biomolecules Article Fatty Acid Biosynthesis in Chromerids 1,2, 1,3, 1,3 1 Aleš Tomˇcala y , Jan Michálek y, Ivana Schneedorferová , Zoltán Füssy , Ansgar Gruber 1 , Marie Vancová 1 and Miroslav Oborník 1,3,* 1 Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 Ceskˇ é Budˇejovice,Czech Republic;
[email protected] (A.T.);
[email protected] (J.M.);
[email protected] (I.S.);
[email protected] (Z.F.);
[email protected] (A.G.);
[email protected] (M.V.) 2 Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia, Husova 458/102, 370 05 Ceskˇ é Budˇejovice,Czech Republic 3 Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 Ceskˇ é Budˇejovice,Czech Republic * Correspondence:
[email protected]; Tel.: +420-38777-5464 These authors equally contributed to this work. y Received: 14 May 2020; Accepted: 15 July 2020; Published: 24 July 2020 Abstract: Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units.