Size Exclusion Chromatography

Total Page:16

File Type:pdf, Size:1020Kb

Size Exclusion Chromatography GE Healthcare Size Exclusion Chromatography Size Exclusion Chromatography – Principles and Methods Size Exclusion Chromatography gelifesciences.com GE, the GE Monogram, ÄKTA, Biacore, BioProcess, HiLoad, HiPrep, HiScale, HiTrap, illustra, MicroSpin, MidiTrap, MiniTrap, MultiTrap, Sephacryl, Sephadex, Sepharose, SPARTAN, SpinTrap, Superdex, Superose, Principles and Methods GE Healthcare Bio-Sciences AB Tricorn, UNICORN, and Whatman are trademarks of GE Healthcare Company. Tween is a trademark of Uniqema Americas LLC. Björkgatan 30 All other third-party trademarks are the property of their respective owners. 751 84 Uppsala IMAC Sepharose products, Ni Sepharose products and Fe Sepharose products: These products are sold under a license from Sigma-Aldrich under patent number EP 1276716 (Metal chelating Sweden compositions) and equivalent patents and patent applications in other countries. © 2000–2018 General Electric Company. All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information. GE Healthcare UK Ltd., Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK GE Healthcare Europe GmbH, Munzinger Strasse 5, D-79111 Freiburg, Germany imagination atGE work Healthcare Bio-Sciences Corp., 100 Results Way, Marlborough, MA 01752 USA imagination at work GE Healthcare Japan Corp., Sanken Bldg., 3-25-1, Hyakunincho Shinjuku-ku, Tokyo 169-0073, Japan imagination at work KA789220318HB 18102218 AM Handbooks from GE Healthcare Life Sciences For more information refer to gelifesciences.com/handbooks GE Healthcare GE Healthcare GE Healthcare Affinity Chromatography Life Sciences GST Gene Fusion System Life Sciences Nucleic Acid Sample Vol. 1: Antibodies Handbook Preparation for 18103746 18115758 Downstream Analyses Principles and Methods Nucleic Acid Sample GST Gene Preparation for 28962400 Affinity Chromatography Fusion System Downstream Analyses Vol. 1: Antibodies Handbook Principles and Methods GE Healthcare GE Healthcare GE Healthcare Affinity Chromatography Life Sciences High-throughput Process Life Sciences Protein Sample Vol. 2: Tagged Proteins High-throughput Development with Preparation Process Development with PreDictor™ Plates 18114275 Principles and Methods PreDictor Plates Handbook Principles and Methods 28988741 28940358 Protein Sample Affinity Chromatography Preparation Vol. 2: Tagged Proteins Handbook GE Healthcare GE Healthcare GE Healthcare Affinity Chromatography Life Sciences Hydrophobic Interaction Life Sciences Purifying Challenging Vol. 3: Specific Groups of and Reversed Phase Proteins Biomolecules Chromatography Principles and Methods 18102229 Principles and Methods 28909531 Hydrophobic Interaction Purifying and Reversed Phase 11001269 Challenging Proteins Chromatography Affinity Chromatography Principles and Methods Principles and Methods Vol. 3: Specific Groups of Biomolecules GE Healthcare GE Healthcare GE Healthcare Life Sciences ÄKTA Laboratory-scale Life Sciences Imaging Life Sciences Spectrophotometry Chromatography 473 532 635 650 685 785 Principles and Methods Handbook Laser UV IR epi Systems trans 29020301 29033182 312 CCD UV IR W 365 460 520 630 710 Instrument Management epi Handbook Imaging Principles and Methods ÄKTA™ Laboratory-scale Spectrophotometry Chromatography Systems 29010831 Handbook Instrument Management Handbook GE Healthcare GE Healthcare GE Healthcare Life Sciences Biacore Assay Ion Exchange Life Sciences Strategies for Protein Biacore™ Assay Handbook Handbook Chromatography Purification 29019400 Principles and Methods Handbook 11000421 28983331 Ion Exchange Strategies for Chromatography Protein Purif ication Principles and Methods Handbook GE Healthcare GE Healthcare GE Healthcare Life Sciences Biacore Sensor Surface Life Sciences Isolation of Life Sciences Western Blotting Biacore Handbook Mononuclear Cells Principles and Methods Sensor Surface Handbook BR100571 Methodology and 28999897 Applications Isolation of 18115269 mononuclear cells Methodology and applications Western Blotting Principles and Methods GE Healthcare GE Healthcare GE Healthcare Life Sciences Cell Separation Media Life Sciences Microcarrier Cell Culture Life Sciences 2-D Electrophoresis using Methodology and Principles and Methods Immobilized pH Gradients Applications 18114062 Principles and Methods 18111569 80642960 Cell Separation Media 2-D Electrophoresis Principles and Methods Methodology and applications Microcarrier Cell Culture Principles and Methods GE Healthcare GE Healthcare Size Exclusion Life Sciences Multimodal Chromatography Chromatography Principles and Methods Handbook 18102218 29054808 Multimodal Size Exclusion Chromatography Chromatography Principles and Methods Handbook imagination at work imagination at work Size exclusion chromatography Principles and Methods Contents Symbols, acronyms and terminology used in this handbook ......................................................... 5 Symbols .............................................................................................................................................................................5 Common acronyms and abbreviations ..............................................................................................................5 Chromatography terminology ................................................................................................................................7 Chapter 1 Introduction ............................................................................................................................................11 Versatility of size exclusion chromatography .............................................................................................. 11 Purification by size exclusion chromatography .......................................................................................... 12 Size exclusion chromatography in theory...................................................................................................... 14 Defining the process ....................................................................................................................................... 14 Selectivity curves and resin selection ..................................................................................................... 17 Resolution ............................................................................................................................................................ 19 Chapter 2 Size exclusion chromatography in practice ......................................................................................21 General advice ............................................................................................................................................................ 21 Columns and resin preparation ................................................................................................................. 21 Scaling up ............................................................................................................................................................ 21 Sample and buffer preparation ................................................................................................................. 22 Filtration ................................................................................................................................................................ 22 Equipment selection ....................................................................................................................................... 23 Setting column pressure limits ................................................................................................................. 23 Maintenance of SEC columns ..................................................................................................................... 24 Optimizing your separation ................................................................................................................................. 24 Resin selection ................................................................................................................................................... 25 Sample volume and column dimensions .............................................................................................. 26 Elution and flow rates .................................................................................................................................... 27 Sample concentration and viscosity ....................................................................................................... 29 Buffer composition .......................................................................................................................................... 31 System configuration ..................................................................................................................................... 33 Troubleshooting .......................................................................................................................................................... 35 Reference ............................................................................................................................................................. 38 Chapter 3 Considerations for analytical SEC ......................................................................................................39
Recommended publications
  • Developing Back Reflectance Absorbance As a Useful Technique
    Design of a Simple Cryogenic System for Ultraviolet-Visible Absorption Spectroscopy with a Back-reflectance Fiber Optic Probe Andrew Vinyard, Kaj Hansen, Ross Byrd, Douglas A Stuart * and John Hansen * Department of Chemistry, University of West Georgia *Corresponding Authors, email: [email protected] and [email protected] Abstract We report a convenient and inexpensive technique for the rapid acquisition of absorption spectra from small samples at cryogenic temperatures using a home built cryostat with novel collection optics. A cylindrical copper block was constructed with a coaxial bore to hold a 4.00 mm diameter EPR tube and mounted on a copper feed in thermal contact with liquid nitrogen. A 6.35 mm diameter hole was bored into the side of the cylinder so a fiber optic cable bundle could be positioned orthogonally to the EPR tube. The light passing through the sample is reflected off of the opposing surfaces of the EPR tube and surrounding copper, back through the sample. The emergent light is then collected by the fiber optic bundle, and analyzed by a dispersive spectrometer. Absorption spectra for KMnO4 were measured between 400 nm and 700 nm. Absorption intensity at 506 nm, 525 nm, 545 nm and 567 nm was found to be proportional to concentration, displaying Beer’s law like behavior. The EPR tube had an internal diameter of 3.2 mm; the double pass of the probe beam through the sample affords a central path length of about 6.4 mm. Comparing these measurements with those recorded on a conventional tabletop spectrometer using a cuvette with a 10.00 mm path length, we consistently found a ratio between intensities of 0.58 rather than the anticipated 0.64.
    [Show full text]
  • Assessment of Energetic Heterogeneity of Reversed-Phase
    Seton Hall University eRepository @ Seton Hall Seton Hall University Dissertations and Theses Seton Hall University Dissertations and Theses (ETDs) Spring 5-15-2018 Assessment of Energetic Heterogeneity of Reversed-Phase Surfaces Using Excess Adsorption Isotherms for HPLC Column Characterization Leih-Shan Yeung [email protected] Follow this and additional works at: https://scholarship.shu.edu/dissertations Part of the Analytical Chemistry Commons Recommended Citation Yeung, Leih-Shan, "Assessment of Energetic Heterogeneity of Reversed-Phase Surfaces Using Excess Adsorption Isotherms for HPLC Column Characterization" (2018). Seton Hall University Dissertations and Theses (ETDs). 2527. https://scholarship.shu.edu/dissertations/2527 Assessment of Energetic Heterogeneity of Reversed- Phase Surfaces Using Excess Adsorption Isotherms for HPLC Column Characterization By: Leih-Shan Yeung Dissertation submitted to the Department of Chemistry and Biochemistry of Seton Hall University In partial fulfilment of the requirements for the degree of Doctor of Philosophy In Chemistry May 2018 South Orange, New Jersey © 2018 (Leih Shan Yeung) We certify that we have read this dissertation and that, in our opinion, it is adequate in scientific scope and quality as a dissertation for the degree of Doctor of Philosophy. Approved Research Mentor Nicholas H. Snow, Ph.D. Member of Dissertation Committee Alexander Fadeev, Ph.D. Member of Dissertation Committee Cecilia Marzabadi, Ph.D. Chair, Department of Chemistry and Biochemistry Abstract This research is to explore a more general column categorization method using the test attributes in alignment with the common mobile phase components. As we know, the primary driving force for solute retention on a reversed-phase surface is hydrophobic interaction, thus hydrophobicity of the column will directly affect the analyte retention.
    [Show full text]
  • 2 in 1 Fluorescence and Absorbance Spectrometer
    2 in 1 Fluorescence and Application Fluorescence Absorbance Spectrometer: Note How does it work? Life Sciences Figure 1: Duetta (left) and the inside of the Duetta sample compartment (right) with direction of the light path Introduction Duetta™ is a 2-in-1 fluorescence and absorbance excitation energy and the spectrum at longer wavelengths spectrometer from HORIBA Scientific. There are several is acquired to measure the distribution of intensity and benefits of having two different spectroscopies in one energy (wavelength) of the photons emitted. instrument. For high concentration solutions of interest, both primary and secondary inner-filter effects will affect Fluorescence Excitation Spectrum the fluorescence spectrum measured on a standard Acquiring the intensity of photons emitted at a single fluorometer. Having absorbance and fluorescence emission wavelength and scanning the excitation spectroscopy on the same instrument enables Duetta monochromator to excite the population of molecules in and EzSpec software to apply corrections for inner-filter the sample with different wavelengths. A fluorescence effect and provide more accurate data, for a wider range of excitation spectrum is analogous to an absorbance sample concentrations. Another benefit of the two in one spectrum, but is specific to a single emitting species/ instrument is that absorbance results and fluorescence wavelength as opposed to collecting all absorbing species results contain less error since the sample does not move in a sample or solution. from one instrument to another to get both measurements. Standard fluorescence methods such as Emission %Transmittance Spectrum Spectrum and Excitation Spectrum are available on Duetta, This is a ratio, in terms of percentage, of the intensity of but EzSpec software gives a user the ability to measure transmitted light through an absorbing sample (I) compared the Absorbance Spectrum as a stand-alone method or to the transmitted light through a blank solvent (I0).
    [Show full text]
  • Comprehensive Two-Dimensional Liquid Chromatography - Practical Impacts of Theoretical Considerations
    Cent. Eur. J. Chem. • 10(3) • 2012 • 844-875 DOI: 10.2478/s11532-012-0036-z Central European Journal of Chemistry Comprehensive Two-Dimensional Liquid Chromatography - practical impacts of theoretical considerations. A review. Review Article Pavel Jandera Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10, Czech Republic Received 24 October 2011; Accepted 31 January 2012 Abstract: A theory of comprehensive two-dimensional separations by liquid chromatographic techniques is overviewed. It includes heart-cutting and comprehensive two-dimensional separation modes, with attention to basic concepts of two-dimensional separations: resolution, peak capacity, efficiency, orthogonality and selectivity. Particular attention is paid to the effects of sample structure on the retention and advantages of a multi-dimensional HPLC for separation of complex samples according to structural correlations. Optimization of 2D separation systems, including correct selection of columns, flow-rate, fraction volumes and mobile phase, is discussed. Benefits of simultaneous programmed elution in both dimensions of LCxLC comprehensive separations are shown. Experimental setup, modulation of the fraction collection and transfer from the first to the second dimension, compatibility of mobile phases in comprehensive LCxLC, 2D asymmetry and shifts in retention under changing second-dimension elution conditions, are addressed. Illustrative practical examples of comprehensive LCxLC separations are shown. Keywords:
    [Show full text]
  • Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-1-2019 Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors Elizabeth M. Scherrer Follow this and additional works at: https://scholar.afit.edu/etd Part of the Electromagnetics and Photonics Commons Recommended Citation Scherrer, Elizabeth M., "Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors" (2019). Theses and Dissertations. 2463. https://scholar.afit.edu/etd/2463 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. OPTICAL AND ELECTRON PARAMAGNETIC RESONANCE CHARACTERIZATION OF POINT DEFECTS IN SEMICONDUCTORS DISSERTATION Elizabeth M. Scherrer, Captain, USAF AFIT-ENP-DS-19-M-091 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-DS-19-M-091 OPTICAL AND ELECTRON PARAMAGNETIC RESONANCE CHARACTERIZATION OF POINT DEFECTS IN SEMICONDUCTORS DISSERTATION Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Doctor of Philosophy Degree Elizabeth M.
    [Show full text]
  • Spectrophotometry Light and Spectra
    Page: 1 Spectrophotometry Spectrophotometry and colorimetry are conventional techniques for quantitatively determining substances encountered in biochemistry. All substances in solution absorb light of some wavelength and transmit light of other wavelengths. Absorbance is a characteristic of a substance just like melting point, boiling point, density and solubility. Absorbance can be related to the amount of the substance in solution, thus it can be used to quantitatively determine the amount of substance that is present. Light and Spectra Light or electromagnetic radiation is composed of photons moving in a wave that oscillates along the path of motion. The wavelength of light is defined as the distance between adjacent peaks in the wave and can be further defined by the equation: λ = c / ν where λ is the wavelength, c is the speed of light, and ϖ is the frequency or number of waves passing a certain point per unit time. Photons of different wavelengths have different energies that are given by: E = hc / λ = h ν where h is Planck's constant. Thus, the shorter the wavelength, the greater the energy. Electromagnetic radiation can be divided into various regions according to wavelength: the ultraviolet region has wavelengths 200-400 nm and the visible region has wavelengths of 400-700 nm. There are other regions such as infrared, radio wave, microwave and more, but you will not apply them in this course. In the visible region, lights of different wavelengths have different colors: violet and blue in the low wavelength region and orange and red in the high wavelength region. When a substance in solution appears blue, it means that the substance is absorbing red light and transmitting blue light.
    [Show full text]
  • Electron Paramagnetic Resonance of Radicals and Metal Complexes. 2. International Conference of the Polish EPR Association. Wars
    ! U t S - PL — voZ, PL9700944 Warsaw, 9-13 September 1996 ELECTRON PARAMAGNETIC RESONANCE OF RADICALS AND METAL COMPLEXES 2nd International Conference of the Polish EPR Association INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY UNIVERSITY OF WARSAW VGL 2 8 Hi 1 2 ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology Prof. Andrzej G. Chmielewski, Ph.D., D.Sc. Assoc. Prof. Hanna B. Ambroz, Ph.D., D.Sc. Assoc. Prof. Jacek Michalik, Ph.D., D.Sc. Dr Zbigniew Zimek University of Warsaw Prof. Zbigniew Kqcki, Ph.D., D.Sc. ADDRESS OF ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology, Dorodna 16,03-195 Warsaw, Poland phone: (0-4822) 11 23 47; telex: 813027 ichtj pi; fax: (0-4822) 11 15 32; e-mail: [email protected] .waw.pl Abstracts are published in the form as received from the Authors SPONSORS The organizers would like to thank the following sponsors for their financial support: » State Committee of Scientific Research » Stiftung fur Deutsch-Polnische Zusammenarbeit » National Atomic Energy Agency, Warsaw, Poland » Committee of Chemistry, Polish Academy of Sciences, Warsaw, Poland » Committee of Physics, Polish Academy of Sciences, Poznan, Poland » The British Council, Warsaw, Poland » CIECH S.A. » ELEKTRIM S.A. » Broker Analytische Messtechnik, Div. ESR/MINISPEC, Germany 3 CONTENTS CONFERENCE PROGRAM 9 LECTURES 15 RADICALS IN DNA AS SEEN BY ESR SPECTROSCOPY M.C.R. Symons 17 ELECTRON AND HOLE TRANSFER WITHIN DNA AND ITS HYDRATION LAYER M.D. Sevilla, D. Becker, Y. Razskazovskii 18 MODELS FOR PHOTOSYNTHETIC REACTION CENTER: STEADY STATE AND TIME RESOLVED EPR SPECTROSCOPY H. Kurreck, G. Eiger, M. Fuhs, A Wiehe, J.
    [Show full text]
  • Chapter 15 Liquid Chromatography
    Chapter 15 Liquid Chromatography Problem 15.1: Albuterol (a drug used to fight asthma) has a lipid:water KOW (see “Profile—Other Applications of Partition Coefficients”) value of 0.019. How many grams of albuterol would remain in the aqueous phase if 0.001 grams of albuterol initially in a 100 mL aqueous solution were allowed to come into equilibrium with 100 mL of octanol? C (aq) ⇌ C (org) Initial (g) 0.001 g 0 Change -y +y Equil 0.001-y y 푦 100 푚퐿 퐾푂푊 = 0.019 = (0.001−푦) ⁄100푚퐿 1.9 x 10-5 – 0.019y = y 1.019y = 1.9 x 10-5 y = 1.864x10-5 g albuterol would be in the octanol layer Problem 15.2: (a) Repeat Problem 15.1, but instead of extracting the albuterol with 100 mL of octanol, extract the albuterol solution five successive times with only 20 mL of octanol per extraction. After each step, use the albuterol remaining in the aqueous phase from the previous step as the starting quantity for the next step. (Note: the total volume of octanol is the same in both extractions). (b) Compare the final concentration of aqueous albuterol to that obtained in Problem 15.1. Discuss how the extraction results changed by conducting five smaller extractions instead of one large one. What is the downside to the multiple smaller volume method in this exercise compared to the single larger volume method in Problem 15.1? 푦 (a) Each step will have this general form of calculation: 퐾 = 20 푚퐿 푂푊 (푔푖푛푖푡−푦) ⁄100푚퐿 (퐾 )(푔 ) so we can calculate the g transferred to octanol from 푦 = 푂푊 푖푛푖푡 5+퐾푂푊 We can use a spreadsheet to calculate the successive steps: First extraction:
    [Show full text]
  • Triple-Detection Size-Exclusion Chromatography of Membrane Proteins
    Triple-Detection Size-Exclusion Chromatography of Membrane Proteins vom Fachbereich Biologie der Technischen Universit¨atKaiserslautern zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Doctor rerum naturalium; Dr. rer. nat.) genehmigte Dissertation von Frau Dipl.-Biophys. Katharina Gimpl Vorsitzende: Prof. Dr. rer. nat. Nicole Frankenberg-Dinkel 1. Gutachter: Prof. Dr. rer. nat. Sandro Keller 2. Gutachter: Prof. Dr. rer. nat. Rolf Diller Wissenschaftliche Aussprache: 08. April 2016 D 386 Abstract Membrane proteins are generally soluble only in the presence of detergent micelles or other membrane-mimetic systems, which renders the determination of the protein's mo- lar mass or oligomeric state difficult. Moreover, the amount of bound detergent varies drastically among different proteins and detergents. However, the type of detergent and its concentration have a great influence on the protein's structure, stability, and func- tionality and the success of structural and functional investigations and crystallographic trials. Size-exclusion chromatography, which is commonly used to determine the molar mass of water-soluble proteins, is not suitable for detergent-solubilised proteins because the protein{detergent complex has a different conformation and, thus, commonly exhibits a different migration behaviour than globular standard proteins. Thus, calibration curves obtained with standard proteins are not useful for membrane-protein analysis. However, the combination of size-exclusion chromatography with ultraviolet absorbance,
    [Show full text]
  • 9.2.3.7 Retention Parameters in Column Chromatography
    9.2.3.7 Retention Parameters in Column Chromatography Retention parameters may be measured in terms of chart distances or times, as well as mobile phase volumes; e.g., tR' (time) is analogous to VR' (volume). If recorder speed is constant, the chart distances are directly proportional to the times; similarly if the flow rate is constant, the volumes are directly proportional to the times. Note: In gas chromatography, or in any chromatography where the mobile phase expands in the column, VM, VR and VR' represent volumes under column outlet pressure. If Fc, the carrier gas flow rate at the column outlet and corrected to column temperature (see Flow Rate), is used in calculating the retention volumes from the retention time values, these correspond to volumes at column temperatures. The various conditions under which retention volumes (times) are expressed are indicated by superscripts: thus, a prime ('; as in VR') refers to correction for the hold-up volume (and time) while a circle (º; as in VRº) refers to correction for mobile-phase compression. In the case of the net retention volume (time) both corrections should be applied: however, in order not to confuse the symbol by the use of a double superscript, a new symbol (VN, tN) is used for the net retention volume (time). Hold-up Volume (Time) (VM, tM ) The volume of the mobile phase (or the corresponding time) required to elute a component the concentration of which in the stationary phase is negligible compared to that in the mobile phase. In other words, this component is not retained at all by the stationary phase.
    [Show full text]
  • Studies on the Interaction of Surfactants and Neutral
    ________________________________________________________ Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN SCIENZE FARMACEUTICHE Ciclo XXI Settore scientifico disciplinare di afferenza: CHIM/08 STUDIES ON THE INTERACTION OF SURFACTANTS AND NEUTRAL CYCLODEXTRINS BY CAPILLARY ELECTROPHORESIS. APPLICATION TO CHIRAL ANALYSIS. Dott.ssa Claudia Bendazzoli Coordinatore Dottorato Relatore Prof. Maurizio Recanatini Prof. Roberto Gotti Esame finale anno 2009 ________________________________________________________ “Quando il saggio indica la luna, lo stolto guarda il dito.” (proverbio cinese) ________________________________________________________ To my Mum ________________________________________________________ Table of Contents: Preface (pag.8-9) Chapter 1:Sodium DodecylSulfate and Critical Micelle Concentration • Introduction (pag.11-16) Structure of a Micelle Dynamic properties of surfactants solution • SDS: determination of critical micelle concentration by CE (pag.16-17) • Methodologicalapproaches (pag.18-25) Method based on the retention model—micellar electrokinetic chromatography method Method based on the mobility model—capillary electrophoresis (mobility) method Practical requirements for making critical micelle concentration measurements: micellar electrokinetic chromatography method and capillary electrophoresis (mobility) method • Method based on the measurements of electric current using capillary electrophoresis instrumentation- capillary electrophoresis (current) method (pag.26-28) Practical requirements
    [Show full text]
  • UV-Vis Spectroscopy: a New Approach for Assessing the Color Index of Transformer Insulating Oil
    sensors Article UV-Vis Spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil Yang Sing Leong 1 ID , Pin Jern Ker 1,*, M. Z. Jamaludin 1, Saifuddin M. Nomanbhay 1, Aiman Ismail 1, Fairuz Abdullah 1, Hui Mun Looe 2 and Chin Kim Lo 2 1 Institute of Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; [email protected] (Y.S.L.); [email protected] (M.Z.J.); [email protected] (S.M.N.); [email protected] (A.I.); [email protected] (F.A.) 2 Tenaga Nasional Berhad (TNB) Research Sdn. Bhd., Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; [email protected] (H.M.L.); [email protected] (C.K.L.) * Correspondence: [email protected] Received: 30 April 2018; Accepted: 15 June 2018; Published: 6 July 2018 Abstract: Monitoring the condition of transformer oil is considered to be one of the preventive maintenance measures and it is very critical in ensuring the safety as well as optimal performance of the equipment. Various oil properties and contents in oil can be monitored such as acidity, furanic compounds and color. The current method is used to determine the color index (CI) of transformer oil produces an error of 0.5 in measurement, has high risk of human handling error, additional expense such as sampling and transportations, and limited samples can be measured per day due to safety and health reasons. Therefore, this work proposes the determination of CI of transformer oil using ultraviolet-to-visible (UV-Vis) spectroscopy.
    [Show full text]