbetweenSDSandneutralCDs. Applicationtochiralseparation. 26) Palepu,R.;Reinsborough,V.C. Can.J.Chem .1988, 66 ,325328. 27) Mileo, E.; Franchi, P.; Gotti, R.; Bendazzoli, C.; Mezzina, E.; Lucarini,M. Chem.Comm .2008,13111313. 28) www.logp.com 29) Jacquier,J.C.;Desbène,P.L. J.Chromatogr.A1995, 718 ,167175. 30) Higdon,J.V.;Frei,B.Crit.Rev.FoodSci.Nutr.2003, 43 , 89 143. 31) Kodama, S.; Yamamoto, A.; Matsunaga, H.; Yanai, H. Electrophoresis2004, 25 ,28922898. 32) Donovan,J.L.;Crespy,V.;Oliveira,M.;Cooper,K.A.;Gibson, B.B.;Williamson,G.FreeRadic.Res.2006, 40 ,10291034. 33) Cooper,K.A.;CamposGiménez,E.;JiménezAlvarez,D.;Nagy, K.;Donovan,J.L.;Williamson,G.J.Agric.FoodChem. 2007, 55 ,28412847. 34) Jacquier,J.C.;Desbène,P.L. J.Chromatogr.A 1996, 743 ,307314. 35) Rekharsky,M.V.;Inoue,Y. ChemRev .1998, 98 ,18751917. 36) Lin,CE.;Chen,MJ.;Huang,HC.;Chen,HW. J.Chromatogr.A 2001, 924 ,8391.

110 ______ Chapter6: DifferentiationofgreenteasamplesbychiralCDM EKC analysisofcatechinscontent.

111 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. Introduction Important evidence from in vivo studies shows that green teacatechins play a role against biomarkers for cancer, cardiovascular diseases and other degenerative diseases (1, 2). Recently, structureactivity relationshipsofteacompoundshavebeeninvestigatedandthecatechol functionalityinthecatechinshasbeenconsideredtoberesponsiblefor theprotectiveeffectsexertedbygreenteaagainstawiderangeofhuman diseases(3,4).Analysisofthecontentofcatechinsingreentea,matcha, tea beverages, green tea extract dietary supplements as well as in biologicalfluids,isthusveryimportantinavarietyofstudiesincluding epidemiologicalandnutritionalstudiesdesignedtoexaminethepossible relationshipsbetweenteaconsumptionandtheincidenceofcancerand cardiovasculardiseases(1–4).Inthesefields, themostoftheworks focus on the determination of ( )Epicatechin, (+)Catechin, () Epigallocatechin,( )Epicatechingallate,( )Gallocatechingallateand( ) Epigallocatechin gallate; also methylxanthines such as Caffeine and Theobromineareoftenconsideredbecauseoftheirrelevantpresencein tea extracts. Reversedphase HPLC has been conveniently applied in thesedeterminationsusing,gradientelutionandUV detection (5 – 9), except in a few cases (10, 11). In these reports, the analysis was performedtoevaluatethequalityoftheextracts,aswellastoprovide the differentiation of tea samples based on geographical origin (7), seasonalvariations(8)andprocessing(9).Electrochemicaldetection(12 – 17) and hyphenation LCMS (18 20) were applied in analysis of biologicalsamples(plasma,salivaetc.).

112 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. The necessity to simultaneously analyse the phenolic compounds (catechinsrelatedcomponents) and methylxanthines has made micellar electrokineticchromatography(MEKC)asuitableapproachforthistask. Neutral conditions are usually selected in order to minimize the degradationofcatechinsoccurringunderbasicpH(21–24);however,as reportedbyWörth etal. ,acidicconditionsshouldbepreferredtofurther improvetheirstabilityduringseparation(25).Onthisbasisithasbeen previously reported effective microemulsion electrokinetic chromatographic(MEEKC)methodsforcatechinsanalysisatpH2.5in Cistus extractsandgreentea(26,27).Theacidicconditions were also exploitedusingdifferentMEKCsystemsinvolvingcyclodextrins(CDs) in the separation buffer to improve the selectivity of separation. This approach was applied to the analysis of catechins in chocolate and Theobromacacao (28,29).Bymeansofthischiralmethod,andforthefirst time, the presence of ( )Catechin, a nonnative enantiomer, was demonstratedonlyintheprocessedfood(chocolate),suggestingthatit wasyieldedbyepimerisationof()Epicatechinduringthemanufacturing processesstartingfrom Theobromacacao . In the present study, a fast MEKC approach mediated by hydroxypropylβcyclodextrin (HP β CD) as chiral selector was optimised for the enantioseparation of ( ±)Catechin and ( ±) Gallocatechin.Themethodallowedforthesimultaneous separation of themethylxanthinesandthemostrepresentedgreenteacatechins. First, the proposed CDMEKC was applied to study the thermal epimerisation of ()Epigallocatechin to ()Gallocatechin. It was demonstrated that the occurrence of ()Gallocatechin in tea extracts

113 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. should only be ascribed once epimerisation has taken place as a consequence of manufacturing processes involving heating. () Gallocatechin,beinganonnativeenantiomer,wasthusconsidered,for thefirsttime,asausefulchiralmarkerofteadegradation. Subsequently,thevalidatedmethodwasappliedtothe quantitation of catechins and methylxanthines in more than twenty tea samples of differentgeographicalregions(China,Japan,Ceylon),havingundergone differentstorageconditionsand/ormanufacturingprocesses. Materialsandmethods Materials Catechin standard references ( ±)Catechin hydrate (( ±)C), ()Catechin (()C), (+)Catechin hydrate ((+)C), ()Epicatechin (()EC), () Epigallocatechin (()EGC), ()Epicatechin gallate (()ECG), () Epigallocatechin(()EGC),()Epigallocatechingallate(()EGCG),() Gallocatechin (()GC), ()Gallocatechin gallate (()GCG), Caffeine (CF), Theophylline (TF) and Theobromine (TB) were from Sigma Aldrich(Milan,Italy).Syringicacid,sodiumdodecyl sulfate (SDS) and hydroxypropylβcyclodextrin (HP βCD) were from Fluka (Buchs, Switzerland).( +)Gallocatechin(( +)GC)waspurchasedfromMolekula (Germany).Boricacid,phosphoricacid,sodiumhydroxide,andallthe other chemicals of analytical grade, were purchased from Carlo Erba Reagenti(Milan,Italy).Waterusedforthepreparationofsolutionsand runningbuffers,waspurifiedbyaMilliQapparatus(Millipore,Milford, MA,USA).TheanalysedteasampleswereobtainedfromGrosserbes.r.l. (Bologna,Italy).

114 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. Fusedsilicacapillaries(50mid,30cmtotallength,8.5cmlengthtothe detector)werefromCompositeMetalService(Ilkley,UK). Apparatus Electrophoretic experiments were performed by a HP 3D CE instrument from Agilent Technologies (Waldbronn, Germany). The data were collected on a personal computer, equipped with the software HPCE versionA09(AgilentTechnologies). Theseparationswereobtainedataconstantvoltageof15kVandthe cartridgetemperaturewas25°C.Thedetectionwascarriedoutbyusing the online DAD detector and the quantitation was performed at the wavelengthof200nm.Hydrodynamicinjectionswereperformedat25 mbarfor2s.Newcapillarieswereconditionedbyflushingsequentially 1Msodiumhydroxide,0.1Msodiumhydroxideandwaterintheorder, for 10 min each. Between the injections the capillary was rinsed with 0.1Msodiumhydroxide,waterandrunningbufferfor3mineach. Solutions Boratephosphatebufferusedasthebackgroundelectrolyte(BGE)was prepared at a concentration of 25 mM and pH 2.5 by following a standard procedure. The running buffer solution was obtained by dissolvingSDS(90mM)andHPβCD(25mM)intheBGE. Calibrationgraphs Thecalibrationwascarriedoutforthecatechins:()EC,(+)C,()C,() EGC, ()EGCG, ()ECG, ()GCG, ()CG, ()GC and (+)GC, and forthemethylxanthinesCFandTBintherangesreportedinTable1. Thelinearityoftheresponsewasevaluatedbyanalyzingmixedstandard solutions of the analytes in the presence of Syringic acid as internal

115 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. standard (100 g/mL). Triplicate injections were made for each calibration point and the ratios of the corrected peak area (area/migration time) of the analyte to internal standard were plotted againsttheconcentrationofeachoftheanalysedcompounds. Epimerisationstudies Experimentsonthermalepimerisationofcatechinswerecarriedouton individual aqueous standard solutions of ()EC and ()EGC at a concentrationof100g/mLeachandinthepresenceofSyringicacidas internalstandard.ThesolutionswereheatedincappedScottglasstubes, at the temperatures of 70, 80 and 90 °C using a Thermoblock Falc systemmod.D200(FalcInstruments,Bergamo,Italy).Theepimerisation of ()EC to ()C and that of ()EGC to ()GC was followed by analyzing(during15–120min)aliquotsofthesolutionsusingthechiral CDMEKCmethod.Indetail,aliquotsofthestocksolutionssubjected toheatingwerewithdrawnafter15,25,60and120minandcooledinan icebathfor5min.Thesolutionswerethenstoredinarefrigeratorat4 °C and analysed (within 3 h) by means of the validated CDMEKC. Three sets of experiments were performed on independent stock solutionsof( −)ECand( −)EGC;eachofthetimepointswasanalysed in triplicate. The catechin amount was calculated by external standard methodandthedatawereplottedtoobtainthekineticprofiles. Preparationofteasamples Tea leaves were pulverized and infusions were then prepared by extractionof1goftheobtainedpowderwith60mLof85°Cwaterfor5 min.Theinfusionwasfilteredthroughafilterpaperanddiluted1:2with theinternalstandard(Syringicacid,IS)aqueoussolution(100g/mL).

116 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. After an additional filtration through membrane filter (0.2 m), the samplesweredirectlyinjectedintotheCEapparatus. Resultsanddiscussion OptimisationoftheCDMEKC Anaqueoustestmixtureofthreemethylxanthines(CF,TBandTF)and the studied green tea catechins (EC, ECG, EGC, EGCG, GCG), includingtheracemicmixtures( ±)Cand( ±)GCinthepresenceofthe internal standard, was employed to find the optimum CDMEKC separation conditions. Some aspects were considered essential for optimisationofseparationconditions:(i)theacidicpHwasselectedto preservethecatechinsfromdegradationduringseparation(25–27);(ii) themethodwasaimedatobtainingafastandsimultaneousseparationof catechinsandxanthines;(iii)themethodhadtobeenantioselectivefor (±)Cand( ±)GC. ChiralCEanalysisofsomecatechinsingreenteawas reported to be successfully performed using neutral CDs (e.g. 6OαDglucosylβ cyclodextrin(32))aschiralselectors.BasedonourpreviousstudiesHP βCD,wasselectedusingSDSassurfactantatacidicpHvalues(28,29). The strong suppression of the electroosmotic flow (EOF) at low pH values,allowedfortheanodicmigrationoftheanalytes (including the cationicmethylxanthines)partitionedintotheSDSmicelle.Underthese conditions, a very short capillary (effective length of 8.5 cm) and a relativelyhighSDSconcentrationwasnecessarytoachievefastanalysis. OncetheneutralchiralselectorHPβCDwasaddedtotheSDSsolution, asloweranodicmigrationofthesoluteswasobserved,mainlybecauseof their inclusion complexation in the neutral cyclodextrin. This process

117 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. occursincompetitionwiththepartitioningofthesolutesintheanionic carrier(SDSmicelles)(33).Inthepresentstudyitwasfoundthattheuse of a borate/phosphate buffer (25 mM, pH 2.5) improved the peak shapesandreducedthemigrationtime,comparedtotheresultsobtained with a BrittonRobinson (pH 2.5) running buffer used in previous applications(28,29).Thiseffectwasparticularlybeneficialbecausehigh levelsoftheneutralcyclodextrincouldbeaddedtotheBGEtoincrease theenantioresolutionwithoutsignificantprolongationofthemigration times.UsingHPβCD(25mM)inthepresenceofSDS(90mM)inapH 2.5borate/phosphate(25mM)runningbuffer,theenantioresolutionof (±)C,( ±)GC,andthecompleteseparationofmethylxanthinesandthe othermostrepresentedgreenteacatechins,wereobtainedasshownin Fig.1. EGC

CF

IS EC EGCG TB TF (+)-C (+)-GC 10mAU (-)-GC (-)-C GCG 0ECG 2 4 6 8 time,min Fig.1:CDMEKCelectropherogramofastandardmixtureofcatechins and methylxantines. Separation conditions: 25mM boratephosphate buffer (pH 2.5) supplemented with SDS 90mM and HPβCD 25mM.

118 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. Fused capillary (50m id, 30cm total length, 8.5 cm effective length). Voltage15kV,temperature25°C,hydrodynamicinjectionat25mbarfor 2sec,detectionat200nm. Validation Linearity,Sensitivity,ReproducibilityandSelectivity Analyte Conc. a b r2 LOD LOQ range g/mL g/mL g/mL ()EC 3.0300.0 0.0381(±0.00067) 0.06036(±0.11851) 0.9995 0.1 0.3

()ECG 5.0150.0 0.0349(±0.00097) 0.0049(±0.01455) 0.9990 0.1 0.3

()EGC 10.0 0.0608(±0.0008) 0.08455(±0.13646) 0.9997 0.05 0.2 300.0 CF 10.0 0.0382(±0.00047) 0.2530(±0.2776) 0.9990 0.1 0.3 500.0 ()EGCG 20.0 0.0303(±0.0004) 0.0246(±0.0603) 0.9998 0.1 0.3 600.0 (+)C 0.550.0 0.0306(±0.00036) 0.00525(±0.0020) 0.9998 0.1 0.3

()C 0.330.0 0.0310(±0.00088) 0.00865(±0.0130) 0.9999 0.1 0.3

()GCG 5.050.0 0.0303(±0.00107) 0.01661(±0.0191) 0.9995 0.15 0.4

TB 1.0100.0 0.0255(±0.0001) 0.00405(±0.0063) 0.9999 0.2 0.6

()GC 1.050.0 0.0205(±0.00017) 0.02259(±0.00549) 0.9996 0.4 1.0

(+)GC 1.050.0 0.0187(±0.00021) 0.03122(±0.00098) 0.9998 0.7 2.0 Table1:Regressioncurvesdataofcatechinsforfivecalibrationspoints: y=ax+b,whereyistherelativecorrectedpeakarea (area/migration time) of analyte to internal standard, x is the analyte concentration (g/mL), a is the slope, b is the intercept and r 2 is the correlation coefficient.

119 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. Table 1 reports the parameters of the calibration graph obtained by linearregressionanalysisofthecorrectedpeakarearatio(correctedpeak area of the analytes versus the corrected peak area of the internal standard) against the concentration (g/mL) of the analytes. The sensitivity data LOQ and LOD were obtained by diluting standard solutions till a signaltonoise ratio of 10:1 and 3:1 respectively, was achieved. A wavelength of 200 nm was selected for all the measurements. InTable2theinterday(n=3)andintraday(n= 9) repeatability of migration time and corrected peak area, obtained after repeated injectionsofastandardsolutionattheconcentrationofabout50 g/mL ofeachanalyte,isreported. RSD%(tm) RSD%(Area/tm) Intraday Interday Intraday Interday (n=3) (n=9) (n=3) (n=9) EC 0.261 0.450 0.972 0.935 IS 0.146 0.568 0.957 0.953 ECG 0.268 1.542 0.065 4.786 EGC 0.060 0.361 1.344 4.070 CF 0.324 0.902 0.810 0.494 EGCG 0.126 1.462 1.928 2.977 TF 0.299 0.980 0.327 1.241 (+)C 0.182 0.959 0.468 3.067 ()C 0.173 1.035 0.180 1.284 GCG 0.180 1.217 7.135 8.016 TB 0.298 1.165 6.358 6.680 (+)GC 0.623 1.100 5.732 3.455 ()GC 0.549 1.113 2.573 3.368

120 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. Table 2: repeatability data in CDMEKC analysis of catechins and methylxanthinesataconcentrationlevelof50g/mL(ISistheinternal standard). Theobtainedvaluesprovethehighreproducibilityof the method and the opportunity for a selective identification of the considered phytomarkersbycomparisonofthemigrationtime.Identification was also carried out by spiking experiments with solutions of certified analytes and bycomparing the related UV spectra recorded using the DADdetectorwithinthewavelengthrange200–400nm. Accuracy Accuracywasevaluatedon(−)EGCG, the most abundant catechin in green tea and on (−)EC and ( +)C, which are among the most representativepolyphenolsintheplantkingdom.Ateaproductlabeled KokeichaGreenTea(fromJapan)wasselectedforrecoverystudies.In detail, standard solutions of the three considered catechins at three different concentration levels were added to the infusion (60 mL of watercontaining1.0gofthepulverizedtea)andsubjectedtoheating(85 °C for 5 min) in capped glass tubes. After CDMEKC analysis, the catechin amount was calculated by the external standard method; the obtaineddataarereportedinTable3. Inparticular,totalerror(TE)wasevaluatedastheparameterthattakes into account both accuracy and precision. In fact, TE describes the qualityofatestresult,providingaworstcaseestimateofhowlargethe errors might be in a single measurement.As reported in Table 3, the valueswerecalculatedtobelessthan10%foreachoftheanalyteswithin

121 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. the examined concentration range. Considering the application of the CDMEKC method to complex biological samples, the accuracy was adequate. Table3:accuracyfortheassayofcatechins. Analyte Spiked TotalError (mg/g) (TE) 30.0 2.5 ()EGCG 15.0 2.1 7.50 4.3 6.0 9.1 ()EC 3.0 8.9 1.5 5.3 0.60 9.2 (+)C 0.30 9.1 0.15 8.1 Epimerisationstudies As reported, the epistructured catechins (2,3cis form) undergo epimerisationtothenonepistructuredcatechins(2,3trans form)during heatprocessing (34, 35). Detailed studies on the kinetics of thermal epimerisation, carried out on green tea catechins such as ()EC, () EGCG and ()ECG, to ()C, ()GCG and ()CG, respectively, followedafirstorderreactionandtherateconstantsofreactionkinetics followedtheArrheniusequation(34–39). Ithasbeenpreviouslyshowedtheimportanceofchiralseparationofthe native (+)C from the nonnative ()C in actual samples of chocolate (29). The nonnative ()C was suggested to be a useful marker of epimerisation occurring in Theobroma cacao during manufacturing processes(29,40).Onthesamebasis,()GCcanberegardedherein,as

122 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. anadditionalmarkerofdegradationinteaextracts.Actually,analogously with Catechin, in the plant kingdom the native Gallocatechin correspondstothe(+)enantiomer.Thus,thepresenceofthe()GCin processed tea should only be related to epimerisation from ()EGC, whichisquitepresentinfresh,unfermentedgreentea(39). Inordertoverifythereliabilityof()GCasapotentialchiralmarkerof thermaldegradation,thekineticsofepimerisationof()EGCto()GC, was studied for the first time using the CDMEKC method, and then compared under the same conditions to that of the well known conversion of ()EC to ()C. Aqueous solutions (100 g/mL) of the epistructuredcompoundswereheatedandafter15,25,60and120min, aliquotsofthesolutionswereanalysedbyCDMEKC.Thecontentof the remaining catechins in their epiforms and that of the yielded nonepiformswereplottedagainstthetime(concentrationprofile).The correctedpeakarearatios(analyte/internalstandard)wereexpressedas the percentage of the yielded ()C and ()GC (Fig. 2ab) and were calculatedbyassumingasthereferencethecorrectedpeakarearatioof the analytes at the beginning of the experiments (t0) at room temperature. Under the applied experimental conditions the non epistructuredcatechinsappearedtoincrease.Howeverasitcanbeseen (Fig.2b),atthetemperatureof80°Cand90°Ctheconcentrationof( −) GCreachedamaximum(after60min),thendecreased.Thisbehaviour, observedatalesserextent,alsoforthetimecourseofformationof( −) C(Fig.2a,at90°C),wasascribedtothermaldegradationofcatechins whichisreportedtooccurconcurrentlytotheirepimerisation(35).

123 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. Fig.2a 50 40 30 20 70°C Concentration% 80°C 10 90°C 0 0 20 40 60 80 100 120 time,min Fig.2b

16 70°C 14 80°C 90°C 12

10

8

6

Concentration% 4

2

0 0 20 40 60 80 100 120 time,min Fig.2a:Timecourseofformationof()Cwhenaqueoussolutionof() EC(100g/mL)isheatedatdifferenttemperatures.Dataareexpressed asmean±SDofn=3samples.

124 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. Fig.2b:Timecourseofformationof()GCwhenaqueoussolutionof( )EGC (100g/mL) is heated at different temperatures. Data are expressedasmean±SDofn=3samples InFig.3ab,thetimetrendrelatedtotheremainingpercentageof()EC and ()EGC, is reported. By plotting the ln(x/x 0), where x is the remaining concentration of the epistructured catechins and x 0 is the initial concentration, versus the time (min) at different temperatures, linearrelationshipswereobtainedandthecorrespondingrateconstantky werederivedastheslopesoftheobtainedstraightlines.Theseresults suggestedapparentfirstorderdegradationkineticsaccordingtoprevious studies(3438). AccordingtotheArrheniusequation: Ea/RT ky=Ae (1) where, A is the frequency factor; Ea istheactivationenergy; R is the idealgasconstantand TisthetemperatureinKelvin,theln( ky)values were plotted against the inversed temperature (1/T) to generate Arrheniusplots.Thesolpesoftheobtainedplotswerefoundtobe 5412.5 (r 2=0.947)and82025(r 2=0942)for( −)EC and ( −)EGC, respectivelyandthederivedactivationenergy( Ea )was66.7KJ/moland 45.0KJ/molfor( −)ECto( −)Cand( −)EGCto( −)GC,respectively. Itwasthusconcludedthatthethermalconversionofthenative( −)EGC tothenonnative( −)GCoccursataratesimilartothatoftheformation of( −)Cfrom( −)EC.Asaconsequence,( −)GCcanberegardedasan additionalchiralmarkerofgreenteadegradation.

125 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent.

110 100 Fig.3a 70 °C 80°C 90 90°C 80 70 60 50 40

Concentration% 30 20 10

0 20 40 60 80 100 120 time,min

110 100 Fig.3b 70°C 80°C 90 90°C 80 70 60 50 40 30 Concentration% 20 10 0 0 20 40 60 80 100 120 time,min Fig3a: Time course of degradation of ()EC (100g/mL) subjected to heating at different temperatures. Data are expressedasmean±SDof n=3samples.

126 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. Fig.3b:Timecourseofdegradationof()EGC(100g/mL)subjected toheatingatdifferenttemperatures.Dataareexpressedasmean±SDof n=3samples. Applicationtoquantitativeanalysis ThevalidatedCDMEKCmethodwasappliedtotheidentificationand quantitation of the catechins in infusion of green tea from different regionsofChina,JapanandCeylon.Theextractionproceduresimulated thebrewingconditionsandconsistedintheinfusionofpulverizedtea leaves in hot water (85°C) for 5 min (17, 20, 27); after filtration and dilution with water, the samples were directly injected into the CE system for the analysis, in the presence of the internal standard. The amount of the considered analytes in the different tea samples was calculatedbyexternalstandardmethodandisreportedinTable4.As can be seen, in some of the samples, the presence of the nonnative catechins()Cand()GCisobservedandshouldbeascribedmerelyto manufacturing processes involving heating. As an example, the electropherogram of Kokeicha Green tea sample (from Japan) is reportedinFig.4:both()Cand()GCweredetected,thusindicating that epimerization occurred. This result was consistent with the informationprovidedbythesupplier,whoclaimsthatKokeichaGreen teaissubjectedtosteamtreatmentbeforepackaging.

127 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. EGC Fig.4 (+)C ()C

EGCG CF 4.0 4.2 4.4 4.6 4.8 5.0 5.2 EC ECG 25mAU IS (-)-C (+)-C (+)-GC (-)-GC

0 2 4 6 8

time,min Fig.4: Electropherogram of extract from Kokeicha Green tea under optimisedCDMEKCconditions.ConditionsandsymbolsasinFig.1. Concludingremarks The proposed CDMEKC, able to separate in about 8 min the most representedgreenteacatechinsandmethylxanthines,isthefirstmethod that allows simultaneous enantioseparation of Catechin and Gallocatechin. The method was applied in the study of thermal epimerisationoftheconsideredcatechinstodemonstratetherelevance of nonepistructured ()Catechin and ()Gallocatechin as markers of degradationofteasamples.Differentkindsofteasampleswereanalysed andthequantitativeresultsweretreatedbyfactoranalysistostudythe data set in a multivariate way. It has been confirmed that the enantioselectivequantitationof( )Catechinand( )Gallocatechincanbe

128 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. usefulinassessingthermaltreatment,infact,theobtainedresultswere found to be consistent with the information, when provided, on the manufacturingprocesses(e.g.steamtreatment,fermentation). References 1) Higdon,J.V.,Frei,B., CriticalReviewsinFoodScienceandNutrition 2003, 43 ,89143. 2) Crespy,V.,Williamson,G., J.Nutr. 2004, 134 ,3431S–3440S. 3) Friedman,M.,Mackey,B.E.,Kim,HJ.,Lee,IS.,Lee,KR.,Lee, SU,Kozuke,E.,Kozuke,N., J.Agric.FoodChem .2007, 55 ,243– 253. 4) Tejero,I.,GonzálezGarcía,N.,GonzálezLafontÀ.,Lluch,J.M., J.Am.Chem.Soc .2007, 129 ,58465854. 5) Dalluge, J.J., Nelson, B.C., Brown Thomas, J., Sander, L.C., J. Chromatogr.A 1998, 793 ,265274. 6) Neilson, A.P., Green, R.J., Wood, K.V., Ferruzzi, M.G., J. Chromatogr.A 2006, 1132 ,132140. 7) Fernández, P.L., Pablos, F., Martín, M.J., González, A.G., J. Agric.FoodChem .2002, 50 ,18331839. 8) Yao,L.,Caffin,N.,D’Arcy,B.,Jiang,Y.,Shi,J.,Singanusong,R., Liu,X.,Datta,N.,Kakuda,Y.,Xu,Y., J.Agric.FoodChem .2005, 53 ,64776483. 9) Fernández,P.L.,Martín,M.J.,González,A.G.,Pablos,F., Analyst 2000, 125 ,421425. 10) Saito, S.T., Fröehlich, P.E., Gosmann, G., Bergold, A.M., Chromatographia 2007, 65, 607610.

129 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. 11) Sano, M., Tabata, M., Suzuki, M., Degawa, M., Miyase, T., MaedaYamamoto,M., Analyst ,2001, 126 ,816820. 12) Kotani,A.,Takahashi,K.,Hakamata,H.,Kojima,S.,Kusu,F., Anal.Sci. 2007, 23 ,157163. 13) Kotani,A.,Miyashita,N.,Kusu,F., J. Chromatogr. B 2003, 788 , 269275. 14) Unno,T.,Sagesaka,Y.M.,Kakuda,T., J.Agric.FoodChem 2005, 53 ,98859889. 15) Yang,B.,Arai,K.,Kusu,F., Anal.Biochem .2000, 283 ,7782. 16) Lee,MJ.,Prabhu,S.,Meng,X.,Li,C.,Yang,C.S., Anal.Biochem . 2000, 279 ,164169. 17) Chiu,FL.,Lin,JK., J.Agric.FoodChem .2005, 53 ,70357042. 18) Dalluge, J.J., Nelson, B.C., Thomas, J.B., Welch, M.J., Sander, L.C., RapidComm.MassSpect. 1997, 11 ,17531756. 19) Masukawa,Y.,Matsui,Y.,Shimizu,N.,Kondu,N.,Endou,H., Kuzukawa,M.,Hase,T., J.Chromatogr.B 2006, 834 ,2634. 20) Zebb, D.J., Nelson, B.C., Albert, K., Dalluge, J.J., Anal. Chem . 2000, 72 ,50205026. 21) Bonoli,M.,Colabufalo,P.,Pelillo,M.,Toschi,T.G.,Lerker,G., J.Agric.FoodChem .2003, 51 ,11411147. 22) Chen,CN.,Liang,CM.,Lai,JR.,Tsai,YJ.,Tsay,JS.,Lin,J K., J.Agric.FoodChem. 2003, 51 ,74957503. 23) Weiss, D.J., Anderton, C.R., J. Chromatogr. A 2003, 1011 , 173 180. 24) Weiss,D.J.,Austria,E.J.,Anderton,C.R.,Hompesch,R.,Jander, A., J.Chromatogr.A 2006 ,1117 ,103108.

130 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. 25) Wörth,C.C.T.,Wießler,M.,Schmitz,O.J., Electrophoresis 2000, 21 , 36343638. 26) Pomponio, R., Gotti, R., Santagati, N.A., Cavrini, V., J. ChromatogrA 2003, 990 ,215223. 27) Pomponio, R., Gotti, R., Luppi, B., Cavrini, V., Electrophoresis 2003, 24 ,16581667. 28) Gotti, R., Fiori, J., Mancini, F., Cavrini, V., Electrophoresis 2004, 25 ,32823291 29) Gotti,R.,Furlanetto,S.,Pinzauti,S.,Cavrini,V., J.Chromatogr.A 2006, 1112 ,345352. 30) Kaiser,H.F., Psychometrika 1958, 23 ,187200. 31) Forina, M., Armanino, C., Lanteri, S., Leardi, R., J.Chemometrics 1988, 3,115125. 32) Kodama, S., Yamamoto, A., Matsunaga, A., Yanai, H., Electrophoresis 2004, 25 ,28922898. 33) Mileo, E., Franchi, P., Gotti, R., Bendazzoli, C., Mezzina, E., Lucarini,M., Chem.Comm. 2008, 11 ,13111313. 34) Ito, R., Yamamoto, A., Kodama, S., Kato, K., Yoshimura, Y., Matsunaga,A.,Nakazawa,H., FoodChem .2003, 83 ,563568. 35) Wang,R.,Zhou,W.,HuiyiWen,RA., J.Agric.FoodChem .2006, 54 ,59245932. 36) Stach,D.,Schmitz,O.J., J.Chromatogr.A 2001, 924 ,519522. 37) Chen,ZY.,Zhu,Q.Y.,Tsang,D.,Huang,Y., J.Agric.FoodChem . 2001, 49 ,477482. 38) Xu,J.Z.,Leung,L.K.,Huang,Y.,Chen,ZY., J.Sci.FoodAgric . 2003, 83 ,16171621.

131 Chapter6: DifferentiationofgreenteasamplesbychiralCDMEKCanalysisof catechinscontent. 39) Bokuchava,M.A.,Skobeleva,N.I., Crit.Rev.FoodSci.Nutr .1980, 12 ,303370. 40) Donovan,J.L.,Crespy,V.,Oliveira,M.,Cooper,K.A.,Gibson, B.B.,Williamson,G., FreeRadic.Res .2006, 40 ,10291034. 41) Forina,M.,Lanteri,S.,Armanino,C.,Casolino,C., Casale, M., VPARVUS 2007, An extendable package of programs for explorative data analysis, classification and regression analysis, Dept. of Chemistry and Technology of Food and Drugs, University of Genova, freely available at http://www.parvus.unige.it 42) Vandeginste,B.G.M.,Massart,D.L.,Buydens,L.M.C.,DeJong, S., Lewi, P.J., SmeyersVerbeke, J., Supervised Pattern Recognition.InVandeginste,B.G.M.,andRutan,S.C.Handbook of Chemometrics and Qualimetrics: Part B (pp. 88 – 158). Elsevier,Amsterdam(1998). 43) Forina,M.,Lanteri,S.,Boggia,R.,Bertran,E., QuimicaAnalitica 1993, 12 ,128135.

132

“GliAssirieiBabilonesisonoipopolipiùnoti che hanno abitato la Mesopotamia,vastapianurapercorsadalTigriedall’Eufrate.” (Rif.“Cosacuriosa”,volumeperlaprimaclassedellescuolemedie). Questafraseèriportataperdimostrareche,anche se quello che avete trovatonellapresentetesivisembrasbagliato,almenoqualcosadivero loaveteletto(citazionedaR.Gotti).

133

Grazie: AlmiocarissimoProf.Roberto,perché,nonostante sembri molto più giovane, ha una grande esperienza e capacità di insegnare, ed, oltre all’amore per questo lavoro, mi ha regalato tanti saggi consigli da applicarenellavitaquotidiana…emoltissimerisate. Allamiamamma,senzalaqualenonavreipotutofareniente,chemiha sostenutotuttiigiorniedatuttiipuntidivista!Grazieperesserelamia guidaeilmioesempio:unagrandedonnadaamare,ilmiosorrisoela miafelicità! A tutti i miei parenti, che mi sopportano pazientemente, che mi coccolanoemiviziano,chemiascoltanoemisgridano…eaiqualivoglio unbeneimmenso! A tutti i miei compagni di avventura…agli amici del lab e alle mie splendide“bambine”….peraverresoognigiornataindimenticabile… E infine grazie a Matteo, per avere ascoltato per ore ripetere le mie presentazioniconinfinitapazienzaeperavermiincoraggiatoconlasua presenza!

134