<<

University of South Florida Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2012 Vent-Fault Spatial Study of Selected Volcanic Fields of Southwestern North America and Mexico Michelle Leonard University of South Florida, [email protected]

Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Geomorphology Commons

Scholar Commons Citation Leonard, Michelle, "Vent-Fault Spatial Study of Selected Volcanic Fields of Southwestern North America and Mexico" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4125

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Vent-Fault Spatial Study of Selected Volcanic

Fields of Southwestern North America and Mexico

by

Michelle Lynn Leonard

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science Department of Geology College of Arts and Sciences University of South Florida

Co-Major Professor: Paul H. Wetmore, Ph.D. Co-Major Professor: Charles B. Connor, Ph.D. Committee Member: Jeffrey G. Ryan, Ph.D.

Date of Approval: January 26, 2012

Keywords: tectonics, Big Pine, Coso, Camargo, Jaraguay, San Borja, Michoacán-Guanajuato, Yucca, spatial relationship, Caplinger

Copyright © 2012, Michelle Lynn Leonard

Dedication

For my mother.

Acknowledgements

I would like to thank Guy-Luc Levesque for thoughtful reviews throughout the manuscript process. Lane Pitre and Brandon Ashby assisted with essential GIS work. Management at Cardno

ENTRIX generously allowed use of my work computer and software during off-hours to complete the data analyses and manuscript writing, specifically Clara Carey in the early stages

and Gregg Jones in the latter. My friends at Cardno ENTRIX provided continuous support and

kept me sane through many reviews; specifically Amanda Harford, Chelsea Murphy, Brandon

Wieme, Jennifer Granberry, David Kelly, Joshua Yates, and Kim Brown. I love my dearest

friends Courtney Rapps, Fatin Tutak, and Margie Hagin; thank you for always being there for me.

Thank you to Mary Haney and Mandy Stuck at the department for guidance and for answering all

of my silly questions. Many thanks are due to my supervisory committee and notably to Paul

Wetmore for your persistence, mentorship, and valuable feedback. I am grateful to my husband

Matt for his love and support.

Table of Contents

List of Tables iii

List of Figures iv

Abstract vi

Introduction 1

Previous Work 2 Spatial Distribution of Basaltic 2 Issues with Scaling 4 Dike Propagation and Interaction with Pre-Existing Fractures 5 Study Background 8

Methodology 10

Calculations of Error 15

Regional and Local Tectonic Settings 16 Regional Tectonics 17 Basin and Range Province 17 Eastern Shear Zone 19 Baja Peninsula 20 Trans-Mexican Volcanic Belt 22 Local Geology and Tectonics of Individual Volcanic Fields 25 Big Pine Volcanic Field 25 Camargo Volcanic Field 26 Coso Volcanic Field 27 Yucca Volcanic Field 29 Jaraguay Volcanic Field 30 San Borja Volcanic Field 31 Michoacán-Guanajuato Volcanic Field 32

Results 34 Big Pine Volcanic Field 35 Camargo Volcanic Field 36 Coso Volcanic Field 37 Yucca Volcanic Field 38 Jaraguay Volcanic Field 39 San Borja Volcanic Field 40 Michoacán-Guanajuato Volcanic Field 41

Discussion 42 i Spatial Relationships 42 The Role of Map Scale 43 The Role of Source Geometry 44 Volcanism and Faulting as Complimentary Mechanisms 46 Practical Implications 50

Concluding Remarks 52

References 54

Appendix A: Vent Location Data 62

Appendix B: Fault Location Data 79

Appendix C: Additional Fault Graphs 113

ii

List of Tables

Table 1 – Summary Table of Volcanic Field Properties 34

Table A1 – Vent Location Data 63

Table B1 – Fault Location Data 80

iii

List of Figures

Figure 1 – Mixed-Mode Dilation of Cracks in Host Rock 7

Figure 2 – Methodology Illustration 11

Figure 3 – Possible Vent to Fault Spatial Analysis Curves 13

Figure 4 – Regional Location Map of Volcanic Fields 16

Figure 5 – Big Pine Volcanic Field Location Map 25

Figure 6 – Camargo Volcanic Field Location Map 26

Figure 7 – Coso Volcanic Field Location Map 28

Figure 8 – Yucca Volcanic Field Location Map 29

Figure 9 – Jaraguay Volcanic Field Location Map 31

Figure 10 – San Borja Volcanic Field Location Map 31

Figure 11 – Michoacán-Guanajuato Volcanic Field Location Map 32

Figure 12 – Spatial Analysis for Big Pine Volcanic Field 35

Figure 13 – Spatial Analysis for Camargo Volcanic Field 36

Figure 14 – Spatial Analysis for Coso Volcanic Field 37

Figure 15 – Spatial Analysis for Yucca Volcanic Field 38

Figure 16 – Spatial Analysis for Jaraguay Volcanic Field 39

Figure 17 – Spatial Analysis for San Borja Volcanic Field 40

Figure 18 – Spatial Analysis for Michoacán-Guanajuato Volcanic Field 41

Figure 19 – Mantle Wedge Diagram Showing “Hot Fingers” 45

Figure 20 – Spatial Density and Volcanic Rift Zones of the Eastern Snake River Plain 46

Figure C1 – Fault Analysis for the Big Pine Volcanic Field 114 iv

Figure C2 – Fault Analysis for the Camargo Volcanic Field 114

Figure C3 – Fault Analysis for the Coso Volcanic Field 115

Figure C4 – Fault Analysis for the Yucca Volcanic Field 115

Figure C5 – Fault Analysis for the Jaraguay Volcanic Field 116

Figure C6 – Fault Analysis for the San Borja Volcanic Field 116

Figure C7 – Fault Analysis for the Michoacán-Guanajuato Volcanic Field 117

v

Abstract

Of fundamental concern in volcanic hazard and risk assessment studies of volcanic systems is what role crustal structures might play in the ascent of through the crust. What are the processes that govern the spatial distribution and timing of eruptions, especially in populated areas or near sensitive facilities? Many studies have drawn the conclusion that faults play a critical role as easily-exploitable crustal weaknesses along which magma can ascend. Great care must be used when assuming a causative relationship between patterns of vents and faults especially when such relationships may be incorporated into hazard assessment models or other forecasting tools.

This thesis presents a quantitative analysis of vent and fault populations in seven actively-faulted

volcanic fields to test whether or not spatial relationships exist between faults and volcanic

features. The data generated in this study include map distances acquired by measuring existing

geologic maps produced by other scientists. Statistical methods were adapted from a similar study

by Paterson and Schmidt (1999) which involved the analysis of pluton-to-fault distances.

The data show that statistical spatial correlations exist between vents and faults in only two of the

seven volcanic fields in this study. As a general observation, most vents cluster far from faults in

these populations, which could be explained by a variety of natural phenomenon such as suppression of faulting from increased magmatism and magma source geometry differences.

Although data some of the data show a spatial correlation, it does not necessarily imply a genetic relationship. vi

Introduction

A principal goal for most studies of volcanic systems is to understand the processes governing the timing and spatial distribution of eruptions toward the end of producing volcanic hazard and risk assessments for populated areas and critical facilities (e.g. Connor et al., 2009). Of fundamental concern in these studies is what, if any, role do crustal structures play in the ascent of magma from source to surface (e.g. Paterson and Schmidt, 1999). Many studies draw the conclusion that faults play a critical role as easily exploitable crustal anisotropies along which magma can ascend

(e.g. Aranda-Gomez et al., 2003). Unfortunately, most of these studies arrive at their conclusions based on qualitative, instead of quantitative, assessments of the spatial relationships between faults and vents. This type of casual analysis has led to an almost universally-accepted belief that volcanism and magmatism in general, is spatially correlated and, causally-linked to fault patterns.

The study reported upon in this thesis involves a quantitative assessment of the spatial relationships between vents and faults based on the map distributions of these features from a variety of volcanic fields throughout the North American Cordillera. The primary goal of this study is to test the idea that vents within volcanic fields with active faults are spatially clustered near those faults. The primary data for this study, map distances and directions between vents and nearest faults, derived from maps generated by other scientists and the statistical methods employed, are adapted from a similar study of plutons and faults by Paterson and Schmidt (1999).

While this study is designed to test the widely held assumption of close spatial correspondence between faults and volcanic vents, it is not the aim of this study to confirm or refute specific claims of genetic or causal relationships between such features in the fields studied herein or in general. 1

Previous Work

Spatial Distribution of Basaltic Volcanism

Spatial correlations of volcanic features have been exhaustively studied with a variety of statistical analyses in order to determine vents alignments or patterns to better predict timing and locations of future eruptions. Authors discussed here laid the groundwork for subsequent studies exploring probability, density, and recurrence rate statistics. This section will give an overview of contributions by authors hoping to better understand patterns and timing of volcanic eruptions.

Alignments of vents are commonly studied with the intent of identifying a spatio-temporal pattern that could better predict future eruptions. Statistical analyses will be discussed here in progression through time and will include azimuth and nearest-neighbor methods, the Hough transform method, coupled models (time and space), consideration of how fault dips may influence spatial distribution, the role of scale, and the influence of shallow structural features on spatial patterns of vents.

Several papers were published in quick succession outlining the benefits of azimuthal and nearest-neighbor analyses. Lutz (1986) reviewed the statistical analysis of fracture traces and point-like features using azimuthal distributions to identify orientations of large-scale structures.

Lutz (1986) found that the azimuthal analysis was vast improvement upon traditional spatial analyses because it allows for detection of anisotropies and is sensitive to shape and pattern.

Wadge and Cross (1988) used a two-point azimuth method for regional scale with a Hough transform method at the local scale to determine alignments while Connor (1990) used two-point

azimuth, two-dimensional Fourier and Hough transform analyses. Wadge and Cross (1988)

concluded that the Hough transform method was much more successful in identifying regional

2 alignments than the local nearest-neighbor analysis of Lutz (1986). Connor (1990) suggested that the use of his clustering analyses could assist in the study of magma generation and rise as the clustering may be a product of “progressively more localized melting events” instead of alignments by Lutz (1986) and Wadge and Cross (1988).

Additional analyses were developed to include the temporal dimension which allowed researchers to consider migration of melt and changes to the melt source through time within individual volcanic fields. Connor et al. (1992) included data about structural features and suggest that alignments are the result of a correlation of structural features, inferred at depth, which magma may use as a conduit. In another study by Condit and Connor (1996), a nearest-neighbor recurrence-rate model was used to determine long-term volcanic hazards in the Springerville

Volcanic Field. This is an example of a source-driven spatio-temporal field where migration of volcanism is tracked using dating and geochemical analysis of lavas. Condit and Connor (1996) suggest that the pattern of volcanism should be viewed with this more complex model than a strictly temporal model like Condit et al. (1989) and that patterns are more likely developed by areas of localized melt generation at the source.

Spatial patterns of structural features such as shallow faults and fractures were analyzed to determine whether melt is organized into alignments of vents by way of these structural influences. Also, the dip of such features may affect the capture, ascent, and location of eruption of dikes at the surface. As explained in research conducted by Connor and Conway (2000), cinder cone alignments may follow fault traces at varying distances based on the fault dip at a local scale. They further say that there are a couple of explanations for vent clustering at this local scale: either because magma supply differs across fields or because crustal structures assist in the development of clusters. However, at a regional scale, distributions do not correlate: “fault densities are rarely high within vent clusters compared to nearby areas” (Connor and Conway, 3

2000). Another important point made by Connor and Conway (2000) is that larger-volume fields typically have insufficient rates of dike injection and cannot fully accommodate regional strain; the result is increased faulting.

Shallow structural features are again considered with respect to the capture and redirection of magma during ascent. Valentine and Perry (2007) argue that magma captured by faults at Yucca

Volcanic Field occurs in the shallow crust “in response of the heterogeneous mantle to regional tectonics” and that this behavior is indicative of a time-predictable field. Also, alignments are due to regional Basin and Range strain, but shallow faults have the ability to reorient melt during ascent (Valentine and Perry, 2007). Furthermore, for every dike that reached the surface,

Valentine and Perry (2007) claimed that N-S trending faults captured each one during ascent.

According to Valentine and Perry (2007) there are two types of volcanic fields; tectonically controlled fields have “extremely low eruptive volume flux” and shallow faults readily capture ascending dikes while magmatically controlled fields are driven by high magma fluxes where dike injection greatly exceeds regional tectonic strain because of the mantle’s thermal structure and are independent of shallow tectonics.

Issues with Volcanic Field Scaling

Connor et al. (2000) studied the faulting and volcanism at three different scales to determine what scale is appropriate for shallow structural influences at the proposed Yucca Mountain Nuclear

Repository. They explain that at a regional scale, the Amargosa Trough would likely be the location of future eruptions. On a sub-regional scale, alignments are common in the area of the proposed repository; at a local scale, faults found around and within Yucca Mountain (normal faults with high slip rates) are known to be amenable to channeling magma (Connor et al., 2000).

In this case, the probability of eruptions during the performance interval is studied with respect to three spatial scales. 4

Dike Propagation and Interaction with Pre-Existing Fractures

It is important to review the physical processes involved with magma ascent and emplacement in the context of the evolution of basaltic volcanic fields to determine if magma could use structural features as conduits and if so, under what conditions. If faults readily capture ascending dikes, vents in this study would be located close to or along fault traces at the surface. Included in this brief description are the mechanisms by which magma leaves the source region, it’s ascent through the crust, and the emplacement in the shallow crust or eruption at the surface.

Magma leaves its source region by way of fractures and cracks in the “roof” of the mantle source, forced upward by excess magma pressure (Rubin, 1998). According to Rubin (1998), this is inferred to begin with “grain boundary cracks” that allows microscopic melt to flow between crystals within already partially molten rock. At depth, the initiation of dikes can be seen as

“active hydraulic fracturing forced by magma” (Wada, 1994) and unless these dikes occupy pre- existing structures, they create their own fractures in which to intrude. These fractures are unzipped ahead of the fluid-driven crack tip (Rubin, 1998) as long as the excess magma pressure allows.

Once initiated, the dike propagates by way of energy-efficient channelized flow driven by magma buoyancy (Rubin, 1998) or from hydraulic head (e.g. Lister and Kerr, 1991). The channelized flow encourages the widening of the dike as magma ascends; the mechanisms for widening are elastic deformation of the surrounding host rock (Delaney and Gartner, 1997) and non-elastic thermal and mechanical erosion (Rubin, 1995). According to Rubin (1995), the magma pressure and crack orientation are the primary factors that determine whether a dike can enter a pre- existing fracture. Additionally, changes in orientation of a preexisting fracture or the stress configuration could cause the dike to leave that structural feature and initiate the propagation of a new feature. 5

Rubin (1995) provides detailed mathematical calculations to determine the ability of, and under which conditions must exist for, a dike to exploit pre-existing fractures in areas of active horizontal extension. He concluded that tectonic extension makes it nearly impossible for dikes to propagate because extension increases the depth of neutral buoyancy and increasingly allows for lateral dilation of dikes (or the formation of sills) deeper in the crust. Rubin (1995) also adds that when rocks at depth are held in the ambient stress state near failure (such as in an area undergoing constant normal faulting like the Basin and Range Province), there is increasing chance that normal faulting will suppress the ascent of magma.

Furthermore, Rubin (1995) explains that dikes may intrude an existing crack and exploit it for some distance, including to the surface if possible, if the magma pressure exceeds σ3. If the

magma pressure only slightly exceeds σ3, then only cracks that are nearly perpendicular the σ3 will be intruded (Rubin, 1995). However, if magma pressure greatly exceeds σ3, then the magma

can dilate cracks of any orientation (Rubin, 1995). The dike will only follow the pre-existing

crack for as long as these conditions exist and may “jump out” of the fracture’s path (Rubin,

1995). The orientation of fault planes that could be intruded was estimated to be within 30º of σ3 at depth for an extensional stress regime (Ziv et al., 2000). However, Ziv et al. (2000) explain that at mid-crustal depths, pore pressures and regional stresses are much greater than rock tensile strength and that those pressures are too great to allow a dike to ascend from lower to mid-crustal depths through a pre-existing fault.

Rubin (1995) also describes the “mixed-mode” dilation and crack propagation ahead of dike intrusion in terms of normal in-line dilation of cracks (Figure 1a), normal in-line dilation with a shear component in the direction of un-zipping (Figure 1b), and the normal in-line dilation with a shear component perpendicular to the direction of un-zipping (Figure 1c). The scenario described in Figure 1b would be analogous to a dike propagating into a normal fault (if the cartoon were 6

rotated counter-clockwise by

90º). If instead, there were a

shear component in another

direction, as shown in Figure 1c,

Figure 1. Mixed-Mode Dilation of Cracks in Host Rock. Dilation of cracks ahead of (and again if rotated the same dike propagation where (a) dike propagates without shear, (b) dike propagates with shear perpendicular to crack, and (c) dike propagates with lateral shear. Panel (b) is analogous to a dike propagating into a normal fault. Modified from Rubin (1995). way) the result would be analogous to a dike propagating into a fracture with lateral shear (such as the geometry found in

the Inyo Craters in southern California (Reches and Fink, 1988)).

In general, the physics of dike intrusion into pre-existing fractures and faults has been thoroughly

studied, and it has been found to be possible under certain conditions. Ziv et al. (2000) describe

the conditions needed for intrusion to occur: 1) the fault should be oriented almost perpendicular

to σ3; 2) magma pressure needs to be much greater than shear stress on the preexisting fracture;

and 3) regional stress acting on the dike must be smaller than the rock tensile strength. These

factors should be considered when evaluating the possibility for dike intrusion into pre-existing

structures.

Conventional wisdom indicates that neutral buoyancy is the mechanism by which magma ceases

from ascending through the crust (at the location where the rock and melt densities are equal)

(Parsons et al., 1992). However, the variations found in regional and local stresses are a more

reliable indicator of dike behavior (Parsons et al., 1992). During ascent, a dike may not settle or

intrude horizontally at the point of neutral buoyancy if the internal melt pressure (driving pressure

from the source) is more than σ3 of the country rock (Parsons et al., 1992). A couple of examples where host rocks are less dense than ascending melt is evident where dikes have passed through tuffs or sediments and have ascended to the summit craters of volcanoes (Parsons et al., 1992).

7

Additionally, in extending tectonic provinces, dikes preferentially intrude vertically and perpendicular to σ3. If, however, dike intrusion occurs at such a high rate that stresses are

reoriented to where σ3 is vertical, horizontal intrusion may begin (Parsons et al., 1992). For scale

reference, if a dike intrudes into an area with extension rates on the order of mm/yr, the strain

accommodated by a 10-m-thick dike could take up offset in only days or hours from a fault that

would otherwise take time on the order of 1 Ka (Parsons et al., 1992).

Study Background

Paterson and Schmidt (1999) argue that magmatic products (their study looked at plutons and

faults) do not require a fault or fracture to reach the surface; the fact that a eruptive products are

found at the surface is driven more by source than surficial structural features. They contend that

magma does not preferentially channel through faults. Their research included an analysis in

which the integrated pluton area was compared to fault spacing and the percent of pluton margins

that are touched by faults were calculated in the Armorican Massif of France and Alleghanian

plutons in the southern Appalachian Mountains of the . Five requirements were laid

out by Paterson and Schmidt (1999) that would determine a causative relationship between faults

and magmatic products (in their case, plutons): 1) spatial correlation at the surface; 2) apparent

geometric relationship; 3) temporal relationship; 4) rates of faulting and intrusion/extrusion must

be similar; and 5) mechanism by which magmatic products would be generated, rise, and erupt

along the faults must be understood.

My study uses point features and linear fault comparison as Paterson and Schmidt (1999) used

two-dimensional pluton areas and linear fault features. The conclusions they drew were about

compressional environments and granitic eruptive products. This study will focus mostly on

extensional environments with less viscous intermediate to basaltic eruptive products.

8

Additionally, this study will bin the frequency of proximity of vents to faults instead of using the integral of the mapped pluton area at the surface.

9

Methodology

The purpose of this study is to characterize the spatial distribution of vents and faults in volcanic fields. The distances between volcanic vents and the nearest faults was measured in each volcanic

field and plotted on graphs representing the spatial analysis results. The following section

describes the methodology for this thesis project.

This study employed the techniques of Paterson and Schmidt (1999), modified to characterize the

spatial distribution of vents and faults within volcanic fields. These techniques involve the

analysis of point features (volcanic vents) and linear features (fault lineaments) to determine the

extent of spatial patterns between these populations. A desk-top review of published geologic

maps was conducted to determine availability of volcanic fields to be studied. The most recent

geologic maps and relevant papers were acquired for each of the following volcanic fields: Big

Pine (Bateman et al., 1965; Moore et al., 1963; Nelson, 1966; Ross, 1965; Connor and Conway,

2000), Camargo (Aranda-Gomez et al., 2003), Coso (Duffield and Bacon, 1981), Jaraguay (Gastil

et al., 1971), Michoacán-Guanajuato (Pasquarè et al., 1991), San Borja (Gastil et al., 1971), and

Yucca (Potter et al., 2002; Dohrenwend et al., 1996).

Digital versions of each map were imported into CorelDraw (Figure 3a); only the mapped vents

and faults were included, no vents or faults were inferred. Vents of late Pliocene to Quaternary

age were marked and numbered for analysis in a separate layer (Figure 3b). The ages were

considered because of concerns over accuracy of geologic mapping and alluvium deposition and

erosion as many of these areas have very high sedimentation rates. After removing the original

map layer (Figure 3c), distances between vents and faults were measured by drawing the shortest 10

(a) (b)

(c) (d)

(e)

Figure 2. Methodology Illustration. The methodology of this study step-by-step. (a) original map, (b) vents and faults traced over original, (c) original map layer removed, (d) measure distance of vents to nearest fault, and (e) draw lines across field to measure average fault spacing. Base maps from Aranda-Gomez et al. (2003).

11 straight line from the vent to the nearest fault (Figure 3d). The length of the line was calculated using simple geometry (i.e.: a2+b2=c2).

The digitized lines were converted to kilometers using the scale bars provided on the maps. All of the faults were assumed to be perfectly straight for the purpose of fault length calculations but the integrity of the fault trace was preserved to later calculate the vent to fault distances and fault spacing. The azimuths of faults were calculated with simple trigonometry (i.e.: tanѲ=opposite/adjacent, etc.). The fault spacing for each volcanic field was calculated by drawing between four and ten lines, depending on the size of the field, across the volcanic field and perpendicular to the dominant fault azimuth (Figure 3e). The lines drawn across the volcanic fields were segmented between each fault. Each of these segments were recorded and calculated in the same way the vent-to-fault distances were measured.

The fault spacing distances were averaged for each volcanic field. The traced images in

CorelDraw were exported as picture files, added to a Google Earth image, and marked with the place mark function (lat/long). Each latitude and longitude coordinate was recorded from this software (all of the data are in NAD83). Each vent coordinate was then converted into UTM coordinates using Corpscon 6.0 software, developed by the U.S. Army Corps of Engineers

(Dewhurst, 1990). Vent-to-fault length measurements were binned, graphed, and fault spacing calculations for each volcanic field were included.

This analysis does not consider alignments of the vents themselves, and only incorporates vent locations and fault traces that were inferred if such data was included on the geologic maps. To include buried features not indicated on each map would require extensive geophysical investigations and is beyond the scope of this study. When faults are discontinuous on the geologic maps, they were assumed to be discontinuous at the surface and were considered as 12 multiple fault traces. It is not the intent of this study to assume when fault traces are continuous beneath alluvium if they are not mapped as such.

The results of this analysis will be presented in a similar fashion to Paterson and Schmidt (1999).

Four distinct patterns based on curve shape is presented in Figure 2. Curve 1, a horizontal line, indicates that vents/plutons are uniformly distributed around the field in which a single fault is identified. Curve 2 shows there will be a maximum distance that vents/plutons can occur from each fault where two or more faults exist in a field. The shape of this curve will resemble a smooth plateau at the maxima with a tail decreasing to zero with increasing distance. Curve 3 is

bell-shaped with the maximum at zero. This would indicate that vents/plutons statistically occur

near faults because most vents would be located close to faults (shorter distances to the left of the

graph). In the case type 3 curves, Paterson and Schmidt (1999) explain that the looks of the plots

“are largely a function of fault spacing” and that this pattern does not imply that volcanic vents increase toward faults. Curve 4, a bell-shaped curve with a maximum some distance from faults, indicates that vents/plutons are not uniformly distributed and that they do not occur near faults.

Figure 3. Possible Vent to Fault Spatial Analysis Curves. The potential curves from Paterson and Schmidt (1999); Curve 1 (horizontal line) indicates a uniform distribution; Curve 2 implies a maximum distance of vents with maxima tailing to zero; Curve 3 shows a bell-shaped curve indicating that vents are statistically near faults; and Curve 4 indicates that vent distance and distribution are not uniform. Modified from Paterson and Schmidt (1999). 13

Type-4 curves could also represent the fields in this study that show clusters of vents far from faults. This study incorporates the same presentation of data as Paterson and Schmidt (1999), but the graphs look slightly different. The binned fault-to-vent distance data are represented in bar graphs and the trend line that would best fit these data are represented by the curves referenced above.

On each graph, the fault quarter spacing, average fault spacing, and standard deviation is noted.

Because of the nature of faulting in all of the volcanic fields, the standard deviation is large. The fault spacing calculations were an average over the entire volcanic field and included the large and small gaps between faults. For example, the Big Pine Volcanic Field had as little as 500 meters and as much as 18 km spacing between individual faults. The amount of effort involved in calculating different fault spacing for separate areas of each volcanic field is a separate statistical exercise in itself.

14

Calculations of Error

Sources of error in this study are mostly related to source mapping. Because of the nature of field mapping at the time the data were collected (some in the 1970’s), vent locations traced over acquired maps may not precisely line up with locations of vents imported into Google Earth.

When possible, the differences in an imported vent location and the aerial image were corrected visually. The error attributed to GIS technology is usually because of differences in a datum or projection. The calculation error of the Corpscon software is described in Dewurst (1990) as

“minimal” and primarily in the longitude direction. Furthermore, all calculations of fault strikes,

vent-to-fault distances, average fault spacing, etc. were carried to at least three decimal places in

degrees-minutes-seconds to reduce the margin of error as much as possible.

The scale was never compromised (aspect ratio) when importing the traced images over the aerial

photographs. The aspect ratio of the image file was kept exactly the same as the scale of the

original geologic map. The correct scale for each volcanic field map was also verified after

importing into Google Earth; the distance measurement tool was used to trace the scale bar of the

imported image file. The aspect ratio was constant to maintain proper scaling. Some vents did not

perfectly align to the aerial images due to the variable interpretation aspect of field mapping,

especially since many of these maps were created before GPS technology became widely

available. These data are only as precise as the geologic maps themselves and any errors made

during geologic mapping would directly result in errors in the spatial analyses. Short of re-

mapping each of these fields, one could use GIS technology combined with detailed

photogrammetry and DEM data to fix any discrepancies in geologic maps, but that is beyond the

scope of this paper. 15

Regional and Local Tectonic Settings

The tectonic settings of the volcanic fields within this study can be described in terms of regional and local geology. Descriptions will begin with explanations of regional tectonics of the Basin and Range Province, Baja Peninsula, Trans-Mexican Volcanic Belt, and Eastern California Shear

Figure 4. Regional Location Map of Volcanic Fields. Map identifies the relative locations of the volcanic fields and tectonic settings. Vents are represented by colored circles and providence boundaries are outlined with a dotted black line. Volcanic Fields are identified as: Big Pine – Yellow, Camargo – Orange, Coso – Red, Jaraguay – Pink, Michoacán-Guanajuato – Purple, San Borja – Blue, and Yucca – green. Providence boundaries adapted from Thompson and Zoback (1979) and Ferrari et al. (1999). 16

Zone followed by descriptions of local structural settings for seven volcanic fields: Big Pine,

Camargo, Coso, Jaraguay, Michoacán-Guanajuato, San Borja, and Yucca (portrayed in Figure 4).

Regional Tectonics

Regional tectonics for all of the volcanic fields can be described in the context of the geology of the Basin and Range Province, the Baja Peninsula, the Trans-Mexican Volcanic Belt (TMVB), and the Eastern California Shear Zone (ECSZ). The Basin and Range Province covers the majority of the southwestern United States and northern Mexico. Four of the volcanic fields are within the province (Big Pine, Camargo, Coso, and Yucca). Two of these volcanic fields (Big

Pine and Coso) are in close proximity to the Owens Valley and Independence faults, the western- most structures of the ECSZ and the Yucca Volcanic Field is located near the Stateline Fault in the eastern-most part of the ECSZ. Two of the volcanic fields, Jaraguay and San Borja, are located on the Baja Peninsula and the Michoacán-Guanajuato is the only volcanic field from this study in the TMVB. All three of these latter locations demonstrate volcanism within syn- subduction-related trans-tensional tectonic settings.

Basin and Range Province

The Basin and Range Province is a large area of the American Southwest that has undergone uplift and extension since the late Cenozoic, a result of which has been widespread volcanism

(Cousens, 1996 and McQuarrie and Oskin, 2010). McQuarrie and Wernicke (2005) describe the

Basin and Range Province as a 1000-km wide area of extensional deformation that was created by the collapse of a broad region of excessively thickened crust following the progressive end subduction of the Farallon Plate beneath the western margin of the North American Plate.

Extension began in the early Miocene as the boundary transitioned to a combination of a Pacific-

North American transform boundary at the continental margin and extension within the continent.

17

In their tectonic reconstruction of the area, McQuarrie and Wernicke (2005) estimate that the average rate of extension is 1 cm/yr since ~30 Ma.

Uplift and extension began with melting and thinning of lithospheric mantle and transitioned to the upwelling of asthenospheric mantle (Valentine and Perry, 2007). Central Basin and Range extension began first, approximately 16 Ma, followed by extension of the northern and southern segments about 10 Ma later (Valentine and Perry, 2007 and McQuarrie and Wernicke, 2005).

Extension since ~16 Ma is associated with widespread basaltic volcanism with evidence for an increase in an asthenospheric source (McQuarrie and Oskin, 2010). Morellato et al. (2003) compared the number and spacing of faults within the Basin and Range and found that average large-scale (100 km-long) fault spacing is 13.8 km. The Basin and Range is consistent with other rift zones around the globe in terms of the number and spacing of normal faults.

Valentine and Perry (2007) suggest a more detailed model describing the specific process of melt generation and ascent in the Basin and Range: deformation from extensional strain caused an increase in porosity of lithospheric mantle, enhancing migration of melt to those areas. The continuous strain produced pockets or bands of melt which increase magma pressure. When a critical amount of pressure was exceeded, as determined by rheology and tectonic strain, the melt began a buoyant ascent through the crust. Once these dikes reach the shallow crust, there is the opportunity for faults to capture melt at very shallow depths.

Based on radiogenic isotope and trace element geochemistry, there are two proposed sources for magma in the Basin and Range: ocean-island signatures derived from an asthenospheric mantle source in the northern and southern Basin and Range (including Yucca) and island-arc signatures derived from subduction-enriched lithospheric mantle in the Western Great Basin and Transition

Zone (including Big Pine and Coso Volcanic Fields) (Cousens, 1996). 18

Eastern California Shear Zone

The Eastern California Shear Zone (ECSZ) is a 450 km-long series of strike-slip and normal faults that transfer regional strain between the strike-slip faulting of the San Andreas Fault system through the to normal faulting as far north as the Owens Valley area (Savage et al., 1990), including the western portion of the Basin and Range Province through southern and central, eastern California and western Nevada. Savage et al. (1990) state that the ECSZ extends at least into Owens Valley and perhaps influences tectonics further north into the northern Basin and Range Province. The ESCZ includes the Death Valley-Furnace Creek Faults, the Hunter-

Panamint Faults, Fish-Lake Valley Faults, the Owens Valley-White Mountain Faults, the Garlock

Fault (Lee et al., 2001 and Frankel et al., 2007), and the recently-identified Stateline Fault

(Mahan et al., 2009).

Many authors have published strain rates for the entire ECSZ, and the most recent rates were calculated with refined Global Positioning System (GPS) measurements, detailed field reconnaissance mapping, LiDAR topographic mapping and cosmogenic 10Be geochrology, and

Ground Penetrating Radar (GPR) analysis. The ECSZ accommodates between 20 and 25 percent

of the total displacement of the Pacific-North American margin (Frankel et al., 2007 and Dixon et

al., 2003), or between 10 and 14 mm/yr (Kirby et al., 2008). The zone of active displacement of

the ECSZ is defined from the Mojave Desert north to the Walker Lane region (Kirby et al., 2008).

The Stateline Fault, 40 km southeast of the Yucca Volcanic Field, is a 200-km long fault system

along the California-Nevada state line (Mahan et al., 2009). First described by Guest et al. (2007),

three dextral strike-slip segments exist: the Amargosa, Pahrump, and Mesquite stretch from the

Ivanpah Valley northward into the Amargosa Valley. The long-term slip rate of 2.3 mm/yr, since

the mid-Miocene, is based on stratigraphy, geochemical fingerprinting, and geochronology

19

(Guest et al., 2007). The Amargosa segment has undergone the greatest amount of offset in the

Cenozoic, as much as 45 km (Mahan et al., 2009).

The Coso and Big Pine Volcanic Fields are in closest proximity to the Owens Valley and

Independence Faults. The Owens Valley Fault, also the northwestern extent of the ECSZ, is 120 km-long, slips between 1 and 3 mm/yr, and has oblique right-lateral movement (Varnell, 2006;

Taylor, 2002; Bierman et al., 1991); it accounts for up to 25% of strain throughout the entire

ECSZ (Rogers, 2006). The Owens Valley Fault is an integral part of the shear zone, located between the Sierra Nevada Mountains to the west and the Inyo-White Mountains to the east.

These two ranges act as the horsts bounding the two-graben system within Owens Valley.

According to Varnell (2006), the Owens Valley and the Independence Fault both accommodate slip within the valley. Total offset across the valley over the life of the fault is between 3.8 and

13.3 km, assuming that the slip rate has been constant during the last 3 Ma (Lee et al., 2001).

Baja Peninsula

The Baja Peninsula is a 1,500 km-long peninsula with complex volcanic and structural relationships. Miocene to Quaternary volcanic rocks were erupted syn- and post-subduction of the

Farallon plate beneath the North American plate beginning in the early Cenozoic and continuing through the Miocene (Atwater, 1970; Saunders et al., 1987; Pallares et al., 2007). In the

Oligocene, two triple junctions (Mendocino and Rivera) were formed by the intersection of a spreading center with the continental margin (Saunders et al., 1987). Each of these triple junctions migrated north and south, respectively (Saunders et al., 1987). In the Miocene, after subduction ceased (Stock and Hodges, 1989 and Atwater and Stock, 1998), the proto-San

Andreas transform fault formed to accommodate the offset between them and continued until 5.5

Ma, when the transform boundary migrated into the Gulf of California (Calmus et al., 2003).

20

Reorganization of fracture zones further to the south caused spreading centers to rotate and led to the eventual consumption or abandonment of the spreading centers between 6.5 and 3.5 Ma

(Saunders et al., 1987). This resulted in the eventual cessation of subduction along the coast which allowed the East Pacific Rise (EPR) to propagate and rotate northward, marking the beginning of rifting in the Gulf of California (Saunders et al., 1987; Stock and Hodges, 1989; and

Atwater and Stock, 1998). Volcanism within this earlier timeframe is geochemically different from San Borja and Jaraguay , which erupted after subduction ended (Saunders et al.,

1987).

According to Saunders et al. (1987), the position and depth of the subducted slab is unknown.

The detachment of the slab opened a “slab window” and allowed hot mantle to flow directly

beneath the lithosphere (Saunders et al., 1987 and Atwater and Stock, 1998). Negrete-Aranda and

Cañón-Tapia (2008) explain that the style and composition of volcanic rocks of the Baja

Peninsula changed from calc-alkaline (subduction-related) in the south to adakites and high-Mg

andesites (post-subduction in monogenetic fields) in the north around 12 Ma due to the gradual

increase in temperature due to asthenospheric mantle rebounding after slab detachment after

subduction ended (Negrete-Aranda and Cañón-Tapia, 2008). These changes in temperature and

regional stress triggered “the eruption of scattered pre-existing melt pockets” and the opening of a

slab window was not responsible for the chemical diversity of volcanism found on the Baja

Peninisula (Negrete-Aranda et al., 2010).

Sawlan (1991) indicated that the alkalic lavas of the volcanic fields on the Baja Peninsula were

associated with extensional faulting and occurred along bounding faults of small grabens. As we

shall see shortly, the lavas did indeed erupt during extensional faulting associated with rift

opening. However, the spatial data generated by this study do not support the latter statement that

volcanism occurred along faults, at least not in the San Borja and Jaraguay fields. 21

The lavas of the San Borja and Jaraguay Volcanic Fields range in ages between 10.3 and 0.57 Ma

(Calmus et al., 2003). Upon the initial stages of rifting, orogenic magmatism on the southern Baja

Peninsula began, and, from about 9 Ma to present day, magmatism shifted to the northern end of the peninsula (Sawlan, 1991). The San Borja and Jaraguay Volcanic Fields represent unique magmas in that they are alkalic with diverse trace element ratios that separate them from intra- plate alkalic magmas (Sawlan, 1991). According to Rogers et al. (1985), the magmas of Baja

California rose through the crust quickly with little contamination and only minor fractionation.

Trans-Mexican Volcanic Belt

The Trans-Mexican Volcanic Belt (TMVB) straddles central Mexico as a 250 km-wide belt of magmatism that encompasses major cities including Guadalajara and Mexico City. The entire volcanic belt has a complex tectonic history, combining active subduction of the Cocos and

Riviera Plates beneath the North American Plate with the evolution of three components of a rift system (Hasenaka, 1994). Basement rocks consist of felsic intrusive rocks such as grantites, quartz monzonites, and quartz diorites (Hasenaka and Carmichael, 1985a).

The central sector of the TMVB, the area included in this study, has a unique tectonic history since the Miocene. Volcanism in the Miocene through early Pliocene, produced scarce silicic flows and volcanism in the Quaternary marked by mostly basaltic and andesitic activity (although some silicic magmas erupted during this time) in an east-trending left-lateral trans-tensional tectonic environment (Pasquarè et al., 1991). During the late Miocene, Basin and Range extension migrated southward temporarily prior to when the trans-tensional set up began in the

Pliocene (Pasquarè et al., 1991). There were three main pulses of tectonism and faulting and by the late , normal and left-lateral faults developed or reactivated and then the widespread basaltic and andesitic volcanism began (Pasquarè et al., 1991).

22

The rift system at the western-end of the TMVB forms the Michoacán Triangle (Johnson and

Harrison, 1990; Hasenaka, 1994). The three limbs of the triple junction are the Tepic-Zocoalco rift zone, the Colima rift zone, and the Chapala rift zone (Hasenaka, 1994). The Chapala rift zone is an east-west trending graben, the failed aulacogen of the rift system, and has no geophysical evidence of recent tectonic activity (Hasenaka, 1994). However, the northern section of the

TMVB lies within this area of the Chapala Graben, where east-west trending normal faults have offset medium-sized volcanoes (Hasenaka, 1994).

Volcanic vents of the TMVB are of Neogene to Quaternary age and are the consequence of subduction beginning in the Oligocene. On its northwestern edge, the TMVB overlaps the Sierra

Madre Occidental, the location of increased ignimbrite volcanism in the Oligocene (Ferrari et al.,

1999). Ferrari et al. (1999) showed that volcanic activity of the Sierra Madre Occidental waned in the Miocene as volcanism of the TMVB began. They attribute this shift in activity to the shallowing of subduction in the mid-Miocene and that this activity occurred in pulses of volcanism across the volcanic belt.

Volcanism associated with the TMVB mimics the present location of the modern arc (Ferrari et al., 2000) but is obliquely offset to the north away from the Middle America Trench (Hasenaka and Charmichael, 1985b; Hasenaka, 1994). Lavas of the TMVB are clearly the product of subduction based on their geochemistries (Hasenaka and Charmichael, 1987; Hasenaka, 1994).

The regional distribution of volcanism in relation to the Middle America Trench is described by

Hasenaka and Carmichael (1985a and 1985b): 75% of volcanoes are located between 200 km and

300 km from the trench, with the highest density at 250 km from the trench. Changes in composition, age, and volume of cones also trend with proximity to the trench (Hasenaka and

Charmichael, 1985a; Connor, 1987a). According to Ferrari et al. (1999), the volcanic arc of the

TMVB has migrated since Miocene time: 180 km from the trench in the late Miocene to 110 km 23 from the trench today, presumably from the previously-mentioned change in the angle of decent of the slab.

24

Local Geology and Tectonics of Individual Volcanic Fields

Big Pine Volcanic Field

The Big Pine Volcanic Field consists of 25 identified basaltic vents within an area of 672 km2.

Figure 5 shows the relative features of the Big Pine Volcanic Field including vent and fault

locations. The northern boundary of the

field is 2.4 km south of the town of Big

Pine, California and the southern boundary

is 16 km north of the town of

Independence, California. Several papers

report that the Big Pine Volcanic Field lies

firmly within the boundary of the North

American craton based on Sr isotopic

studies of eruptive products (Mordick and

Glazner, 2006; Ormerod et al., 1991;

Glazner and Miller, 1997).

Volcanism began around 1.2 Ma and has

continued until 100 Ka (Connor and

Conway, 2000; Varnell, 2006). According

to Mordick and Glazner (2006), of

Figure 5. Big Pine Volcanic Field Location Map. Structural map the Big Pine Volcanic Field melted and showing relative locations of vents (yellow circles) and faults (black lines). FSF – Fish Springs Fault, OVF – Owens Valley Fault, SNRF – Sierra Nevada Range Front Fault. Adapted from began crystallization of clinopyroxene at a Bateman et al. (1965), Connor and Conway (2000), and Varnell (2006). depth of 45 km, within the mantle, and erupted without ponding in the crust. Since these basalts are among the most primitive in the

Basin and Range, and the fact that mantle xenoliths are present, it is known that Big Pine

Volcanic Field magmas had a very quick ascent through the crust. Upon initial inspection, the 25 flows of the volcanic field may have erupted through the Owens Valley fault that

dominates the valley (Mordick and Glazner, 2006; Biermann et al., 1991). The Poverty Hills are a small gathering of landslide deposits in the center of the valley (Varnell, 2006).

The Big Pine Volcanic Field is confined to the floor of Owens Valley, bounded by the Sierra

Nevada Mountains to the west and the Inyo-White Mountains to the east. The surrounding mountains are composed of granitic and meta-sedimentary basement rock and the valley floor consists of down-dropped graben blocks of those mountain ranges with substantial alluvial fill, as much as three kilometers (Varnell, 2006). The granitic basement rock is much shallower in the portion of the valley between the Sierra Nevada Mountains to the west and the Owens Valley

Fault striking down the center of the valley (Varnell, 2006).

Camargo Volcanic Field

The Camargo Volcanic Field consists of 260 identified cinder cones near Chihuahua, in northern

Mexico (Rojas-Beltran, 1995)

covering a total of 3,770 km2.

The field is the most

voluminous volcanic field in

the Mexican Basin and Range

and contains numerous normal

faults (Aranda-Gomez et al.,

2003). In fact, the center of the

field is bounded by northwest

to southeast-tending faults

within a graben feature; the Figure 6. Camargo Volcanic Field Location Map. Structural map showing relative locations of vents (orange circles) and faults (black lines). Shaded region indicates graben feature described in text. Adapted from Aranda-Gomez et al. (2003). 26 horsts on the northeast and southwest sides have fewer faults. All three of these sections have prevalent volcanism.

Upon inspection of Figure 6, which shows the relative locations of vents and faults in the

Camargo Volcanic Field, it is apparent that the central section (graben feature) of the field has a much higher density of faulting and the horsts on either side have a higher accumulation of vents with less faults. The faults of the central graben presumably dip inwards towards the center of the field and do not intersect the outer areas of the field at depth.

Coso Volcanic Field

The Coso Volcanic Field, which is approximately 120 km south of the Big Pine Volcanic Field, is bounded to the west by the Sierra Nevada Mountains, to the north by Owens Valley, and to the east by the southern Inyo Mountains. Figure 7 shows the relative locations of vents and faults within the field. A total of 52 vents were identified for this study over an area of 1,680 km2.

The Coso Volcanic Field is underlain by interbedded pyroclastic and lava flows of Tertiary to

Quaternary age with Mesozoic basement rocks of granitic to gabbroic compositions (Duffield and

Bacon, 1981). The entire field is underlain by an active geothermal complex. Faulting in the Coso

Volcanic Field is primarily controlled by Basin and Range extension (Roquemore, 1978; Bacon et al., 1980; Roquemore, 1980). Reported Sr isotopic values (Mordick and Glazner, 2006) reveal that the Coso Volcanic Field lies within a transitional or accreted terrain and not on the North

American craton.

Bimodal volcanism characterizes the Coso Volcanic Field, with a short pulse of basaltic melt

around 4 Ma to 2.5 Ma, followed by repeated, mostly silicic eruptions (i.e.: domes/flows)

peaking between 1.1 Ma and 40 Ka (Combs, 1980; Duffield et al., 1980; Bacon, 1982; Fialko and 27

Simmons, 2000; and Mordick

and Glazner, 2006). The

volume of all basaltic flows

and rhyolitic domes total

around 30 km3 of volcanic

material in the Pliocene and 5

km3 of material erupted in the

Pleistocene (Mordick and

Glazner, 2006). Averaged

over the lifetime of the

volcanic field, Bacon (1982)

proposes that eruption rates of Figure 7. Coso Volcanic Field Location Map. Structural map showing the locations of vents (red circles) and faults (black lines). Adapted from Duffield and Bacon basalts are about 2.8 km3/Ma (1981). and rhyolitic rates are around 5.4 km3/Ma.

Based on phenocryst compositions, the top of the Coso Volcanic Field magma body rose from 10 km around 1 Ma to approximately 5.5 km in the last 100 Ka (Manley and Bacon, 2000). This magma body is a region of partial melt with a system of mafic dikes oriented in a north-south direction (Duffield et al., 1980; Bacon et al., 1984; Wilson et al., 2003; Mordick and Glazner,

2006), in alignment with the regional tectonic stresses. The depth of crystallization for Coso basalts are estimated at 19 km using clinopyroxene thermobarometry (Mordick and Glazner,

2006) and erupted directly from its source through a diapir in the lower and upper crust

(Monastero et al., 2005).

Rhyolitic compositions, however, formed from stalled basaltic melt that had enough residence time for the crystals to re-equilibrate and generate the rhyolitic melt (Mordick and Glazner, 28

2006). All of the above evidence supports the claim by many authors that the current magma body can be found between 5 km and 20 km below the surface (Combs, 1980; Duffield et al.,

1980; Reasenberg et al., 1980; Bacon, 1982; Bacon et al., 1984; Manley and Bacon, 2000; Wilson et al., 2003; Mordick and Glazner, 2006).

Yucca Volcanic Field

The Yucca Volcanic Field is a collection of basaltic cones near and within the Crater Flat area of southern Nevada. There are a total of 38 identified volcanic vents in an area that covers 9,216 km2. Figure 8 below shows the locations of vents and faults within the Yucca Volcanic Field.

Yucca Mountain, within the boundaries of the volcanic field, has gained attention as a proposed nuclear waste repository. Although 38 vents were identified for this study, many existing vents

are buried and have only been

found using magnetic and

gravity data sets. These

inferred vents erupted within

the last 1 Ma (Connor et al.,

2000). Much older buried

pyroclastic flows in the vicinity

have been dated around 13 Ma,

but are unrelated to the

volcanic rocks on Crater Flat,

which are only as old as 10.5

Ma (Wernicke et al., 1998; Figure 8. Yucca Volcanic Field Location Map. Structural map showing vents (green circles) and faults (black lines). BMF – Bare Mountain Fault, SLF – Stateline Fault. Adapted from Dohrenwend et al. (1996) Potter et al. (2002), and Mahan et al. (2009). Connor et al., 2000).

29

The ECSZ faults systems closest to the Yucca Volcanic Field are in the Stateline (approximately

40 km to the southeast), the Owens Valley (approximately 140 km to the west), the Panamint

Valley-Hunter Mountain (approximately 100 km to the southwest) and the Death Valley-Furnace

Creek (approximately 40 km to the southwest); however, these faults do not account for all of the geodetic strain across the Yucca Volcanic Field (Wernicke et al., 2004; Hill and Blewitt, 2006).

Using borehole measurements, strain is thought to be accommodated by purely normal faulting within the field itself (Wernicke et al., 1998).

According to Connor et al. (2000) the Yucca Volcanic Field occupies an area of Crater Flat and surrounding areas that are highly populated with normal faulting that cuts ignimbrite and

Paleozoic sequences down to an approximate depth of 5 km. Just below that depth, the high-angle normal faults cut into Pre-Cambrian basement rocks and intersect a detachment (Connor et al.,

2000).The most active areas for basalt intrusions are Lathrop Wells to the south and Claim

Canyon Caldera to the north based on the stress field and the fact that the faults in the immediate vicinity have slipped since the last volcanic event (Parsons et al., 2006).

Jaraguay Volcanic Field

The Jaraguay Volcanic Field is the more northern field of the two on the Baja Peninsula and is described by Calmus et al. (2003) as a volcanic field lying on a flat plateau underlain by

Mesozoic granitic basement. The total area of the Jaraguay Volcanic Field is approximately

12,800 km2 and contains a total of 161 identified vents. Figure 8 above shows the relative

locations of vents and faults within the field.

Volcanic samples from Jaraguay Volcanic Field were collected and dated by Saunders et al.

(1987); the majority of these rocks are considered to be magnesian andesite with a distinct

geochemical signature similar to adakites (Rogers et al., 1985; Calmus et al., 2003). They have a 30

slab-melt imprint, the

result of the opening of

an asthenospheric win-

dow and slab tearing

(Saunders et al., 1987)

and the resulting

Pliocene-Pleistocene

volcanism of the Figure 9. Jaraguay Volcanic Field Location Map. Structural map showing vents (pink circles) and faults (black lines). Adapted from Gastil et al., 1971. Jaraguay Volcanic Field is from the eruption of individual pockets of melt triggered by the change in regional stresses and increased heat flow beneath the plate during the Miocene (Negrete-Aranda et al., 2010).

San Borja Volcanic Field

The San Borja Volcanic Field is south of the Jaraguay Volcanic Field on the Baja Peninsula and has an aerial extent of approximately 11,875 km2. There are a total of 85 identified volcanic vents in the field. Because of its close proximity, it has similar structural features as the Jaraguay

Volcanic Field but the San Borja Volcanic Field is characterized by more isolated lava flows

(Calmus et al., 2003).

Figure 10 shows the

vent and fault location

map for the San Borja

Volcanic Field. In the

southern part of the

field, thick lava flows

Figure 10. San Borja Volcanic Field Location Map. Structural map illustrating the relative locations of vents (blue circles) and faults (black lines). Adapted from Gastil et al. (1971). 31 cap wide and flat mesas while in the north, well-preserved scoria cones and flows dominate

(Negrete-Aranda et al., 2010). When studying the map patterns of features in the San Borja

Volcanic Field, it can be said that there are noticeably fewer vents in the field than the Jaraguay

Volcanic Field and the faulting patterns are different because in San Borja, the faults are spread farther apart and have more varied orientations.

Michoacán-Guanajuato Volcanic Field

The Michoacán-Guanajuato Volcanic Field, whose central section encompasses 43,000 km2

across central Mexico, is contained within the TMVB (Hasenaka and Charmichael, 1985b). Note

that this study focuses on the central sector as defined by Pasquarè et al. (1991). The central

sector of the Michoacán-Guanajuato Volcanic Field contains 239 identified vents.

Connor (1987b) explains that the distribution of faults and vents within the field are clustered.

However, the clusters of faults are

found surrounding small

lineaments of volcanic vents in the

center of the field as shown in

Figure 9 above. Connor (1987a)

attributes this arrangement to a

band of extinct polygenetic

volcanoes just trench-ward of the

grouping of faults.

Based on a cross section from

Figure 11. Michoacán-Guanajuato Volcanic Field Location Map. Structural map showing vent (purple circles) and fault (black lines) locations. Adapted Pasquarè et al. (1991), the central from Pasquare et al. (1991).

32 sector of the Michoacán-Guanajuato Volcanic Field is underlain by Mesozoic basement rock at greatest depth, with a shallowing sequence of interbedded and deeply faulted volcanic and sedimentary rocks. The faults are steeply-dipping normal faults that cut all deposits and sequences down to the basement rock (Pasquarè et al., 1991), presumably a function of the trans- tensional tectonic regime of the area. Most recently (Pleistocene and Holocene) left-lateral normal and normal faults developed or reactivated with average NNW to SSW orientations, indicating a slightly oblique extensional tectonic regime in the immediate area of the Michoacán-

Guanajuato Volcanic Field (Pasquarè et al., 1991).

33

Results

Data collected by the methods outlined above are organized in Table 1 by binning the vent-fault distances and comparing the half- and quarter-fault spacing of each volcanic field. Each fault spacing measurement and binning of vent-fault distances were considered throughout each field.

The results from each volcanic field are graphed and included in this section with a description of

the data. Note: inferred vent locations are not included in this analysis if they were not indicated

on geologic maps.

Table 1 – Summary Table of Volcanic Field Properties

Areal Vent Curve Fault Fault ¼ Fault ½ % within % within Field Name Extent† Count Type Count Spacingψ Spacingψ ¼ Spacingº ½ Spacingº Big Pine 672 25 strong 3 64 0.77 1.54 44 48 Camargo 3,770 261 3-4 combo 15 2.56 5.13 30 48 Coso 1,680 37 strong 3 296 0.39 0.77 51 73 Jaraguay 12,800 160 strong 4 140 2.10 4.20 1 7 Michoacán- Guanajuato 43,000 239 2-3 combo 753 3.45 6.90 33 54 San Borja 11,875 86 strong 4 165 1.35 2.70 0 0 Yucca 9,216 38 2-3 combo 122 1.83 3.66 51 77 † Extent of volcanic field in km2 ψ Average fault spacing was calculated over length and width of entire volcanic field in km. Half and quarter spacing values are related to the average spacing as explained in the text. ºThese are the percentages of vents in each field that are located within the ¼ and ½ spacing distances of faults. Volcanic field parameters are compared in Table 1. The curve type identified is in reference to the possible curve types in Figure 3. The quarter- and half- fault spacing were calculated by dividing the average fault spacing (as described in the Methodology section of this paper) by 4 and 2, respectively. The half spacing is related to vents that occur as far from faults as possible (in between faults) and the quarter spacing is related to vents that are close to faults. Additional data are included in the attached appendices: vent location data, fault location data, and fault orientation data. The orientation data do not relate directly to the content of this thesis, but were easily incorporated into the end of the document.

34

Big Pine Volcanic Field

Figure 12 shows a type 3 curve with two maxima at less than 0.5 km and at 7 km. The average fault spacing is 3.08 km with a half-spacing of 1.54 km and a quarter-spacing of 0.77 km. The percentage of vents that are located within the field half-spacing is 48 percent and 44 percent of vents are within the quarter-spacing for the Big Pine Volcanic Field. Further inspection of the map in Figure 4 shows that the vents to the southwest edge of the volcanic field are found in a sub-linear pattern along the Sierra Nevada Front Range Fault. A total of nine vents are found within 0.5 km of a fault. Average vent-to-fault spacing is 2.74 km; the median vent-to-fault distance is 1.65; the minimum vent-to-fault distance is 0 km and the maximum is 6.95 km.

Figure 12. Spatial Analysis for Big Pine Volcanic Field. Strong type-4 curve of binned distances of vents from nearest faults. The cumulative percent of vent distances is represented by the dark blue line.

35

Camargo Volcanic Field

Figure 14 shows a combination of type 3 and type 4 curves. The average fault spacing is 10.25 km with a half-spacing of 5.13 km and a quarter-spacing of 2.56 km. There are a full 51 percent of vents that are found at or within the fault quarter-spacing and 73 percent of vents are within the half-spacing. The vents closest to faults are indicated by the first few maxima (type 3 curve component) and the other maximum at 7.5 km represent the type 4 curve component. The average vent-to-fault spacing is 5.86 km and the median value for vent-to-fault spacing in the field is 5.39 km. The minimum distance between a vent and its closest fault is 0.00 km and the maximum vent-to-fault spacing is 18.87 km.

Figure 13. Spatial Analysis for Camargo Volcanic Field. Combination of type-3 and type-4 curves of binned distances of vents from nearest faults. The cumulative percent of vent distances is represented by the dark blue line.

36

Coso Volcanic Field

Figure 16 indicates a strong type 3 curve. The vent distance maximum occurs at 0.2 km from faults. The average fault spacing is 1.55 km with a half-spacing of 0.78 km and a quarter-spacing of 0.39 km. 30 percent of the vents in the field are within the fault quarter-spacing and 48 percent are located within the field half-spacing. The Coso Volcanic Field location map (Figure 7) shows that many vents occur very close to faults, 54 percent are found within 500 meters of a fault.

Vents concentrate in the alluvial valleys (Rose Valley to the southwest and Coso Wash to the northeast) and are less prevalent in the (concentration of faults between the two valleys). The Sierra Nevada Frontal Fault does have some surface expression in the Coso

Volcanic Field but there are no nearby vents. The average vent-to-fault spacing in the field is 0.85 km and the median spacing between vents and faults is 0.37 km. The minimum spacing between vents and faults is 0.00 km and the maximum vent-to-fault spacing is 5.27 km.

Figure 14. Spatial Analysis for Coso Volcanic Field. Strong type-3 curve of binned distances of vents from nearest faults. The cumulative percent of vent distances is represented by the dark blue line.

37

Yucca Volcanic Field

Figure 24 shows a combination of type 2 and type 3 curves for the Yucca Volcanic Field. The average fault spacing is 7.3 km with a half-spacing of 3.65 km and a quarter-spacing of 1.83 km.

51 percent of vents are found within the quarter-spacing and 77 percent of vents are located within the half-spacing. The map showing features of the Yucca Volcanic Field (Figure 11) indicates that there are some vents grouped close to faults and others that are located far from faults. This difference can be seen in the combination of curves mentioned above. The maxima at

1 km, 2 km, and 3 km shows that many vents are exactly between faults (type 2 curve) and other vents are located far from faults in loose groups (type 3 curve). The average vent-to-fault spacing for the field is 2.87. The median value for vent-to-fault distance is 1.96 km. The minimum value for spacing between vents and faults is 0.04 km and the maximum vent-to-fault spacing is 12.25 km.

Figure 15. Spatial Analysis for Yucca Volcanic Field. Combination of type-2 and type-3 curves of binned distances of vents from nearest faults. The cumulative percent of vent distances is represented by the dark blue line.

38

Jaraguay Volcanic Field

Figure 18 shows a strong type 4 curve. The vent distance maximum is found between 8 km and

12 km from faults. The average fault spacing occurs at 7.93 km with a half-spacing of 3.97 km and a quarter-spacing of 1.98 km. Inspection of map patterns (revisit Figure 8) shows that the vast majority of vents in the Jaraguay Volcanic Field are located from faults. Faulting patterns can be seen in Figure 8. Faults are grouped in the northeast and south of the field. A couple of longer faults extend into the main grouping of vents in the center of the field. There are no vents within 2 km of faults. Two main sets of vents are located in the center of the field and to the northwest near the coastline. The average vent-to-fault spacing in the field is 11.21 km and the median value for vent-to-fault spacing is 10.77 km, both values are among the largest of these values in this study (along with San Borja Volcanic Field). The minimum vent-to-fault spacing is 1.5 km, which means that there are no vents located directly on top of faults in the field. The maximum vent-to-fault distance is 30.5 km.

Figure 16. Spatial Analysis for Jaraguay Volcanic Field. Strong type-4 curve of binned distances of vents from nearest faults. The cumulative percent of vent distances is represented by the dark blue line.

39

San Borja Volcanic Field

Figure 22 shows a strong type 4 curve with a fault distance frequency maxima found around 13 and 14 km. The average fault spacing occurs at 11.30 km with a half-spacing of 5.65 km and a quarter-spacing of 2.83 km. No vents are located within the quarter- or half-spacing within the field. Further inspection of the map in Figure 10 shows that vents in the San Borja Volcanic Field are found far from faults, similar to the Jaraguay Volcanic Field. Some vents are grouped away from faults in the north of the field and others are scattered far from faults in the south of the field. The average vent-to-fault distance for the field is 11.5 km and the median value is 11.46 km. The minimum vent-to-fault spacing is 3.44 km which means that no vents are directly located on any faults in the field. The maximum spacing between vents and faults is 23.53 km.

Figure 17. Spatial Analysis for San Borja Volcanic Field. Strong type-4 curve of binned distances of vents from nearest faults. The cumulative percent of vent distances is represented by the dark blue line.

40

Michoacán-Guanajuato Volcanic Field

Figure 20 shows a combination of type 2 and type 3 curves. The maximum vent to fault distance frequency occurs at 3 km. The average fault spacing occurs at 5.20 km with a half-spacing at 2.6 km and a quarter-spacing at 1.3 km. 33 percent of vents are found within the quarter-spacing and

54 percent of vents are within the half-spacing. Map patterns of the Michoacán-Guanajuato

Volcanic Field, from Figure 9, show that vents seem to occur in groups between groups of faults around the field. With the exception of one feature, vents are not found to the north of the field where the Sierra Madre Block encroaches on the edge of the field. Vents located very close to faults are represented by the type 3 curve component (maxima at 2 km and 3 km) and the remaining vents are found away from faults at a variety of distances (type 2 curve component).

The average vent-to-fault spacing is 8.91 km. The median value for vent-to-fault distances is 6.47 km. The maximum vent-to-fault value is 41.03 km.

Figure 18. Spatial Analysis for Michoacán-Guanajuato Volcanic Field. Combination of type-2 and type-3 curves of binned distances of vents from nearest faults. The cumulative percent of vent distances is represented by the dark blue line.

41

Discussion

Graphs from the data in the previous section show the map distances between vents and the nearest fault in each volcanic field. This section will review the spatial relationships within the volcanic fields studied, discuss how scale affects the analysis, relate source geometry with distribution patterns at the surface, outline how magmatism and faulting work as complementary mechanisms in the shallow subsurface, and discuss how all of these factors affect hazard mapping and forecasting.

Spatial Relationships

If spatial relationships exist between vents and faults, data from this study will show a grouping of vents close to faults, as exhibited by a type-3 curve. Combinations of the other curve types indicate spatial patterns where vents are far from faults for various reasons. This subsection will address the interpretation of data from each field using curve type descriptions from Figure 2.

Two of the volcanic fields (Jaraguay and San Borja) in this study show a strong type-4 curve, indicating that there is a statistical correlation where vents occur far from faults at some maximum distance. Two volcanic fields (Big Pine and Coso) exhibit a strong type-3 curve, indicating that vents are statistically close to faults. There were no volcanic fields in this study that showed a type-1 or type-2 curve because in order to have these curve types, there must be as few as only one fault in a field.

The remaining volcanic fields exhibited combinations of type-2, type-3, and type-4 curves, which indicates a range of maxima between vents and faults with more than one component of spacing. 42

The fields with a combination of curve types-2 and -3 (Yucca and Michoacán-Guanajuato) have groupings of vents far from groupings of faults with a rare group of vents between two closely- spaced faults. The field with a combination of curve types-3 and -4 (Camargo) relates to a group of vents near a group of faults while other vents are gathered in areas of sparse faulting.

The Role of Map Scale

Map distances expressed in the graphs showing the spatial relationships between faults and vents are discussed in the context of local scale. The data can be misleading when considered at larger regional scales, such as when Paterson and Schmidt (1999) explain that if the scale of an entire orogen is considered, it appears that faults and vents cluster close together (one-to-one relationship). But, individual features (faults and vents) are considered in this study, and hence interpretations of spatial/genetic relationships at larger-scales would be inappropriate for the purposes of this study (Paterson and Schmidt, 1999).

The scale at which one performs the analysis affects the interpretation and conclusions if one is not careful. Paterson and Schmidt (1999) show that some geologic relationships may be apparent at a large scale such as for an entire orogen, but relationships at the scale of individual features may not show the same results. A causative relationship may not be appropriate at any scale even if a spatial relationship is found because the geology and structure of the crust must be considered. Furthermore, if a spatial relationship is determined at the scale of a volcanic field, for example, but not for individual volcanic vents and faults, a causative relationship is not appropriate at the sub-regional scale.

Statistical analyses of populations of eruptive centers are useful at regional scales in some studies on the order of those presented in McQuarrie and Oskin (2010) (i.e at the scale of the entire Basin and Range Province) vents and faults seem to cluster very close together in areas throughout the 43 province. However, as with any mapping exercise, a larger scale is offered at the expense of feature resolution (McQuarrie and Oskin, 2010 and Paterson and Schmidt, 1999) and the visual refinement of individual features disappears. The spatial analyses explored for this study are not appropriate at regional scales for the above reasons.

The scale of individual features, however, where distances between vents and faults can be directly measured, is the appropriate scale to interpret the data from this study. Not only are the resolution of volcanic features lost at larger scales, some of the faults and fractures in the fields would disappear because of their short length. Additionally, as Paterson and Schmidt (1999) point out, “the scale at which the [spatial] relationship is strongest may provide information about the scale at which a causative relationship operates.” In other words, if a close spatial relationship exists at the scale of individual features, then one should look at those features for clues for a causative relationship, if one exists.

The Role of Source Geometry

In addition to an assessment of the spatial relationships of upper crustal structures and populations of vents within volcanic fields it is, where possible, important to consider the spatial relationship of vent populations to the extent and geometry of regions of retarded seismic velocities in parts of the upper mantle and lower crust (i.e. potential source regions) beneath these volcanic fields. The northeastern Japan arc and Eastern Snake River Plain offer potential alternative explanations for the observed spatial patterns of vents. Source geometry is fundamental to the location of basaltic volcanism in both of these areas and perhaps in the volcanic fields of this study.

The northeastern Japan arc exhibits a similar pattern of vents occurring away from faults as within most of the volcanic fields in this study. The seismic tomography images from Hasegawa 44

et al. (2005) show that the

number earthquake foci are

greatly reduced directly

below volcanoes (areas with

a high ratio of P-wave vs. S-

wave velocities) within the

volcanic arc. These areas

outline a low-velocity zone

Figure 19. Diagram showing the convection of the mantle wedge during subduction and the of “hot fingers” that are fed segregation of melt into “hot fingers” along the base of the crust. These hot fingers dictate the location and composition of the volcanic front. Figure adapted from Tamura et al. (2009). by currents in the mantle wedge (Hasegawa et al., 2005). Basaltic volcanism is concentrated in these areas above the hot fingers where mantle material is melted (Tamura et al., 2009). Rhyolitic calderas are fed by the lateral extension of the hot fingers into surrounding crust, causing the melting of crust between fingers (Tamura et al., 2009). In this case, the magma source (locations of hot fingers) determines the locations and compositions of volcanoes. A similar distribution of vents controlled by a source mantle diapir in the Abu Monogenetic Volcano Group in Southwestern Japan was documented by Kiyosugi et al. (2010) through the study of tomography, spatial density and recurrence rate analyses, and dating of volcanic edifices.

In the Eastern Snake River Plain, Wetmore et al. (2009) describe that the spatial pattern of volcanism is controlled by source geometry. Low-velocity zones exist in mantle tomography maps below major sections of volcanism within the plain (Wetmore et al., 2009). Additionally, faulting in the region is not spatially correlated to volcanism and high-velocity zones are coincident with areas of suppressed volcanism (Wetmore et al., 2009). Source geometry is a

45

primary driver for dike

injection and eruption

locations, not shallow structural

features (Wetmore et al., 2009).

Patterns of volcanism in the

Jaraguay and San Borja

Volcanic Fields are thought to

be controlled by source melt

geometry in that the wide

Figure 20. Spatial density plot of buried and exposed vents in the Eastern Snake River variety of volcanic products is Plain as reported by Wetmore et al. (2009) as colored contours. Contour values shown in key at top left. Contours represent total spatial density (for example, 75% of spatial density is within the yellow contour with a value of 3e-5). Also included are the due to small individual pockets volcanic rift zones as defined by Kuntz et al. (2002) in grey shading. A distinct difference in orientation and frequency of groupings of vents are seen between the two studies. The boundary of the INL is represented by grey outline. of melt that resided in the crust until tectonic changes forced their eruption (Negrete-Aranda and Cañón-Tapia, 2008). The end of subduction marked an increase in temperature from a return to high heat flow in the mantle below the Baja Peninsula (Negrete-Aranda et al., 2010). The melting of the distinct pockets directly caused post-subduction volcanism and determined the spatial distribution of volcanic eruptions

(Negrete-Aranda et al., 2010).

Volcanism and Faulting as Complementary Mechanisms

Bursik and Sieh (1989) suggest that the lack of recent (late Quaternary) faulting along the Sierra

Nevada Frontal Fault near the Mono and Inyo Craters could be explained by the accommodation of elastic strain from dike intrusion. The Sierra Nevada Frontal Fault runs northwest-southeast along the Sierra Nevada Range and has surface expression near the Mono and Inyo Craters (about

100 km northwest of the Big Pine Volcanic Field) and near Big Pine itself. Parsons and

46

Thompson (1991) state that normal faulting and magmatic intrusion can both work together in varying degrees to accommodate the same extensional magnitude. Furthermore, dike injection may help to suppress movement along faults (Parsons and Thompson, 1991). This principle is demonstrated in the East African Rift (Parsons and Thompson, 1991), the Eastern Snake River

Plain along the wake of the Yellowstone Hotspot (Parsons et al., 1998), and in the following areas that have young volcanism with low seismicity (magmatic intrusions suppressing normal faulting) in the Basin and Range Province: Yucca Mountain, Mono Craters, Coso Mountains, and

Valles Caldera in New Mexico (Parsons and Thompson, 1991).

With respect to seismicity and volcanism in the Eastern Snake River Plain, subsurface dikes that trend perpendicular to the axis of the plain accommodate strain aseismically (Parsons et al.,

1998). If magma is supplied in generous enough volumes by the source, then dike injection may accommodate strain in the crust through emplacement and inflation perpendicular to least principal stress (Parsons et al., 1998). During periods of reduced dike injection, faulting and seismicity reactivate to accommodate the strain (Parsons et al., 1998).

According to the spatial patterns of vents and faults within the volcanic fields in this study, magmatism and faulting appear to be working together to accommodate tectonic strain. In fact, all of the fields of this study exhibit at least a partial component of groups of vents located far from faults. The suppression of faulting in those areas seems to be accommodating strain by dike dilation and volcanic eruption. The remainder of this subsection is dedicated to discussing how the interplay between magmatism and faulting can explain the spatial correlations in each volcanic field except Jaraguay and San Borja; there are very few or no vents within the quarter- or half-spacing.

47

The Big Pine Volcanic Field has been repeatedly characterized as having fault-controlled magmatism, and a strong statistical spatial correlation can be drawn from the results of this analysis. The strong type 3 curve result shows that there are only a couple of vents that occur far from faults. The vents associated with Crater Mountain and Red Mountain appear to be specifically clustered near faults along the Sierra Nevada Front Range Fault in this area. The fact that 36 percent of vents are within 500 meters of faults in this area is evidence for a fault- controlled system. However, this is a great example which illustrates that specific geologic mechanisms need be identified before these types of data are further incorporated into hazard analyses.

Based on casual map inspection, Aranda-Gomez et al. (2003) insist that a strong correlation of vents and faults in the Camargo Volcanic Field resulted in magma using faults as conduits to the surface: “given the synchronous nature of faulting and volcanism, most of the active normal faults in the Camargo volcanic field, were perpendicular to 3 and were able to provide low-

energy pathways for ascending dikes.” Although they sufficiently describe that faulting and

volcanism are synchronous through contact relationships of relatively older faulted lava flows

overlain by younger flows, they offer no evidence of ascending magma’s use of faults as “low-

energy pathways” other than a basic spatial correlation. For example, in the La Loba domain of

the Camargo Volcanic Field, Aranda-Gomez et al. (2003) make the case that the Las Borregas

fault system, located in the southwest section of the study area, “acted as a magmatic conduit”

because it is “covered by younger volcanoes.” However, this area of the volcanic field has the

least amount of faulting.

Using the same map from Aranda-Gomez et al. (2003), this study shows that a spatial correlation

does not exist for the majority of vents in the field. A type-3 curve component is present in Figure

14; however, most of those data points only represent the vents within the central graben of the 48 field. There are 15 vents that are located within 500 meters of faults in the Camargo Volcanic

Field, all of which occur in the graben feature. It appears that spatial distribution may be explained by increased volcanism on the horsts of Camargo Volcanic Field suppressing faulting while decreasing volcanism forced faulting to accommodate the tectonic strain in the graben.

Coso Volcanic Field is the other field in this study that exhibits a strong type-3 curve in this analysis, which means that there is a strong spatial correlation between vents and faults. 54 percent of the vents in the field are within 500 meters of a fault. This does not indicate, however, that melt necessarily used these faults as conduits to the surface. Vent to fault spacing is closest in the Coso Range while vents in the Rose Valley are further from vents. The vents in the Coso

Range to the east are Tertiary in age whose flows are heavily faulted; they erupted through

Mesozoic basement rocks. The Tertiary and Quaternary vents to the west and south erupted into the Rose Valley and Coso Wash, respectively, and were subsequently buried during a period of elevated sedimentation rates. Geophysical investigations to locate subsurface faulting would allow for better understanding of spatial relationships between vents and buried faults in this area.

In the Yucca Volcanic Field, a combination of type-2 and type-3 curves describes the vent to fault spacing. Again, the type-2 curve component is explained by vents occurring away from faults in a range of distances while the type-3 curve component is evidence of groups of vents close to faults, such as the volcanoes located around Black Cone and Red Cone. This group is located within Crater Flat, which is bounded by the Bare Mountain Fault to the west and a collection of smaller normal faults to the east. Because of the 12 vents within Crater Flat (and Lathrop Wells to the southeast), 10 percent of vents within the field are only 500 meters or less from faults. The older faults and vents, found to the north and east of Crater Flat, are generally far from faults and may not have used the faults as conduits to the surface because of the age differences.

49

The Michoacán-Guanajuato Volcanic Field exhibits a combination of type-2 and type-3 curves which is explained by vents grouped far from faults in most areas of the field. In a couple of small zones, vents are aligned between and close to faults in the central portion of the study area. In the northwest and southwest sections of the field, groups of vents appear to be suppressing faulting and areas where volcanism is sparse (northeast and south-central sections) there are large groupings of faults. Because of these patterns, there are only two vents that lie within 500 meters of a fault (1 percent).

This thesis describes the analysis of the map distances between vents and faults to characterize the extent to which these features are spatially correlated. Spatial data show a marked pattern in all of the volcanic fields except two: there are groups of vents away from groups of faults.

Compared to spatial patterns of volcanism in many extensional environments around the world, the data from this study seem to generally fit well with the tectonic and magmatic model that faulting is suppressed in local areas where volcanism rates are high within these volcanic fields.

Practical Implications

The practical application of these ideas such as source geometry and suppression of earthquakes by dike injection is an integral part of hazard assessment and mapping. One important question this research raises is how researchers would determine whether a vent erupted along a fault. If there is a tendency for faults to capture ascending melt, then such inputs would make hazard models more accurate. But, how close would a vent need to be to a fault to constitute a “hit” based on this research?

In the Big Pine, Camargo, Coso, and Yucca Volcanic Fields, the Basin and Range style faulting has the most vents near faults. In the context of these fields, the vent-to-fault distance data can be used to evaluate how close vents erupt near faults. The criteria that could be used to determine a 50

“hit” in these fields include the dip of the fault and the width of dikes. Fault dips can be resolved using ground-penetrating radar technologies, but this is beyond the scope of this paper.

Dike widths cannot currently be measured within the fields of this study, but we can look at dike widths of other fields in similar tectonic regimes. Wada (1994) estimated that 1 meter wide dikes are formed with mafic melts and some widths reach as much as 100 meters from flood basalt events. Dikes widths have been measured around the world: 1.5 meters in Scotland (with a maximum found at 50 meters wide), 3.5 meters in Iceland, and between 6 and 23 meters formed in the Columbia Flood Basalts (Carrington, 2000). Dufek and Bergantz (2005) used dike widths between 1 and 10 meters in their melt ascent models. Finally, Rubin (1995) estimate dike widths of 10 cm in mantle peridotites, 1 meter widths in Hawaii and in sheeted dike complexes, widths of 4 meters in Scotland, and widths of 30 meters in continental flood basalt dike swarms.

If faults are able to capture ascending magma (sufficient dip) for even a short distance, and the above dike widths are found in the extending terrain of the Basin and Range, it is reasonable to assume that a “hit” with respect to hazard analysis may be on the order of hundreds of meters.

Based on the analysis above of vent distances of 500 meters or less, researchers may wish to consider including fault capture of dikes in hazard analysis. The Basin and Range fields have a higher occurrence of vents within 500 meters of faults: Big Pine (36 percent), Camargo (6 percent), Coso (54 percent), and Yucca (10 percent).The take-home message, however, is that further study is needed before assuming any type of genetic or causative relationship exists between vents and faults.

51

Concluding Remarks

The spatial distributions of vents comprising volcanic fields are of interest to risk assessment and hazard analysis studies. If the probability exists for harm to come to populated areas or sensitive facilities such as nuclear repositories, the understanding of fundamental processes governing timing and aerial extent of eruptions is critical. Many studies are interested in the role of surficial structural features in the ascent of magma and whether these features channel melt to certain areas. An important issue arises when casual qualitative assessments using geologic maps are used to confidently determine that magma exploits these shallow crustal fractures and faults to the surface. A casual relationship between magmatism and structural features has been accepted in literature without a quantitative spatial study.

This thesis includes a quantitative analysis of vent and fault populations in seven actively-faulted volcanic fields to test whether or not spatial relationships exist. The data generated in this study include vent-to-fault spacing acquired by measuring existing geologic maps produced by other scientists. Statistical methods were adapted from a similar study by Paterson and Schmidt (1999) which involved the analysis of distances between mapped eruptive centers and the closest mapped fault traces.

Based on the available data generated by this study, there are four types of curve combinations

that describe the seven volcanic fields of this study. The Big Pine and Coso Volcanic Fields have a strong spatial correlation of vents and faults (type 3 curve). Camargo Volcanic Field exhibits a

combination curve types (3 and 4) that can be attributed to volcanism suppressing fault activity in a portion of the field. In the center graben of the field, a strong spatial correlation between vents 52 and faults exists, but on the horst features there is little faulting activity that was suppressed by prevalent volcanism. The Jaraguay and San Borja Volcanic Fields both have source geometry

(pockets of ponded melt at depth) that dictates the locations of vents far from faults (curve type

4). The Michoacán-Guanajuato Volcanic Field (combination of curve types 2 and 3) may have issues of groups of vents far from faults because of the map scale. At a smaller scale, the individual sections of the field may yield different results, but modifying the analysis would be an immense undertaking. For the purposes of this study, the entire field is not appropriate scale to study the large Michoacán-Guanajuato Volcanic Field. Finally, the Yucca Volcanic Field may exhibit a combination of source geometry in the entire field and suppression of faulting from increased volcanism on Crater Flat to produce a combination of curves types 2 and 3.

Data show that statistical spatial correlations do exist between vents and faults in several of the volcanic fields of this study. As a general observation, some vents are found far from faults in these populations and others are found very close to faults, which could be explained by a variety of natural phenomenon such as suppression of faulting from increased magmatism and magma source geometry differences. Although data from the Big Pine and Coso Volcanic Fields exhibit a strong spatial correlation, it does not necessarily imply a genetic relationship. In this instance,

Paterson and Schmidt (1999) warn that other geologic factors such as map scale and subsurface structural investigations must be considered before a causative relationship can be presumed.

53

References

Aranda-Gomez, J.J., Luhr, J.F., Housh, T.B., Connor, C.B., Becker, T. and Henry, C.D., 2003, Synextensional Pliocene-Pleistocene eruptive history in the Camargo Volcanic Field, Chihuahua, Mexico. Geological Society of America Bulletin 115, 298-313.

Atwater, T., 1970, Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin 81, 3513-3536.

Atwater, T. and Stock, J., 1998, Pacific-North America plate tectonics of the Neogene Southwestern United States: An update. International Geology Review 40, 375-402.

Bacon, C.R., 1982, Time-predictable in the Coso range California. Geology 10, 65-69.

Bacon C.R., Duffield, W.A. and Nakamura, K., 1980, Distribution of Quaternary rhyolite domes of the Coso Range, California: Implications for extent of the geothermal activity. Journal of Geophysical Research 85, 2425-2433.

Bacon, C.R., Kurasawa, R.H., Delevaux, M.H., Kistler, R.W. and Doe, B.R., 1984, Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso Volcanic Field, California. Contributions to Mineralogy and Petrology 85, 366-375.

Bateman, P.C., Carmar, M.F., Clark, L.C., Jackson, E.D., and Parker, R.L., 1965, Geologic Map of the Big Pine 15-Minute Quadrangle, California, in Bateman, P.C., Pakiser, L.C., and Francis, M., Geology and Tungsten Mineralization of the Bishop District, California, Professional Paper 470: Plate 4. United States Geological Survey.

Bierman, P.R., Gillespie, A., Whipple, K. and Clark, D., 1991, Quaternary geomorphology of Owens Valley, California: Geological Society of America field trip. In: Walawender, M.J. and Hanan B.B. (eds.), Geological excursions in southern California and Mexico: guidebook for the 1991 annual meeting. Geological Society of America, , p. 199-223.

Bursik, M. and Sieh, K., 1989, Range front faulting and volcanism in the Mono Basin, Eastern California. Journal of Geophysical Research 94, 15587-15609.

Calmus, T., Aguillon-Robles, A., Maury, R.C., Bellon, H., Benoit, M., Cotton, J., Bourgois, J. and Michaud, F., 2003, Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: the role of slab melts. Lithos 66, 77- 105.

Carrington, C.R., 2000, Plumbing Systems, Chapter in: Encyclopedia of Volcanology, Academic Press, 219-235. 54

Combs, J., 1980, Heat flow in the Coso geothermal area, Inyo County, California. Journal of Geophysical Research 85, 2411-2424.

Condit, C.D., Crumpler, L.S., Aubele, J.C., and Elston, W.E., 1989, Patterns of volcanism along the southern margin of the Colorado Plateau: The Springerville Field. Journal of Geophysical Research 94, 7975-7986.

Condit, C.D. and Connor, C.B., 1996, Recurrence rates of volcanism in basaltic volcanic fields: An example from the Springerville volcanic field, Arizona. GSA Bulletin 108, 1225- 1241.

Connor, C.B., 1987a, Cinder cone distribution described using cluster analysis and two- dimensional Fourier analysis in the central Trans Mexican Volcanic Belt, Mexico, and in southeast Guatemala to west El Salvador, Ph.D. thesis, Dartmouth College, Hanover, NH, 234.

Connor, C.B., 1987b, Structure of the Michoacan-Guanajuato Volcanic Field, Mexico. Journal of Volcanology and Geothermal Research 33, 191-200.

Connor, C.B., 1990, Cinder cone clustering in the Trans Mexican Volcanic Belt: Implications for structural and petrologic models. Journal of Geophysical Research 95, 19395-19405.

Connor, C.B., Condit, C.D., Crumpler, L.S., and Aubele, J.C., 1992, Evidence of regional structural controls on vent distribution: Springerville Volcanic Field, Arizona. Journal of Geophysical Research 97, 12349-12359.

Connor, C.B. and Conway, F.M., 2000, Basaltic Volcanic Fields, Chapter in: Encyclopedia of Volcanology, Academic Press, 331-343.

Connor, C.B., Stamatakos, J.A., Ferrill, D.A., Hill, B.E., Ofoegbu, G.I., Conway, F.M., Sagar, B. and Trapp, J., 2000, Geologic factors controlling patterns of small-volume basaltic volcanism: Application to a volcanic hazards assessment at Yucca Mountain, Nevada. Journal of Geophysical Research 105, 417-432.

Connor, C.B., Sparks, R.S.J., Diez, M., Volentik, A.C.M., and Pearson, S.C.P., 2009, The nature of volcanism, in Connor, C.B., Chapman, N.A., and Connor, L.J. (eds),Volcanic and Tectonic Hazard Assessment for Nuclear Facilities, Cambridge University Press, 74-115.

Cousens, B.L., 1996, Magmatic evolution of Quaternary mafic magmas at and the Devils Postpile, California: Effects of crustal contamination on lithospheric mantle-derived magmas. Journal of Geophysical Research 101, 27673-27689.

Delaney, P.T. and Gartner, A.E., 1997, Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah. Geophysical Society of America Bulletin 109, 1177- 1192.

Dewhurst, W.T., 1990, NADCON: The application of minimum curvature-derived surfaces in the transformation of positional data from the North American Datum of 1927 to the North American Datum of 1983. NOAA Technical Memorandum NOS NGS-50, U.S.

55

Department of Commerce, National Oceanic and Atmospheric Administation, National Ocean Service, Office of Charting and Geodetic Services, 30.

Dixon, T.H., Norabuena, E., and Hotaling, L., 2003, Paleosiesmicity and Global Positioning System: Earthquake-cycle effects and geodetic versus geologic fault slip rates in the Eastern California shear zone. Geology v. 31, 55-58.

Dohrenwend, J.C., Schell, B.A., Menges, C.M., Moring, B.C., and McKittrick, M.A., 1996, Reconnaissance Photogeologic Map of Young (Quaternary and Late Tertiary) Faults in Nevada. In: Singer, D.A. (ed.) An Analysis of Nevada’s Metal-Bearing Mineral Resrouces. Nevada Bureau of Mines and Geology Open File Report 96-2, Plate 9-1.

Dufek, J. and Bergantz, G.W., 2005, Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. Journal of Petrology 46, 1-29.

Duffield, W.A., Bacon, C.R. and Dalrymple, G.B., 1980, Late Cenozoic volcanism, geochronology, and structure of the Coso range, Inyo county, California. Journal of Geophysical Research 85, 2381-2404.

Duffield, W.A. and Bacon, C.R., 1981, Geologic Map of the Coso Volcanic Field and Adjacent Areas, Inyo County, California. Miscellaneous Investigations Series Map I-1200. United States Geological Survey.

Ferrari, L., Lopez-Martinez, M., Aguirre-Diaz, G., and Carrasco-Nunez, G., 1999, Space-time patterns of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the Mexican Volcanic Belt. Geology 27, 303-306.

Ferrari, L., Conticelli, S., Vaggelli, G., Petrone, C.M., and Manetti, P., 2000, Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt. Tectonophysics 318, 161-185.

Fialko, Y.A. and Simons, M., 2000, Deformation and seismicity in the Coso geothermal area, Inyo County, California: Observations and modeling using satellite radar interferometry. Journal of Geophysical Research 21, 105.

Frankel, K.L., Dolan, J.F., Finkel, R.C., Owen, L.A., and Hoeft, J.S., 2007, Spatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined from LiDAR topographic data and cosmogenic 10Be geochronology. Geophysical Research Letters 34, 1-6.

Gastil, R.G., Phillips, R.P., and Allison, E.C., 1971, Reconnaissance Geologic Map of the State of Baja California, Mexico, in Johnson, S.E., Paterson, S.R., Fletcher, J.M., Girty, G.H., Kimbrough, D.L., and Martin-Barajas, A. (eds.), Tectonic Evolution of Northwestern Mexico and the Southwestern United States. Memoir 140: Plates 1-B and 1-C. Geological Society of America.

Glazner, A.F. and Miller, J.S., 1997, A major lithospheric boundary in eastern California defined by isotopic ratios in Cenozoic basalts from the Coso Range and surrounding areas. Geological Society of America Program Abstracts 29, 69.

56

Guest, B., Niemi, N., and Wernicke, B., 2007, Stateline fault system: A new component of the Miocene-Quaternary Eastern California shear zone. GSA Bulletin 119, 1337-1346.

Hasegawa, A., Nakajima, J., Umino, N., and Miura, S., 2005, Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity. Tectonophysics 403, 59-75.

Hasenaka, T. and Carmichael, I.S.E., 1985a, The cinder cones of Michoacan-Guanajuato, central Mexico: Their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research 25, 105-124.

Hasenaka, T. and Carmichael, I.S.E., 1985b, A compilation of location, size and geomorphological parameters of volcanoes of the Michoacan-Guanajuato Volcanic Field, central Mexico. Geophysica International 24-4, 577-607.

Hasenaka, T. and Carmichael, I.S.E., 1987, The cinder cones of Michoacan-Guanajuato, central Mexico: Petrology and chemistry. Journal of Petrology 28, 241-269.

Hasenaka, T., 1994, Size, distribution and magma output rate for shield volcanoes of the Michoacan-Guanajuato Volcanic Field, central Mexico. Journal of Volcanology and Geothermal Research 63, 13-31.

Hill, E.M. and Blewitt, G., 2006, Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from BARGEN network. Geophysical Research Letters 33, 14302.

Johnson, C.A. and Harrison, C.G.A., 1990, Neotectonics in central Mexico. Physics of Earth and Planetary Interiors 64, 187-210.

Kirby, E., Anandakrishnan, S., Phillips, F., and Marrero, S., 2008, Late Pleistocene slip rate along the Owens Valley fault, eastern California. Geophysical Research Letters 35, 1-6.

Kiyosugi, K., Connor, C.B., Zhao, D., Connor, L.J., and Tanaka, K., 2010, Relationships between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bulletin of Volcanology 72, 331-340.

Kuntz, M.A., Anderson, S.R., Champion, D.E., Lanphere, M.A., and Grunwald, D.J., 2002, Tension cracks, eruptive fissures, dikes, and faults related to late Pleistocene-Holocene basaltic volcanism and implications for the distribution of hydraulic conductivity in the eastern Snake River Plain, Idaho. Geological Society of America Special Paper 353, 111- 133.

Lee, J., Spencer, J. and Owen, L., 2001, Holocene slip rates along the Owens Valley fault, California: Implications for the recent evolution of the Eastern California Shear Zone. Geology 29, 819-822.

Lister, J.R. and Kerr, C., 1991, Fluid-mechanical models of crack propagation and their application to magma transport in dikes. Journal of Geophysical Research 96, 10049- 10077.

57

Lutz, T.M., 1986, An analysis of the orientation of large-scale crustal structures: A statistical approach based on aerial distributions of point-like features. Journal of Geophysical Research 91, 421-434.

Mahan, K.H., Guest, B., Wernicke, B., and Niemi, N.A., 2009, Low-temperature thermo- chronologic constraints on the kinematic history and spatial extent of the Eastern California shear zone. Geosphere 5, 483-495.

Manley, C.R. and Bacon, C.R., 2000, Rhyolite thermobarometry and the shallowing of the magma reservoir, Coso Volcanic Field, California. Journal of Petrology 41, 149-174.

McQuarrie, N. and Wernicke, B.P., 2005, An animated tectonic reconstruction of southwestern North America since 36 Ma. Geosphere 1, 147-172.

McQuarrie, N. and Oskin, M., 2010, Palinspastic restoration of NAVDat and implications for the origin of magmatism in southwestern North America. Journal of Geophysical Research 115, B10401.

Monastero, F.C., Katzenstein, A.M., Miller, J.S., Unruh, J.R., Adams, M.C., and Richards- Dinger, K., 2005, The Coso geothermal field: a nascent metamorphic core complex. GSA Bulletin 117, 1534-1553.

Moore, J.G., Hopson, C.A., and Stone, J.G., 1963, Geologic Map and Sections of the Mount Pinchot Quadrangle, southern Sierra Nevada, California. Bulletin 1130. United State Geological Survey.

Mordick, B.E. and Glazner, A.F., 2006, Clinopyroxene thermobarometry of basalts from the Coso and Big Pine Volcanic Fields, California. Contributions to Mineralogy and Petrology 152, 111-124.

Morellato, C., Redini, F., and Doglioni, C., 2003, On the number and spacing of faults. Terra Nova 15, 315-321.

Negrete-Aranda, R. and Cañón-Tapia, E., 2008, Post-subduction volcanism in the Baja California Peninsula, Mexico: The effects of tectonic reconfiguration in volcanic systems. Lithos 102, 392-414.

Negrete-Aranda, R., Cañón-Tapia, E., Brandle, J.L., Ortega-Rivera, M.A., Lee, J.K.W., Spelz, R.M., and Hinojosa-Corona, A., 2010, Regional orientation of tectonic stress and the stress expressed by post-subduction high-magnesium volcanism in northern Baja California, Mexico: Tectonics and volcanism of San Borja volcanic field. Journal of Volcanology and Geothermal Research 192, 97-115.

Nelson, C.A., 1966, Geologic Map of the Waucoba Mountain Quadrangle, Inyo County, California. Geologic Quadrangle 528. United States Geological Survey.

Ormerod, D.S., Rogers, N.W. and Hawkesworth, C.J., 1991, Melting in the lithospheric mantle: Inverse modeling of alkali-olivine basalts from the Big Pine Volcanic Field, California. Contributions to Mineralogy and Petrology 108, 305-317.

58

Palleres, C., Maury, R.C., Bellon, H., Royer, J.Y., Calmus, T., Aguillon-Robles, A., Cotton, J., Benoit, M., Michaud, F. and Bourgois, J., 2007, Slab-tearing following ridge-trench collision: Evidence from Miocene volcanism in Baja California, Mexico. Journal of Volcanology Geothermal Research 161, 95-117.

Parsons, T. and Thompson, G.A., 1991, The role of magma overpressure in suppressing earthquakes and topography: Worldwide examples. Science 253, 1399-1402.

Parsons, T., Sleep, N.H., and Thompson, G.A., 1992, Host rock rheology controls on the emplacement of tabular intrusions: Implications for underplating of extending crust. Tectonics 11, 1348-1356.

Parsons, T., Thompson, G.A., and Smith, R.P., 1998, More than one way to stretch: A tectonic model for extension along the plume track of the Yellowstone hotspot and adjacent Basin and Range Province. Tectonics 17, 212-234.

Parsons, T., Thompson, G.A., and Cogbill, A.H., 2006, Earthquake and volcano clustering via stress transfer at Yucca Mountain, Nevada. Geology 34, 785-788.

Pasquare, G., Ferrari, L., Garduno, V.H., Tiabaldi, A. and Vezzoli, L., 1991, Geologic map of the central sector of the Mexican Volcanic Belt, states of Guanajuato and Michoacan, Mexico. Geological Society of America Map and Chart Series MCH072.

Paterson, S.R. and Schmidt, K.L., 1999, Is there a close spatial relationship between faults and plutons? Journal of Structural Geology 21, 1131-1142.

Potter, C.J., Dickerson, R.P., Sweetkind, D.S., Drake, R.M., II, Taylor, E.M., Fridrich, C.J., San Juan, C.A., and Day, W.C., 2002, Geologic Map of the Yucca Mountain Region, Nye County, Nevada. Geologic Investigations Series I-2775. United States Geologic Survey.

Reasenberg, P.A., Ellsworth, W.L. and Walter, A.W., 1980, Teleseismic evidence for a low- velocity body under the Coso geothermal area. Journal of Geophysical Research 85, 2471-2483.

Reches, A. and Fink, J., 1988, The Mechanism of intrusion of the Inyo Dike, Long Valley Caldera, California. Journal of Geophysical Research 93, 4321-4334.

Rogers, G., Saunders, A.D., Terrell, D.J., Verma, S.P. and Marriner, G.F., 1985, Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature 315, 389-392.

Rogers, M.J., 2006, Estimating the Pleistocene slip rate of the Owens Valley Fault, California. Unpublished senior thesis, Pennsylvania State University.

Rojas-Beltran, M.A., 1995, El sector nor-oriental del campo volcanico de Camargo, Chihuahua: geologia regional y petrologia de los xenolitos del manto, una comparacion con el campo volcanico de San Quintin, B.C. Unpublished thesis, UASLP, Mexico.

Roquemore, G.R., 1978, Active faults and related seismicity of the Coso Mountains, Inyo County, California. Earthquake Notes 49, 24.

59

Roquemore, G.R., 1980, Structure, tectonics, and stress field of the Coso Range, Inyo County, California. Journal of Geophysical Research 85, 2434-2440.

Ross, D.C., 1965, Geology of the Independence quadrangle, Inyo County, California. U.S. Geological Survey Bulletin 1181-O.

Rubin, A.M., 1995, Getting granite dikes out of the source region. Journal of Geophysical Research 100, 5911-5929.

Rubin, A.M., 1998, Dike ascent in partially molten rock. Journal of Geophysical Research 103, 20901-20919.

Saunders, A.D., Rogers, G., Marriner, G.F., Terrell, D.J. and Verma, S.P., 1987, Geochemistry of Cenozoic volcanic rocks, Baja California, Mexico: Implications for the petrogenesis of post-subduction magmas. Journal of Volcanology and Geothermal Research 32, 223-245.

Savage, J.C., Lisowski, M. and Prescott, W.H., 1990, An apparent shear zone trending north- northwest across the Mojave Desert into Owens Valley, Eastern California. Geophysical Research Letters 17, 2113-2116.

Sawlan, M.G., 1991, Magmatic Evolution of the Gulf of California Rift. in Dauphin, J.P. and Simoneit, B.R.T. eds, Gulf and Peninsular Province of the Calfornias. American Associstion of Petroleum Geologists Memoir 47, p. 301-370.

Stock, J.M. and Hodges, K.V., 1989, Pre-Pliocene extension around the Gulf of California and the transfer of Baja California to the Pacific Plate. Tectonics 8, 99-115.

Tamura, Y., Nakajima, J., Kodiara, S., and Hasegawa, A., 2009, Tectonic setting of volcanic centers in subduction zones: Three-dimensional structure of mantle wedge and arc crust, in Connor, C.B., Chapman, N.A., and Connor, L.J. (eds), Volcanic and Tectonic Hazard Assessment for Nuclear Facilities, Cambridge University Press, 176-194.

Taylor, T.R., 2002, Origin and structure of the Poverty Hills, Owens Valley fault zone, Owens Valley, California. Unpublished master’s thesis, Miami University.

Thompson, G.A. and Zoback, M.L., 1979, Regional geophysics of the Colorado Plateau. Tectonophysics 61, 149-181.

Valentine, G.A. and Perry, F.V., 2007, Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth and Planetary Science Letters 261, 201-216.

Varnell, A., 2006, Petrology and geochemistry of the Big Pine Volcanic Field, Inyo County, California. Unpublished senior thesis, 36 pages, California State Polytechnic University.

Wada, Y., 1994, On the relationship between dike width and magma viscosity. Journal of Geophysical Research 99, 17743-17755.

Wadge, G. and Cross, A., 1988, Quantitative methods for detecting aligned points: An application to the volcanic centers of the Michoacan-Guanajuato Volcanic Field, Mexico. Geology 16, 815-818. 60

Wernicke, B., Davis, J.L., Bennett, R.A., Elosegui, P., Abolins, M.J., Brady, R.J., House, M.A., Niemi, N.A. and Snow, J.K., 1998, Anomalous strain accumulation in the Yucca Mountain area, Nevada. Science 279, 2096-2100.

Wernicke, B., Davis, J.L., Bennett, R.A., Normandeau, J.E., Fredrich, A.M., and Niemi, N.A., 2004, Tectonic implications of a dense continuous GPS velocity field at Yucca Mountain, Nevada. Journal of Geophysical Research 109, B12404.

Wetmore, P.H., Hughes, S.S., Connor, L.J., and Caplinger, M.L., 2009, Spatial distribution of eruptive centers about the Idaho National Laboratory, in Connor, C.B., Chapman, N.A., and Connor, L.J. (eds), Volcanic and Tectonic Hazard Assessment for Nuclear Facilities, Cambridge University Press, 385-405.

Wilson, C.K., Jones, C.H. and Gilbert, H.J., 2003, Single-chamber silicic magma system inferred from shear wave discontinuities of the crust and uppermost mantle, Coso geothermal area, California. Journal of Geophysical Research 108.

Ziv, A., Rubin, A.M., and Agnon, A., 2000, Stability of dike intrusion along preexisting fractures. Journal of Geophysical Research 105, 5947-5961.

61

Appendix A: Vent Location Data

62

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Big Pine 1 -118.300171 37.113858 0.61 21 Big Pine 2 -118.289518 37.030894 1.65 85 Big Pine 3 -118.309583 36.988116 1.21 67 Big Pine 4 -118.319454 36.976065 4.68 57 Big Pine 5 -118.336032 36.953110 6.51 55 Big Pine 6 -118.185492 37.010604 6.65 53 Big Pine 7 -118.172781 37.023510 6.95 71 Big Pine 8 -118.172858 37.021325 6.16 18 Big Pine 9 -118.300187 37.107677 4.85 10 Big Pine 10 -118.161594 37.007662 0.00 0 Big Pine 11 -118.328166 36.990910 0.25 72 Big Pine 12 -118.328166 36.985537 0.26 77 Big Pine 13 -118.329430 36.978267 0.00 0 Big Pine 14 -118.331327 36.973842 0.45 75 Big Pine 15 -118.335752 36.967204 0.55 13 Big Pine 16 -118.338280 36.963065 0.17 36 Big Pine 17 -118.298455 36.970365 0.23 70 Big Pine 18 -118.329746 36.946343 2.22 53 Big Pine 19 -118.291185 36.923270 2.72 22 Big Pine 20 -118.317419 36.911575 3.84 68 Big Pine 21 -118.281703 36.905885 5.72 54 Big Pine 22 -118.283599 36.901776 5.85 49 Big Pine 23 -118.278858 36.898616 6.57 50 Big Pine 24 -118.326586 36.844883 0.25 39 Big Pine 25 -118.317419 36.835084 0.18 84 Camargo 26 -104.602889 27.475336 2.94 81 Camargo 27 -104.584261 27.484256 5.26 72 Camargo 28 -104.574919 27.486786 6.33 73 Camargo 29 -104.589450 27.497447 5.48 73 Camargo 30 -104.578808 27.511464 3.15 85 Camargo 31 -104.588519 27.521850 4.26 55 Camargo 32 -104.586072 27.528733 3.49 60 Camargo 33 -104.632361 27.518483 1.77 67 Camargo 34 -104.629647 27.533914 2.83 71 Camargo 35 -104.536353 27.479108 4.32 63 Camargo 36 -104.539675 27.484233 4.42 63 Camargo 37 -104.571206 27.566289 0.99 21 Camargo 38 -104.564014 27.573303 2.10 34 Camargo 39 -104.548236 27.574433 3.47 50 Camargo 40 -104.545422 27.580472 4.29 49 Camargo 41 -104.573197 27.589581 3.95 0 Camargo 42 -104.572933 27.599183 5.12 1 Camargo 43 -104.597294 27.590867 8.57 72 Camargo 44 -104.610506 27.590417 7.11 75 Camargo 45 -104.600111 27.594339 6.04 30 Camargo 46 -104.619203 27.607417 6.81 73 Camargo 47 -104.599331 27.610764 7.24 24 Camargo 48 -104.616986 27.622942 7.69 70 Camargo 49 -104.576603 27.613058 11.71 74 Camargo 50 -104.609642 27.631342 8.87 68 Camargo 51 -104.592125 27.631389 10.93 69 Camargo 52 -104.580953 27.622661 11.58 71 Camargo 53 -104.580708 27.629075 11.92 69 Camargo 54 -104.583547 27.639139 12.07 69 Camargo 55 -104.613492 27.642119 9.12 60 63

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Camargo 56 -104.633481 27.648886 7.50 60 Camargo 57 -104.615425 27.656869 9.79 60 Camargo 58 -104.589203 27.658519 12.50 60 Camargo 59 -104.598989 27.665511 11.93 60 Camargo 60 -104.614608 27.664461 10.35 57 Camargo 61 -104.633203 27.688564 10.38 49 Camargo 62 -104.639761 27.700619 11.06 40 Camargo 63 -104.633061 27.697500 11.18 44 Camargo 64 -104.475781 27.565856 2.81 83 Camargo 65 -104.490642 27.597411 3.92 78 Camargo 66 -104.514528 27.603933 6.42 85 Camargo 67 -104.511256 27.609394 6.14 71 Camargo 68 -104.496736 27.608467 4.42 0 Camargo 69 -104.517244 27.611806 6.66 71 Camargo 70 -104.493239 27.623814 3.54 67 Camargo 71 -104.478381 27.644775 1.77 67 Camargo 72 -104.513311 27.619089 5.88 65 Camargo 73 -104.530506 27.629858 6.82 60 Camargo 74 -104.550364 27.643344 8.41 79 Camargo 75 -104.537561 27.645144 7.00 79 Camargo 76 -104.517064 27.653069 4.47 81 Camargo 77 -104.476178 27.635522 1.15 66 Camargo 78 -104.495050 27.653575 1.89 79 Camargo 79 -104.493928 27.669336 1.63 0 Camargo 80 -104.485258 27.670361 0.58 0 Camargo 81 -104.525592 27.664706 5.23 0 Camargo 82 -104.531089 27.671464 5.81 0 Camargo 83 -104.537031 27.677611 6.52 88 Camargo 84 -104.561614 27.653494 9.52 82 Camargo 85 -104.562069 27.660978 9.43 87 Camargo 86 -104.566675 27.666922 9.88 0 Camargo 87 -104.561739 27.676672 9.42 89 Camargo 88 -104.505075 27.692072 3.03 88 Camargo 89 -104.550128 27.691981 8.15 88 Camargo 90 -104.563444 27.686547 9.66 88 Camargo 91 -104.540867 27.697025 7.10 88 Camargo 92 -104.532211 27.703775 6.17 87 Camargo 93 -104.562256 27.702908 9.55 87 Camargo 94 -104.589503 27.707247 12.67 0 Camargo 95 -104.566117 27.709367 10.00 0 Camargo 96 -104.542139 27.707997 7.33 0 Camargo 97 -104.535064 27.714581 6.51 0 Camargo 98 -104.545667 27.715969 7.67 0 Camargo 99 -104.550872 27.721050 8.26 0 Camargo 100 -104.570303 27.715133 10.47 0 Camargo 101 -104.590425 27.722908 12.79 0 Camargo 102 -104.524975 27.734264 4.99 78 Camargo 103 -104.532531 27.745472 5.10 63 Camargo 104 -104.566014 27.761056 7.96 78 Camargo 105 -104.603208 27.751608 12.30 77 Camargo 106 -104.611150 27.770108 12.92 88 Camargo 107 -104.297522 27.507989 1.98 87 Camargo 108 -104.298442 27.516064 1.51 67 Camargo 109 -104.374406 27.556336 3.22 41 Camargo 110 -104.398600 27.569914 3.68 35 64

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Camargo 111 -104.408500 27.566397 4.89 87 Camargo 112 -104.439803 27.591178 1.66 78 Camargo 113 -104.432494 27.590878 2.51 77 Camargo 114 -104.416356 27.598864 1.68 34 Camargo 115 -104.418536 27.604828 1.32 45 Camargo 116 -104.450081 27.600378 0.71 81 Camargo 117 -104.450481 27.607869 0.93 0 Camargo 118 -104.457025 27.612744 0.23 0 Camargo 119 -104.355861 27.570789 0.42 34 Camargo 120 -104.376781 27.589039 0.16 45 Camargo 121 -104.392208 27.599097 0.26 27 Camargo 122 -104.344894 27.593247 1.05 0 Camargo 123 -104.347542 27.606225 1.15 66 Camargo 124 -104.369342 27.603767 1.84 35 Camargo 125 -104.379692 27.615425 1.30 80 Camargo 126 -104.372375 27.620208 0.37 72 Camargo 127 -104.375450 27.628961 0.00 0 Camargo 128 -104.388094 27.639186 0.12 0 Camargo 129 -104.402094 27.639247 1.42 55 Camargo 130 -104.419253 27.629589 0.66 45 Camargo 131 -104.397942 27.656189 0.94 30 Camargo 132 -104.430119 27.657853 1.68 56 Camargo 133 -104.410692 27.664425 2.06 47 Camargo 134 -104.451831 27.661778 0.16 45 Camargo 135 -104.442706 27.664714 1.15 45 Camargo 136 -104.433900 27.667642 2.06 47 Camargo 137 -104.403947 27.670775 0.82 45 Camargo 138 -104.419158 27.674461 1.98 50 Camargo 139 -104.406619 27.681475 0.26 63 Camargo 140 -104.451472 27.689817 2.16 54 Camargo 141 -104.449997 27.701747 1.16 53 Camargo 142 -104.439594 27.704208 0.00 0 Camargo 143 -104.413586 27.707422 1.20 61 Camargo 144 -104.415181 27.712692 1.46 61 Camargo 145 -104.426594 27.723872 2.40 67 Camargo 146 -104.439789 27.732036 1.91 52 Camargo 147 -104.468578 27.734439 0.70 0 Camargo 148 -104.446072 27.743739 1.98 87 Camargo 149 -104.468900 27.757908 0.00 0 Camargo 150 -104.487156 27.764281 0.63 68 Camargo 151 -104.476222 27.770017 0.00 0 Camargo 152 -104.436850 27.797078 1.41 66 Camargo 153 -104.296636 27.618519 1.52 86 Camargo 154 -104.337108 27.660619 0.68 59 Camargo 155 -104.361389 27.689675 0.00 0 Camargo 156 -104.371294 27.702856 1.04 27 Camargo 157 -104.374994 27.706189 2.25 69 Camargo 158 -104.390522 27.705758 0.63 68 Camargo 159 -104.383583 27.715411 1.77 67 Camargo 160 -104.371450 27.721722 1.66 78 Camargo 161 -104.390642 27.719614 1.25 68 Camargo 162 -104.394764 27.723064 0.99 69 Camargo 163 -104.395506 27.729197 1.10 72 Camargo 164 -104.332781 27.723125 2.57 72 Camargo 165 -104.343561 27.731094 1.66 78 65

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Camargo 166 -104.315419 27.736675 4.91 76 Camargo 167 -104.353611 27.751389 1.36 70 Camargo 168 -104.309606 27.752642 6.15 68 Camargo 169 -104.416686 27.858839 0.35 0 Camargo 170 -104.510122 27.910047 10.38 77 Camargo 171 -104.408544 27.890211 0.82 82 Camargo 172 -104.134481 27.642411 7.23 64 Camargo 173 -104.144392 27.646031 6.45 64 Camargo 174 -104.138997 27.649036 7.12 64 Camargo 175 -104.148067 27.657564 6.78 59 Camargo 176 -104.204692 27.663131 3.62 48 Camargo 177 -104.102331 27.675486 12.43 63 Camargo 178 -104.138961 27.683200 9.62 45 Camargo 179 -104.132872 27.689014 10.61 45 Camargo 180 -104.147881 27.686808 9.19 38 Camargo 181 -104.161514 27.699436 10.12 38 Camargo 182 -104.162869 27.706356 10.85 44 Camargo 183 -104.073767 27.717153 18.07 52 Camargo 184 -104.085722 27.722939 18.87 52 Camargo 185 -104.078556 27.723128 18.14 49 Camargo 186 -104.236733 27.715261 6.10 35 Camargo 187 -104.250033 27.717647 5.70 20 Camargo 188 -104.243756 27.734406 7.91 20 Camargo 189 -104.271489 27.732683 7.23 5 Camargo 190 -104.196489 27.758817 13.28 37 Camargo 191 -104.188800 27.761061 14.04 40 Camargo 192 -104.001925 27.769450 16.45 43 Camargo 193 -104.266064 27.769144 14.19 33 Camargo 194 -104.302769 27.870133 0.00 0 Camargo 195 -104.264397 27.763372 10.08 71 Camargo 196 -104.251311 27.763978 11.47 70 Camargo 197 -104.255458 27.769417 10.81 73 Camargo 198 -104.236011 27.778000 12.71 81 Camargo 199 -104.248439 27.777592 11.34 80 Camargo 200 -104.284706 27.767875 7.69 70 Camargo 201 -104.245839 27.790186 11.40 88 Camargo 202 -104.236644 27.807842 12.33 89 Camargo 203 -104.291239 27.773733 6.66 71 Camargo 204 -104.285267 27.785425 6.94 81 Camargo 205 -104.293508 27.782511 6.09 77 Camargo 206 -104.287294 27.786289 4.86 79 Camargo 207 -104.303961 27.786289 8.26 0 Camargo 208 -104.273136 27.803128 6.40 0 Camargo 209 -104.288544 27.800211 5.12 87 Camargo 210 -104.308403 27.793697 4.21 84 Camargo 211 -104.278506 27.807704 7.56 0 Camargo 212 -104.283628 27.809847 6.98 89 Camargo 213 -104.294550 27.807092 5.70 0 Camargo 214 -104.302978 27.805272 4.77 0 Camargo 215 -104.317286 27.802083 3.14 0 Camargo 216 -104.272822 27.816372 8.32 83 Camargo 217 -104.286319 27.819106 6.77 78 Camargo 218 -104.294178 27.819242 5.98 77 Camargo 219 -104.299039 27.814708 5.30 81 Camargo 220 -104.261672 27.826636 9.81 76 66

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Camargo 221 -104.247581 27.833933 11.52 74 Camargo 222 -104.247572 27.837503 11.77 72 Camargo 223 -104.258983 27.836367 10.41 70 Camargo 224 -104.265561 27.849422 10.40 65 Camargo 225 -104.294875 27.829917 6.35 66 Camargo 226 -104.312717 27.822069 4.06 66 Camargo 227 -104.337006 27.823581 1.56 63 Camargo 228 -104.308239 27.827442 4.84 66 Camargo 229 -104.319700 27.829703 3.80 63 Camargo 230 -104.299144 27.833486 6.09 66 Camargo 231 -104.310675 27.833547 4.84 63 Camargo 232 -104.328286 27.834250 3.12 63 Camargo 233 -104.297358 27.838072 6.40 63 Camargo 234 -104.298472 27.846253 6.81 63 Camargo 235 -104.305131 27.848711 6.29 62 Camargo 236 -104.319264 27.849128 4.91 54 Camargo 237 -104.331089 27.842489 3.40 52 Camargo 238 -104.330214 27.851944 4.21 51 Camargo 239 -104.340022 27.849886 3.13 59 Camargo 240 -104.349781 27.845842 1.94 57 Camargo 241 -104.304553 27.858922 7.07 54 Camargo 242 -104.314158 27.866083 6.58 73 Camargo 243 -104.339664 27.859417 3.53 73 Camargo 244 -104.337169 27.865533 4.11 82 Camargo 245 -104.354303 27.861589 2.10 71 Camargo 246 -104.295997 27.876275 9.01 70 Camargo 247 -104.315686 27.876575 6.75 79 Camargo 248 -104.328400 27.869400 5.18 81 Camargo 249 -104.335211 27.872406 4.47 81 Camargo 250 -104.313078 27.882158 7.25 74 Camargo 251 -104.325600 27.881967 5.81 70 Camargo 252 -104.294603 27.890594 9.56 72 Camargo 253 -104.335303 27.883686 4.86 69 Camargo 254 -104.340022 27.883436 4.38 68 Camargo 255 -104.363378 27.877350 1.62 69 Camargo 256 -104.322508 27.890539 6.48 69 Camargo 257 -104.342500 27.889522 4.37 61 Camargo 258 -104.374211 27.881819 0.78 63 Camargo 259 -104.320114 27.896308 7.07 65 Camargo 260 -104.337908 27.901200 5.25 77 Camargo 261 -104.349142 27.896150 3.81 78 Camargo 262 -104.372978 27.903636 1.46 61 Camargo 263 -104.342692 27.920161 5.52 60 Camargo 264 -104.391225 27.916067 0.42 56 Camargo 265 -104.328372 27.937931 8.12 61 Camargo 266 -104.330275 27.952017 8.74 65 Camargo 267 -104.416775 27.934578 0.71 81 Camargo 268 -104.341306 27.961050 8.11 65 Camargo 269 -104.349111 27.968653 7.75 64 Camargo 270 -104.476411 27.994617 3.81 78 Camargo 271 -104.241256 27.855544 13.22 66 Camargo 272 -104.247631 27.860622 12.85 63 Camargo 273 -104.250989 27.882108 12.79 63 Camargo 274 -104.230425 27.892208 14.17 74 Camargo 275 -104.266522 27.888303 12.69 71 67

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Camargo 276 -104.266489 27.895519 12.87 73 Camargo 277 -104.277361 27.916511 11.81 73 Camargo 278 -104.258069 27.909378 14.27 71 Camargo 279 -104.276728 27.909697 12.36 78 Camargo 280 -104.288325 27.908664 10.89 83 Camargo 281 -104.263867 27.916347 13.91 78 Camargo 282 -104.285608 27.919858 11.62 76 Camargo 283 -104.090725 27.877150 0.59 79 Camargo 284 -104.097072 27.720583 0.52 63 Camargo 285 -104.125214 27.882322 2.60 63 Camargo 286 -104.105336 27.909200 0.71 81 Coso 287 -117.921828 35.989831 0.76 76 Coso 288 -117.831486 35.957013 0.22 85 Coso 289 -117.830842 35.949181 0.59 74 Coso 290 -117.815733 35.945108 0.00 0 Coso 291 -117.816908 35.937779 0.13 3 Coso 292 -117.816813 35.933941 1.31 68 Coso 293 -117.817772 35.929838 1.47 38 Coso 294 -117.808753 35.930954 0.49 41 Coso 295 -117.793599 35.926740 0.10 50 Coso 296 -117.884191 35.993947 0.51 57 Coso 297 -117.878612 36.000759 0.37 85 Coso 298 -117.897712 36.003276 0.29 85 Coso 299 -117.857457 35.971112 2.70 61 Coso 300 -117.874765 36.218405 3.90 78 Coso 301 -117.847135 36.250508 0.19 57 Coso 302 -117.841181 36.215035 0.96 88 Coso 303 -117.738809 36.239969 0.03 75 Coso 304 -117.715677 36.199993 0.02 73 Coso 305 -117.817561 36.163787 0.03 22 Coso 306 -117.763306 36.142046 0.55 23 Coso 307 -117.789493 36.149112 1.30 87 Coso 308 -117.817028 36.150353 5.27 66 Coso 309 -117.726375 36.135656 3.86 76 Coso 310 -117.727543 36.121446 2.41 71 Coso 311 -117.749042 36.093586 0.00 0 Coso 312 -117.595244 36.048684 0.77 2 Coso 313 -117.661682 36.069000 0.68 5 Coso 314 -117.743001 36.053833 0.22 82 Coso 315 -117.656337 36.035740 0.55 49 Coso 316 -117.746675 36.018311 0.00 0 Coso 317 -117.586962 35.969799 0.28 23 Coso 318 -117.861388 35.909321 0.05 11 Coso 319 -117.689158 35.979346 0.81 28 Coso 320 -117.623982 35.972464 0.02 63 Coso 321 -117.597995 35.949933 0.22 37 Coso 322 -117.675039 35.895605 0.12 89 Coso 323 -117.652935 35.922847 0.19 52 Yucca 324 -116.726423 37.109696 5.09 0 Yucca 325 -116.715747 37.127016 3.29 344 Yucca 326 -116.656240 37.123994 4.57 326 Yucca 327 -116.592970 37.098848 0.04 89 Yucca 328 -116.461827 37.310793 12.25 38 Yucca 329 -116.406277 37.328851 8.06 18 Yucca 330 -116.319916 37.304133 5.69 35 68

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Yucca 331 -116.402599 37.084126 0.73 271 Yucca 332 -116.385531 37.069802 2.68 302 Yucca 333 -116.052660 37.088015 0.23 244 Yucca 334 -116.039880 37.096899 1.64 247 Yucca 335 -116.030428 37.093112 2.28 246 Yucca 336 -116.005736 37.099938 3.52 43 Yucca 337 -116.016482 37.115589 3.51 70 Yucca 338 -115.931726 37.005305 3.49 261 Yucca 339 -115.985524 36.955360 5.09 111 Yucca 340 -115.942884 36.945954 1.27 128 Yucca 341 -115.954328 36.919189 2.07 84 Yucca 342 -115.973047 36.918541 3.73 86 Yucca 343 -115.959073 36.912886 2.65 71 Yucca 344 -115.984294 36.888204 5.77 65 Yucca 345 -116.462536 36.516964 5.29 48 Yucca 346 -116.484378 36.542022 5.87 82 Yucca 347 -116.571884 36.576809 1.40 87 Yucca 348 -116.423177 36.625748 1.84 97 Yucca 349 -116.494329 36.637119 3.93 15 Yucca 350 -116.510869 36.690197 0.40 252 Yucca 351 -116.546689 36.748012 1.64 107 Yucca 352 -116.545598 36.753525 1.72 102 Yucca 353 -116.552716 36.757695 1.23 276 Yucca 354 -116.550907 36.761234 1.35 277 Yucca 355 -116.549344 36.768305 1.37 281 Yucca 356 -116.551368 36.784202 0.94 284 Yucca 357 -116.606947 36.770855 0.68 260 Yucca 358 -116.603102 36.772994 1.05 262 Yucca 359 -116.579660 36.793551 1.68 99 Yucca 360 -116.565179 36.813660 0.75 100 Yucca 361 -116.547707 36.860752 0.24 269 Jaraguay 362 -114.930033 29.769989 10.47 65 Jaraguay 363 -114.738542 29.623372 9.32 31 Jaraguay 364 -114.671789 29.648258 12.10 9 Jaraguay 365 -114.676578 29.635525 12.85 47 Jaraguay 366 -114.658586 29.624478 13.30 40 Jaraguay 367 -114.655878 29.617281 14.90 43 Jaraguay 368 -114.633225 29.635617 15.34 42 Jaraguay 369 -114.631078 29.629114 13.47 61 Jaraguay 370 -114.628119 29.622169 13.68 58 Jaraguay 371 -114.636408 29.613764 13.93 59 Jaraguay 372 -114.649592 29.585181 14.93 58 Jaraguay 373 -114.684714 29.601211 17.70 67 Jaraguay 374 -114.674678 29.585608 19.48 64 Jaraguay 375 -114.670172 29.578744 19.64 69 Jaraguay 376 -114.690275 29.579000 19.58 67 Jaraguay 377 -114.669936 29.545319 21.23 74 Jaraguay 378 -114.772353 29.506444 20.81 68 Jaraguay 379 -114.681053 29.519475 30.50 68 Jaraguay 380 -114.671528 29.522814 23.54 71 Jaraguay 381 -114.656200 29.517067 22.62 71 Jaraguay 382 -114.796086 29.431850 16.40 66 Jaraguay 383 -114.804989 29.412378 18.85 47 Jaraguay 384 -114.792864 29.412681 17.86 52 Jaraguay 385 -114.792156 29.400336 18.63 54 69

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Jaraguay 386 -114.692219 29.491128 17.23 56 Jaraguay 387 -114.673186 29.480739 24.47 59 Jaraguay 388 -114.686167 29.467936 23.19 54 Jaraguay 389 -114.698844 29.471883 24.55 53 Jaraguay 390 -114.695625 29.462081 16.03 15 Jaraguay 391 -114.683533 29.452386 15.47 15 Jaraguay 392 -114.702728 29.430033 14.72 11 Jaraguay 393 -114.696703 29.410906 13.99 21 Jaraguay 394 -114.725192 29.405728 12.70 22 Jaraguay 395 -114.712517 29.399414 13.49 36 Jaraguay 396 -114.707875 29.393233 12.57 32 Jaraguay 397 -114.712875 29.387694 11.99 32 Jaraguay 398 -114.707961 29.378656 11.85 37 Jaraguay 399 -114.724686 29.374878 11.01 38 Jaraguay 400 -114.717308 29.372794 11.58 48 Jaraguay 401 -114.701614 29.362028 11.04 46 Jaraguay 402 -114.733292 29.321592 9.49 44 Jaraguay 403 -114.724311 29.323600 7.98 86 Jaraguay 404 -114.719611 29.331272 7.38 84 Jaraguay 405 -114.704236 29.337858 7.79 77 Jaraguay 406 -114.699369 29.342742 7.50 64 Jaraguay 407 -114.692689 29.341258 7.73 57 Jaraguay 408 -114.685869 29.340689 7.22 54 Jaraguay 409 -114.684564 29.347714 6.91 49 Jaraguay 410 -114.688250 29.334094 7.57 41 Jaraguay 411 -114.683619 29.329189 6.20 60 Jaraguay 412 -114.694536 29.306364 5.31 64 Jaraguay 413 -114.698681 29.292022 5.70 73 Jaraguay 414 -114.664392 29.306472 7.60 58 Jaraguay 415 -114.619725 29.289025 4.29 43 Jaraguay 416 -114.661886 29.329919 2.16 45 Jaraguay 417 -114.662558 29.362214 4.48 34 Jaraguay 418 -114.663592 29.371697 8.38 11 Jaraguay 419 -114.602064 29.360242 9.22 10 Jaraguay 420 -114.616783 29.386403 9.46 38 Jaraguay 421 -114.609331 29.389128 11.42 33 Jaraguay 422 -114.600714 29.386992 11.25 27 Jaraguay 423 -114.618678 29.401967 10.81 24 Jaraguay 424 -114.553183 29.318019 11.84 19 Jaraguay 425 -114.559669 29.307786 6.55 2 Jaraguay 426 -114.575381 29.429533 5.22 22 Jaraguay 427 -114.571817 29.441558 14.97 31 Jaraguay 428 -114.563017 29.450458 18.75 49 Jaraguay 429 -114.601050 29.455844 17.75 49 Jaraguay 430 -114.597647 29.441164 19.67 50 Jaraguay 431 -114.594742 29.448547 14.71 21 Jaraguay 432 -114.554144 29.338239 15.18 21 Jaraguay 433 -114.570258 29.257983 8.60 3 Jaraguay 434 -114.552500 29.247678 5.62 49 Jaraguay 435 -114.538350 29.219861 7.59 52 Jaraguay 436 -114.516178 29.234483 10.50 3 Jaraguay 437 -114.501281 29.242717 9.40 5 Jaraguay 438 -114.488878 29.237542 8.80 5 Jaraguay 439 -114.483364 29.221728 9.30 3 Jaraguay 440 -114.479475 29.282572 10.55 3 70

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Jaraguay 441 -114.514267 29.320122 4.22 0 Jaraguay 442 -114.615150 29.529014 6.52 5 Jaraguay 443 -114.609853 29.507953 17.18 57 Jaraguay 444 -114.571228 29.543569 17.82 50 Jaraguay 445 -114.575617 29.524717 13.62 69 Jaraguay 446 -114.564725 29.530044 14.56 67 Jaraguay 447 -114.564225 29.523925 13.54 66 Jaraguay 448 -114.562581 29.513019 14.57 55 Jaraguay 449 -114.552678 29.515739 14.33 58 Jaraguay 450 -114.535589 29.519658 13.41 58 Jaraguay 451 -114.554475 29.505328 12.20 54 Jaraguay 452 -114.527403 29.510842 14.36 59 Jaraguay 453 -114.537839 29.504936 8.53 80 Jaraguay 454 -114.527728 29.535142 9.89 77 Jaraguay 455 -114.579675 29.585089 8.64 80 Jaraguay 456 -114.584769 29.623050 11.61 76 Jaraguay 457 -114.574000 29.641564 11.22 57 Jaraguay 458 -114.515558 29.637850 9.40 59 Jaraguay 459 -114.530336 29.599922 4.59 67 Jaraguay 460 -114.489575 29.602867 6.43 81 Jaraguay 461 -114.459553 29.629356 3.40 68 Jaraguay 462 -114.451050 29.594711 3.61 56 Jaraguay 463 -114.430728 29.590181 1.50 71 Jaraguay 464 -114.496506 29.565778 1.65 70 Jaraguay 465 -114.477014 29.511622 6.27 72 Jaraguay 466 -114.484350 29.487194 5.26 64 Jaraguay 467 -114.466772 29.480411 8.28 43 Jaraguay 468 -114.460136 29.472689 7.73 43 Jaraguay 469 -114.485419 29.473050 7.91 43 Jaraguay 470 -114.499303 29.463544 9.35 43 Jaraguay 471 -114.520886 29.468997 10.77 43 Jaraguay 472 -114.547967 29.444983 11.77 50 Jaraguay 473 -114.539072 29.447778 14.43 48 Jaraguay 474 -114.551217 29.431081 13.71 46 Jaraguay 475 -114.522839 29.442661 15.44 44 Jaraguay 476 -114.516850 29.425414 13.31 43 Jaraguay 477 -114.552767 29.419028 14.05 43 Jaraguay 478 -114.547797 29.399878 15.50 39 Jaraguay 479 -114.483150 29.401622 14.54 39 Jaraguay 480 -114.557894 29.387869 10.29 20 Jaraguay 481 -114.518769 29.386811 12.27 3 Jaraguay 482 -114.502119 29.399844 10.52 48 Jaraguay 483 -114.531725 29.379558 10.74 32 Jaraguay 484 -114.522547 29.407914 11.68 5 Jaraguay 485 -114.515203 29.403150 12.29 37 Jaraguay 486 -114.601800 29.513625 11.68 36 Jaraguay 487 -114.668447 29.496606 14.78 86 Jaraguay 488 -114.468658 29.538392 21.46 82 Jaraguay 489 -114.541108 29.544775 5.06 53 Jaraguay 490 -114.534378 29.540389 10.21 75 Jaraguay 491 -114.481628 29.374553 9.53 78 Jaraguay 492 -114.478269 29.365278 7.96 31 Jaraguay 493 -114.454108 29.383689 6.88 35 Jaraguay 494 -114.514206 29.364981 8.60 23 Jaraguay 495 -114.472750 29.357178 8.49 61 71

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) Jaraguay 496 -114.465308 29.342858 5.76 36 Jaraguay 497 -114.434558 29.341439 3.11 55 Jaraguay 498 -114.407914 29.371858 2.20 36 Jaraguay 499 -114.387036 29.349936 7.52 32 Jaraguay 500 -114.349089 29.315239 7.05 38 Jaraguay 501 -114.340675 29.305708 5.05 16 Jaraguay 502 -114.327081 29.300119 3.87 13 Jaraguay 503 -114.354567 29.265686 2.88 6 Jaraguay 504 -114.407828 29.261169 6.95 14 Jaraguay 505 -114.287847 29.271569 8.04 45 Jaraguay 506 -114.340892 29.222239 3.95 15 Jaraguay 507 -114.295861 29.210753 10.69 20 Jaraguay 508 -114.270783 29.173183 10.06 26 Jaraguay 509 -114.295156 29.277639 11.84 36 Jaraguay 510 -114.224969 29.111308 2.73 14 Jaraguay 511 -114.211283 29.081397 8.73 73 Jaraguay 512 -114.445883 29.068733 8.07 87 Jaraguay 513 -114.540881 29.148686 10.41 9 Jaraguay 514 -114.254272 29.117433 6.89 60 Jaraguay 515 -114.739097 29.199661 7.54 57 Jaraguay 516 -114.719083 29.214319 13.32 70 Jaraguay 517 -115.018494 29.532778 12.76 59 Jaraguay 518 -114.875303 29.587494 12.24 24 Jaraguay 519 -114.502386 29.208842 11.84 36 Jaraguay 520 -114.400658 29.209439 10.70 9 Jaraguay 521 -114.377081 29.205853 10.88 21 San Borja 522 -113.908733 28.722067 14.42 71 San Borja 523 -113.878008 28.715800 16.74 77 San Borja 524 -113.893192 28.736203 16.43 67 San Borja 525 -113.892956 28.729522 16.11 70 San Borja 526 -113.882642 28.729467 17.00 71 San Borja 527 -113.885769 28.702981 13.86 23 San Borja 528 -113.884108 28.696486 13.41 24 San Borja 529 -113.860033 28.727403 14.44 66 San Borja 530 -113.861928 28.718964 15.03 62 San Borja 531 -113.846853 28.725761 13.47 62 San Borja 532 -113.842589 28.718600 13.61 58 San Borja 533 -113.826306 28.694075 14.20 50 San Borja 534 -113.819764 28.692161 12.61 0 San Borja 535 -113.841403 28.675633 11.08 4 San Borja 536 -113.858311 28.667797 10.52 4 San Borja 537 -113.824014 28.768583 8.50 86 San Borja 538 -113.821642 28.729592 11.46 58 San Borja 539 -113.839517 28.662228 10.05 3 San Borja 540 -113.834122 28.661244 10.00 1 San Borja 541 -113.840331 28.585800 4.61 34 San Borja 542 -113.834667 28.579311 4.96 34 San Borja 543 -113.832186 28.567394 6.12 34 San Borja 544 -113.794358 28.559533 4.31 42 San Borja 545 -113.784503 28.556161 4.80 5 San Borja 546 -113.774264 28.551042 3.57 45 San Borja 547 -113.787400 28.542064 5.72 46 San Borja 548 -113.796089 28.535981 4.89 78 San Borja 549 -113.979725 28.550131 8.26 20 San Borja 550 -113.922178 28.498919 5.78 16 72

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) San Borja 551 -114.039378 28.422114 7.78 61 San Borja 552 -113.829181 28.354744 4.73 84 San Borja 553 -113.701436 28.346969 17.20 86 San Borja 554 -113.835483 28.697453 13.72 40 San Borja 555 -113.703247 28.413853 19.01 69 San Borja 556 -113.677044 28.414017 21.33 72 San Borja 557 -113.667928 28.445214 15.88 85 San Borja 558 -113.706519 28.449917 20.27 58 San Borja 559 -113.688853 28.508886 9.17 36 San Borja 560 -113.700486 28.510500 8.87 49 San Borja 561 -113.733086 28.526828 5.77 32 San Borja 562 -113.715533 28.567836 6.70 52 San Borja 563 -113.703494 28.578417 7.36 46 San Borja 564 -113.715839 28.589906 7.07 53 San Borja 565 -113.682244 28.586583 10.33 55 San Borja 566 -113.659042 28.597658 10.06 89 San Borja 567 -113.693267 28.598700 10.55 47 San Borja 568 -113.707058 28.614008 10.51 53 San Borja 569 -113.743753 28.637853 9.78 36 San Borja 570 -113.696883 28.634031 12.06 60 San Borja 571 -113.666311 28.615539 12.01 79 San Borja 572 -113.614850 28.602667 6.40 83 San Borja 573 -113.597761 28.643239 9.32 45 San Borja 574 -113.671275 28.666708 12.54 59 San Borja 575 -113.669994 28.663294 12.48 59 San Borja 576 -113.678822 28.672619 12.78 59 San Borja 577 -113.702347 28.679572 13.88 63 San Borja 578 -113.698017 28.679606 13.59 63 San Borja 579 -113.680692 28.688681 11.72 63 San Borja 580 -113.701861 28.701847 12.21 69 San Borja 581 -113.693469 28.699919 11.92 72 San Borja 582 -113.692314 28.693775 12.47 75 San Borja 583 -113.680342 28.776981 4.08 13 San Borja 584 -113.697025 28.843275 5.52 22 San Borja 585 -113.731597 28.877050 7.43 78 San Borja 586 -113.834289 28.883300 14.74 47 San Borja 587 -113.597667 28.694036 4.78 59 San Borja 588 -113.642231 28.234528 19.41 85 San Borja 589 -113.623664 28.185964 19.76 68 San Borja 590 -113.642747 28.178775 21.67 68 San Borja 591 -113.593800 28.165331 18.21 57 San Borja 592 -113.557161 28.171469 15.27 51 San Borja 593 -113.563353 28.130544 17.61 40 San Borja 594 -113.487042 28.197156 9.60 32 San Borja 595 -113.497469 28.059822 19.03 37 San Borja 596 -113.476242 28.040733 18.68 28 San Borja 597 -113.363447 28.121533 11.42 10 San Borja 598 -113.142550 28.088325 9.67 11 San Borja 599 -113.104711 28.117808 6.36 6 San Borja 600 -113.179892 28.237594 3.44 61 San Borja 601 -112.988089 28.054144 8.59 8 San Borja 602 -113.974731 28.037203 10.13 5 San Borja 603 -113.372567 28.721150 3.46 38 San Borja 604 -114.123417 28.241889 23.53 41 San Borja 605 -113.821039 28.210344 16.20 16 73

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) San Borja 606 -113.834867 28.710225 13.27 0 San Borja 607 -113.837775 28.704783 16.74 77 M ichoacan-Guanauato 608 -101.493375 19.052461 5.86 68 M ichoacan-Guanauato 609 -101.500019 19.056161 6.67 67 M ichoacan-Guanauato 610 -101.486061 19.194444 20.85 78 M ichoacan-Guanauato 611 -101.426311 19.230522 16.39 59 M ichoacan-Guanauato 612 -101.453944 19.235667 19.21 62 M ichoacan-Guanauato 613 -101.419556 19.253336 17.32 51 M ichoacan-Guanauato 614 -101.420497 19.267322 18.41 47 M ichoacan-Guanauato 615 -101.481731 19.237036 23.48 67 M ichoacan-Guanauato 616 -101.557061 19.265278 22.06 35 M ichoacan-Guanauato 617 -101.410228 19.270581 17.03 7 M ichoacan-Guanauato 618 -101.431772 19.272947 16.65 0 M ichoacan-Guanauato 619 -101.439508 19.276692 16.32 4 M ichoacan-Guanauato 620 -101.484453 19.300522 14.71 23 M ichoacan-Guanauato 621 -101.457178 19.307436 13.17 13 M ichoacan-Guanauato 622 -101.482961 19.312014 13.49 24 M ichoacan-Guanauato 623 -101.523347 19.308294 16.06 35 M ichoacan-Guanauato 624 -101.548667 19.344692 14.59 43 M ichoacan-Guanauato 625 -101.564686 19.336819 16.36 44 M ichoacan-Guanauato 626 -101.598181 19.324983 18.61 45 M ichoacan-Guanauato 627 -101.593225 19.275142 18.52 45 M ichoacan-Guanauato 628 -101.597617 19.256156 25.36 39 M ichoacan-Guanauato 629 -101.600978 19.268536 24.55 41 M ichoacan-Guanauato 630 -101.642775 19.288622 26.15 49 M ichoacan-Guanauato 631 -101.671364 19.266706 29.85 49 M ichoacan-Guanauato 632 -101.685144 19.278819 36.63 56 M ichoacan-Guanauato 633 -101.744069 19.256681 36.00 59 M ichoacan-Guanauato 634 -101.748950 19.274886 36.08 59 M ichoacan-Guanauato 635 -101.779875 19.260800 39.60 59 M ichoacan-Guanauato 636 -101.827839 19.329606 41.03 72 M ichoacan-Guanauato 637 -101.754061 19.352867 32.84 72 M ichoacan-Guanauato 638 -101.699633 19.347914 27.62 67 M ichoacan-Guanauato 639 -101.549381 19.355647 13.77 45 M ichoacan-Guanauato 640 -101.559422 19.354075 16.88 59 M ichoacan-Guanauato 641 -101.595339 19.364797 7.51 36 M ichoacan-Guanauato 642 -101.486389 19.378092 6.32 34 M ichoacan-Guanauato 643 -101.474233 19.383047 1.13 10 M ichoacan-Guanauato 644 -101.427572 19.413203 1.65 65 M ichoacan-Guanauato 645 -101.414278 19.417319 1.65 65 M ichoacan-Guanauato 646 -101.401094 19.423192 3.02 89 M ichoacan-Guanauato 647 -101.387756 19.404064 4.85 64 M ichoacan-Guanauato 648 -101.357336 19.389522 8.42 64 M ichoacan-Guanauato 649 -101.859792 19.320944 30.92 47 M ichoacan-Guanauato 650 -101.765969 19.368503 20.26 39 M ichoacan-Guanauato 651 -101.747008 19.375847 18.42 35 M ichoacan-Guanauato 652 -101.757269 19.396469 17.28 42 M ichoacan-Guanauato 653 -101.768719 19.400456 17.88 47 M ichoacan-Guanauato 654 -101.882422 19.428750 26.72 70 M ichoacan-Guanauato 655 -101.867678 19.453775 24.41 75 M ichoacan-Guanauato 656 -101.849131 19.476381 21.82 80 M ichoacan-Guanauato 657 -101.824481 19.524183 18.80 86 M ichoacan-Guanauato 658 -101.779200 19.514439 13.91 89 M ichoacan-Guanauato 659 -101.745733 19.508433 10.38 88 M ichoacan-Guanauato 660 -101.734747 19.517147 9.49 86 74

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) M ichoacan-Guanauato 661 -101.771469 19.527028 13.26 83 M ichoacan-Guanauato 662 -101.816028 19.546708 18.33 78 M ichoacan-Guanauato 663 -101.841742 19.556739 21.36 76 M ichoacan-Guanauato 664 -101.810425 19.587675 19.13 64 M ichoacan-Guanauato 665 -101.763797 19.595594 14.36 87 M ichoacan-Guanauato 666 -101.763639 19.605350 14.37 87 M ichoacan-Guanauato 667 -101.781378 19.612336 14.36 89 M ichoacan-Guanauato 668 -101.773189 19.630358 14.78 84 M ichoacan-Guanauato 669 -101.747108 19.619361 12.02 88 M ichoacan-Guanauato 670 -101.739211 19.618964 11.14 88 M ichoacan-Guanauato 671 -101.730708 19.607050 10.30 84 M ichoacan-Guanauato 672 -101.807556 19.653500 18.81 78 M ichoacan-Guanauato 673 -101.771225 19.682464 16.25 64 M ichoacan-Guanauato 674 -101.770178 19.695608 16.80 58 M ichoacan-Guanauato 675 -101.768556 19.689056 16.33 61 M ichoacan-Guanauato 676 -101.710922 19.702211 12.60 41 M ichoacan-Guanauato 677 -101.690556 19.692258 10.28 36 M ichoacan-Guanauato 678 -101.712792 19.609481 8.52 84 M ichoacan-Guanauato 679 -101.683381 19.611317 5.42 83 M ichoacan-Guanauato 680 -101.684156 19.598147 6.00 84 M ichoacan-Guanauato 681 -101.583394 19.581719 3.49 41 M ichoacan-Guanauato 682 -101.580383 19.593994 4.29 39 M ichoacan-Guanauato 683 -101.527664 19.607156 7.24 76 M ichoacan-Guanauato 684 -101.472919 19.611711 5.32 7 M ichoacan-Guanauato 685 -101.461100 19.581200 2.11 17 M ichoacan-Guanauato 686 -101.641850 19.503592 0.79 2 M ichoacan-Guanauato 687 -101.431539 19.503675 1.60 34 M ichoacan-Guanauato 688 -101.399433 19.508033 2.74 67 M ichoacan-Guanauato 689 -101.441319 19.583314 3.38 51 M ichoacan-Guanauato 690 -101.433331 19.665119 4.16 66 M ichoacan-Guanauato 691 -101.331986 19.665531 4.25 32 M ichoacan-Guanauato 692 -101.326272 19.690475 7.05 23 M ichoacan-Guanauato 693 -101.352686 19.677478 3.98 46 M ichoacan-Guanauato 694 -101.377972 19.698431 5.06 2 M ichoacan-Guanauato 695 -101.394108 19.709075 6.50 13 M ichoacan-Guanauato 696 -101.435539 19.705553 7.52 32 M ichoacan-Guanauato 697 -101.462600 19.720817 7.94 6 M ichoacan-Guanauato 698 -101.492008 19.715856 8.67 15 M ichoacan-Guanauato 699 -101.525197 19.683986 9.77 48 M ichoacan-Guanauato 700 -101.567519 19.678900 6.33 36 M ichoacan-Guanauato 701 -101.529872 19.767797 2.42 10 M ichoacan-Guanauato 702 -101.388856 19.800250 2.24 86 M ichoacan-Guanauato 703 -101.661536 19.748289 6.66 63 M ichoacan-Guanauato 704 -101.678244 19.742053 6.41 20 M ichoacan-Guanauato 705 -101.698200 19.738986 7.66 34 M ichoacan-Guanauato 706 -101.696606 19.756378 6.11 42 M ichoacan-Guanauato 707 -101.793708 19.737303 15.83 65 M ichoacan-Guanauato 708 -101.782517 19.752606 14.13 70 M ichoacan-Guanauato 709 -101.437947 19.881811 2.11 26 M ichoacan-Guanauato 710 -101.431297 19.845481 1.19 29 M ichoacan-Guanauato 711 -101.375122 19.869583 0.93 23 M ichoacan-Guanauato 712 -101.341231 19.895864 2.31 3 M ichoacan-Guanauato 713 -101.657814 20.007211 2.10 5 M ichoacan-Guanauato 714 -101.299675 20.064150 0.88 83 M ichoacan-Guanauato 715 -101.593828 20.097092 1.68 71 75

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) M ichoacan-Guanauato 716 -101.602578 20.105486 2.57 78 M ichoacan-Guanauato 717 -101.423772 20.156222 6.64 88 M ichoacan-Guanauato 718 -101.398383 20.154433 7.52 30 M ichoacan-Guanauato 719 -101.407314 20.194650 6.48 71 M ichoacan-Guanauato 720 -101.422567 20.184897 7.97 75 M ichoacan-Guanauato 721 -101.399544 20.203003 5.44 79 M ichoacan-Guanauato 722 -101.283242 20.099492 0.93 88 M ichoacan-Guanauato 723 -101.266492 20.100686 1.67 14 M ichoacan-Guanauato 724 -101.250017 20.072767 0.37 17 M ichoacan-Guanauato 725 -101.252400 20.074503 0.64 35 M ichoacan-Guanauato 726 -101.215881 20.084836 1.98 16 M ichoacan-Guanauato 727 -101.254767 20.097364 0.98 21 M ichoacan-Guanauato 728 -101.263494 20.105408 2.07 14 M ichoacan-Guanauato 729 -101.247656 20.106803 1.77 14 M ichoacan-Guanauato 730 -101.261803 20.111858 2.70 14 M ichoacan-Guanauato 731 -101.253539 20.227906 0.65 60 M ichoacan-Guanauato 732 -101.231703 20.234703 7.93 86 M ichoacan-Guanauato 733 -101.206917 20.230350 10.54 90 M ichoacan-Guanauato 734 -101.203825 20.227669 10.88 88 M ichoacan-Guanauato 735 -101.187714 20.220500 11.19 55 M ichoacan-Guanauato 736 -101.208342 20.251664 9.14 55 M ichoacan-Guanauato 737 -101.186733 20.195678 10.87 65 M ichoacan-Guanauato 738 -101.200967 20.191131 9.24 64 M ichoacan-Guanauato 739 -101.165622 20.186806 9.29 25 M ichoacan-Guanauato 740 -101.599533 20.376253 6.47 68 M ichoacan-Guanauato 741 -101.447908 20.282114 10.71 70 M ichoacan-Guanauato 742 -101.430511 20.317411 10.20 47 M ichoacan-Guanauato 743 -101.392781 20.289578 6.09 43 M ichoacan-Guanauato 744 -101.450569 20.371456 4.26 62 M ichoacan-Guanauato 745 -101.579200 20.482086 6.69 61 M ichoacan-Guanauato 746 -101.531356 20.456039 2.51 24 M ichoacan-Guanauato 747 -101.351622 20.360397 12.59 0 M ichoacan-Guanauato 748 -101.351950 20.314206 7.47 1 M ichoacan-Guanauato 749 -101.345967 20.271794 2.80 11 M ichoacan-Guanauato 750 -101.297822 20.314442 9.31 37 M ichoacan-Guanauato 751 -101.286714 20.349222 13.20 31 M ichoacan-Guanauato 752 -101.294694 20.374067 15.29 23 M ichoacan-Guanauato 753 -101.307517 20.462133 14.83 71 M ichoacan-Guanauato 754 -101.347433 20.488419 16.19 74 M ichoacan-Guanauato 755 -101.332697 20.488700 16.81 83 M ichoacan-Guanauato 756 -101.265122 20.500644 9.60 87 M ichoacan-Guanauato 757 -101.200489 20.500839 2.86 79 M ichoacan-Guanauato 758 -101.222883 20.482097 5.73 63 M ichoacan-Guanauato 759 -101.199711 20.468622 4.77 33 M ichoacan-Guanauato 760 -101.212986 20.450989 7.23 35 M ichoacan-Guanauato 761 -101.220375 20.380964 13.77 36 M ichoacan-Guanauato 762 -101.199253 20.333936 10.71 58 M ichoacan-Guanauato 763 -101.152614 20.287619 4.05 83 M ichoacan-Guanauato 764 -101.146300 20.287242 3.39 82 M ichoacan-Guanauato 765 -101.085611 20.151497 2.47 27 M ichoacan-Guanauato 766 -100.351292 19.956833 0.77 3 M ichoacan-Guanauato 767 -100.785925 19.894025 1.20 1 M ichoacan-Guanauato 768 -100.779800 19.897250 0.94 56 M ichoacan-Guanauato 769 -100.796533 19.876561 0.97 83 M ichoacan-Guanauato 770 -100.891231 19.878814 0.89 76 76

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) M ichoacan-Guanauato 771 -100.780325 19.878669 2.71 80 M ichoacan-Guanauato 772 -100.868950 19.850606 1.86 9 M ichoacan-Guanauato 773 -100.795031 19.857397 2.28 29 M ichoacan-Guanauato 774 -100.796622 19.853058 2.77 14 M ichoacan-Guanauato 775 -100.787525 19.853031 2.34 49 M ichoacan-Guanauato 776 -100.709961 19.840969 2.49 2 M ichoacan-Guanauato 777 -100.593144 19.830453 2.09 2 M ichoacan-Guanauato 778 -100.583694 19.824422 1.82 37 M ichoacan-Guanauato 779 -100.920353 19.766983 1.60 12 M ichoacan-Guanauato 780 -100.905453 19.766075 1.32 12 M ichoacan-Guanauato 781 -100.891914 19.769078 0.98 13 M ichoacan-Guanauato 782 -100.891067 19.773586 0.94 15 M ichoacan-Guanauato 783 -100.902269 19.767014 0.82 13 M ichoacan-Guanauato 784 -100.875728 19.770456 1.38 49 M ichoacan-Guanauato 785 -100.862372 19.771272 2.09 53 M ichoacan-Guanauato 786 -100.851533 19.773400 1.64 21 M ichoacan-Guanauato 787 -100.837817 19.776328 1.53 14 M ichoacan-Guanauato 788 -100.841550 19.774442 1.45 14 M ichoacan-Guanauato 789 -100.818547 19.774900 1.56 13 M ichoacan-Guanauato 790 -100.816772 19.780292 2.00 30 M ichoacan-Guanauato 791 -100.812103 19.764661 1.43 89 M ichoacan-Guanauato 792 -100.755003 19.706231 1.34 12 M ichoacan-Guanauato 793 -100.485181 19.899233 4.03 4 M ichoacan-Guanauato 794 -100.547219 19.818719 4.62 16 M ichoacan-Guanauato 795 -100.492933 19.837656 5.53 37 M ichoacan-Guanauato 796 -100.482258 19.828133 7.02 39 M ichoacan-Guanauato 797 -100.564803 19.805175 2.53 64 M ichoacan-Guanauato 798 -100.538211 19.794786 5.02 89 M ichoacan-Guanauato 799 -100.555239 19.791425 3.31 84 M ichoacan-Guanauato 800 -100.537164 19.785908 5.24 80 M ichoacan-Guanauato 801 -100.550733 19.785975 3.88 76 M ichoacan-Guanauato 802 -100.514547 19.779944 7.81 78 M ichoacan-Guanauato 803 -100.539906 19.771067 5.40 86 M ichoacan-Guanauato 804 -100.542875 19.776525 5.03 88 M ichoacan-Guanauato 805 -100.570764 19.766569 2.36 68 M ichoacan-Guanauato 806 -100.577561 19.766142 1.69 55 M ichoacan-Guanauato 807 -100.563047 19.766178 3.08 73 M ichoacan-Guanauato 808 -100.541642 19.761642 5.38 74 M ichoacan-Guanauato 809 -100.529711 19.756294 6.75 72 M ichoacan-Guanauato 810 -100.418667 19.800761 2.14 35 M ichoacan-Guanauato 811 -100.378006 19.787100 0.59 15 M ichoacan-Guanauato 812 -100.387992 19.786086 0.87 42 M ichoacan-Guanauato 813 -100.447453 19.773772 4.26 87 M ichoacan-Guanauato 814 -100.428508 19.766469 2.44 67 M ichoacan-Guanauato 815 -100.463178 19.760839 6.13 74 M ichoacan-Guanauato 816 -100.489561 19.713875 10.93 57 M ichoacan-Guanauato 817 -100.511764 19.712583 10.85 50 M ichoacan-Guanauato 818 -100.527825 19.710053 9.85 43 M ichoacan-Guanauato 819 -100.500686 19.716236 11.96 63 M ichoacan-Guanauato 820 -100.479217 19.704200 10.32 54 M ichoacan-Guanauato 821 -100.471644 19.683481 8.45 64 M ichoacan-Guanauato 822 -100.426089 19.551172 3.69 60 M ichoacan-Guanauato 823 -100.375206 19.539642 1.86 44 M ichoacan-Guanauato 824 -100.437003 19.420000 5.78 58 M ichoacan-Guanauato 825 -100.494303 19.397492 1.59 33 77

Appendix A (Continued)

Azimuth to Distance to Field Name ID # Vent X Vent Y Nearest Fault Nearest Fault (km) (360 format) M ichoacan-Guanauato 826 -100.396719 19.291358 9.07 18 M ichoacan-Guanauato 827 -100.297100 19.254517 14.26 23 M ichoacan-Guanauato 828 -100.173817 19.246586 8.85 35 M ichoacan-Guanauato 829 -100.134453 19.269028 4.76 4 M ichoacan-Guanauato 830 -100.080897 19.277669 5.97 51 M ichoacan-Guanauato 831 -100.159844 19.358747 2.86 65 M ichoacan-Guanauato 832 -100.163439 19.354283 3.10 76 M ichoacan-Guanauato 833 -100.167739 19.335514 3.62 72 M ichoacan-Guanauato 834 -100.251947 19.953722 2.26 21 M ichoacan-Guanauato 835 -100.261581 19.938175 3.62 16 M ichoacan-Guanauato 836 -100.223458 19.913194 4.87 19 M ichoacan-Guanauato 837 -100.171267 19.924256 3.20 45 M ichoacan-Guanauato 838 -100.140550 19.907253 3.49 19 M ichoacan-Guanauato 839 -100.116714 19.881422 1.45 44 M ichoacan-Guanauato 840 -100.092328 19.891881 1.49 81 M ichoacan-Guanauato 841 -100.501403 19.962889 13.81 11 M ichoacan-Guanauato 842 -101.698575 19.369067 16.69 19 M ichoacan-Guanauato 843 -101.672519 19.400097 12.52 12 M ichoacan-Guanauato 844 -101.693436 19.414597 11.76 25 M ichoacan-Guanauato 845 -101.702356 19.418606 11.80 31 M ichoacan-Guanauato 846 -101.721336 19.472103 9.07 62

78

Appendix B: Fault Location Data

79

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Big Pine 1 -118.379759 37.257765 -118.373513 37.219247 5.57 Big Pine 2 -118.379181 37.231971 -118.376867 37.202475 4.22 Big Pine 3 -118.369812 37.235672 -118.372009 37.233012 0.44 Big Pine 4 -118.368192 37.233590 -118.367961 37.230120 0.48 Big Pine 5 -118.366457 37.229542 -118.366573 37.226997 0.35 Big Pine 6 -118.363450 37.231046 -118.365416 37.226072 0.73 Big Pine 7 -118.374785 37.227922 -118.364838 37.221098 1.46 Big Pine 8 -118.361715 37.152854 -118.359517 37.142906 1.41 Big Pine 9 -118.362062 37.138164 -118.360789 37.135619 0.38 Big Pine 10 -118.350958 37.154242 -118.347603 37.136891 2.47 Big Pine 11 -118.346678 37.196576 -118.347487 37.158868 5.29 Big Pine 12 -118.335805 37.164305 -118.333723 37.158290 0.87 Big Pine 13 -118.337887 37.159909 -118.335805 37.157712 0.38 Big Pine 14 -118.335805 37.157712 -118.335921 37.157596 0.02 Big Pine 15 -118.313944 37.182580 -118.319611 37.156092 3.84 Big Pine 16 -118.323660 37.163842 -118.321346 37.146260 2.51 Big Pine 17 -118.317414 37.168931 -118.317298 37.165693 0.45 Big Pine 18 -118.314753 37.170782 -118.314753 37.166387 0.61 Big Pine 19 -118.314753 37.166387 -118.314638 37.166502 0.02 Big Pine 20 -118.309548 37.172055 -118.307929 37.168469 0.53 Big Pine 21 -118.304921 37.176103 -118.298444 37.156439 2.93 Big Pine 22 -118.296709 37.152160 -118.265131 37.091202 9.29 Big Pine 23 -118.286067 37.115493 -118.277739 37.102191 2.13 Big Pine 24 -118.322850 37.094094 -118.323428 37.084493 1.34 Big Pine 25 -118.290926 37.103463 -118.282829 37.086113 2.60 Big Pine 26 -118.301104 37.090392 -118.291504 37.036722 7.60 Big Pine 27 -118.271725 37.095829 -118.271146 37.061013 4.89 Big Pine 28 -118.259695 37.075587 -118.252408 37.066102 1.55 Big Pine 29 -118.265016 37.066102 -118.260042 37.053147 1.92 Big Pine 30 -118.287687 37.025849 -118.287687 37.023420 0.34 Big Pine 31 -118.282250 37.017406 -118.281556 37.011275 0.86 Big Pine 32 -118.266667 37.250981 -118.264034 37.244728 0.93 Big Pine 33 -118.255147 37.238035 -118.252733 37.232988 0.78 Big Pine 34 -118.267545 37.228051 -118.260523 37.218067 1.59 Big Pine 35 -118.267106 37.228161 -118.259974 37.227722 0.80 Big Pine 36 -118.259206 37.221797 -118.257670 37.215214 0.93 Big Pine 37 -118.249990 37.195575 -118.230680 37.181422 2.93 Big Pine 38 -118.347949 37.154542 -118.344731 37.148200 0.95 Big Pine 39 -118.344218 37.157200 -118.345384 37.152956 0.60 Big Pine 40 -118.344078 37.156360 -118.343006 37.149086 1.02 Big Pine 41 -118.346783 37.148153 -118.346550 37.146195 0.27 Big Pine 42 -118.155690 36.942052 -118.143168 36.902496 5.92 Big Pine 43 -118.148860 36.898085 -118.149429 36.878449 2.72 Big Pine 44 -118.136765 36.893816 -118.129082 36.880583 2.02 Big Pine 45 -118.124102 36.880014 -118.123106 36.874323 1.69 Big Pine 46 -118.120118 36.744699 -118.121825 36.740999 0.55 Big Pine 47 -118.119975 36.757504 -118.221000 36.987726 33.87 Big Pine 48 -118.343201 37.027877 -118.340560 37.019596 1.19 80

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Big Pine 49 -118.348412 37.026021 -118.342844 37.005034 2.99 Big Pine 50 -118.343415 37.014600 -118.341345 37.011245 0.52 Big Pine 51 -118.339346 37.010888 -118.342701 37.002607 1.22 Big Pine 52 -118.357192 36.992685 -118.339632 36.969057 3.91 Big Pine 53 -118.342487 36.996325 -118.339846 36.973697 3.18 Big Pine 54 -118.337347 36.995183 -118.338489 36.987117 1.13 Big Pine 55 -118.335134 36.997325 -118.334421 36.984333 1.85 Big Pine 56 -118.328995 36.995611 -118.331993 36.973982 3.05 Big Pine 57 -118.311935 36.987902 -118.321000 36.977980 1.75 Big Pine 58 -118.329281 36.962132 -118.332493 36.959277 0.56 Big Pine 59 -118.345528 36.953238 -118.342330 36.950611 0.51 Big Pine 60 -118.335191 36.956150 -118.331594 36.944729 1.72 Big Pine 61 -118.329252 36.951696 -118.326854 36.935763 2.29 Big Pine 62 -118.324227 36.944957 -118.323656 36.937134 1.15 Big Pine 63 -118.339874 36.948784 -118.329424 36.936449 2.14 Big Pine 64 -118.310255 36.791445 -118.216965 36.603396 28.85 Camargo 65 -104.700609 27.633829 -104.628801 27.472902 19.69 Camargo 66 -104.573342 27.559136 -104.540644 27.519385 5.58 Camargo 67 -104.546094 27.550160 -104.489352 27.471941 10.55 Camargo 68 -104.481018 27.782895 -104.434214 27.697302 10.98 Camargo 69 -104.498008 27.772637 -104.452487 27.539581 27.39 Camargo 70 -104.478774 27.693135 -104.321373 27.533811 23.92 Camargo 71 -104.393502 27.648896 -104.368176 27.618442 4.45 Camargo 72 -104.426520 27.708522 -104.335478 27.588629 16.58 Camargo 73 -104.364009 27.695379 -104.275852 27.560098 18.30 Camargo 74 -104.361765 27.678068 -104.306627 27.438281 29.64 Camargo 75 -104.266876 27.675183 -104.189297 27.613313 11.38 Camargo 76 -104.351507 27.645049 -104.478132 27.836431 25.10 Camargo 77 -104.444152 27.988702 -104.330349 27.675504 37.75 Camargo 78 -104.427482 27.983893 -104.347660 27.788345 23.95 Camargo 79 -104.117169 27.934205 -104.097293 27.879387 6.54 Coso 80 -118.018485 36.207801 -118.011206 36.188830 2.11 Coso 81 -117.998853 36.170300 -117.997088 36.163462 0.73 Coso 82 -117.996647 36.156623 -117.996647 36.149344 0.77 Coso 83 -118.016059 36.162800 -118.020691 36.141182 2.39 Coso 84 -117.953852 36.138314 -117.916572 36.123535 3.92 Coso 85 -117.923631 36.115814 -117.926498 36.107873 0.87 Coso 86 -117.921425 36.107211 -117.926057 36.093755 1.46 Coso 87 -118.001059 36.097505 -117.999514 36.085813 1.24 Coso 88 -117.908189 36.102137 -117.911719 36.083166 2.00 Coso 89 -117.907748 36.084049 -117.886130 36.077872 2.20 Coso 90 -117.878851 36.094858 -117.881939 36.090887 0.51 Coso 91 -117.872674 36.148903 -117.882821 36.122211 2.94 Coso 92 -117.903116 36.144050 -117.908410 36.132138 1.34 Coso 93 -117.897380 36.150888 -117.905542 36.131697 2.14 Coso 94 -117.895616 36.149123 -117.902675 36.130814 2.01 Coso 95 -117.894292 36.144932 -117.903557 36.124638 2.30 Coso 96 -117.879512 36.155521 -117.882380 36.153535 0.34 81

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Coso 97 -117.871571 36.159491 -117.876203 36.157506 0.49 Coso 98 -117.883483 36.155300 -117.889660 36.154197 0.61 Coso 99 -117.890763 36.151550 -117.883704 36.154197 0.73 Coso 100 -117.918998 36.182433 -117.922087 36.174491 0.88 Coso 101 -117.913484 36.197874 -117.918116 36.182212 1.69 Coso 102 -117.913042 36.190595 -117.915248 36.182212 0.89 Coso 103 -117.915028 36.182212 -117.905542 36.180006 0.94 Coso 104 -117.909072 36.189271 -117.911278 36.183536 0.63 Coso 105 -117.908410 36.186183 -117.909072 36.183095 0.33 Coso 106 -117.902233 36.201183 -117.903557 36.197654 0.39 Coso 107 -117.905101 36.202065 -117.906425 36.200962 0.17 Coso 108 -117.913704 36.203168 -117.914366 36.200521 0.28 Coso 109 -117.899366 36.201404 -117.901792 36.195668 0.64 Coso 110 -117.903116 36.193021 -117.904880 36.186624 0.68 Coso 111 -117.894292 36.211992 -117.902675 36.184418 2.98 Coso 112 -117.886792 36.169197 -117.876203 36.173168 1.10 Coso 113 -117.891645 36.148020 -117.886130 36.150226 0.58 Coso 114 -117.883042 36.149565 -117.876424 36.151770 0.68 Coso 115 -117.933337 36.251037 -117.936646 36.231184 2.17 Coso 116 -117.942602 36.239787 -117.939955 36.217066 2.39 Coso 117 -117.903998 36.227654 -117.905983 36.220595 0.75 Coso 118 -117.903336 36.223022 -117.905763 36.217507 0.62 Coso 119 -117.903116 36.219933 -117.906645 36.208683 1.21 Coso 120 -117.893189 36.242213 -117.879292 36.207139 3.99 Coso 121 -117.889218 36.220816 -117.881277 36.218389 0.81 Coso 122 -117.891645 36.228536 -117.879733 36.222139 1.33 Coso 123 -117.886351 36.234051 -117.886351 36.231404 0.27 Coso 124 -117.882159 36.238463 -117.884145 36.232287 0.67 Coso 125 -117.884145 36.231184 -117.884365 36.229639 0.16 Coso 126 -117.887674 36.230522 -117.880395 36.228978 0.72 Coso 127 -117.858115 36.250596 -117.823923 36.204051 5.94 Coso 128 -117.856130 36.209786 -117.831864 36.204051 2.54 Coso 129 -117.843997 36.233831 -117.855468 36.225669 1.43 Coso 130 -117.799437 36.246625 -117.827894 36.240890 2.96 Coso 131 -117.834291 36.250816 -117.838041 36.249493 0.39 Coso 132 -117.813335 36.236257 -117.820173 36.228316 1.05 Coso 133 -117.803849 36.228536 -117.791717 36.225669 1.21 Coso 134 -117.770981 36.241551 -117.802967 36.220154 3.95 Coso 135 -117.798114 36.221698 -117.794143 36.210007 1.33 Coso 136 -117.794143 36.217727 -117.783555 36.215301 1.11 Coso 137 -117.783775 36.225889 -117.787525 36.216845 1.01 Coso 138 -117.829659 36.215963 -117.782231 36.204933 4.74 Coso 139 -117.788187 36.206257 -117.792599 36.192580 1.54 Coso 140 -117.826350 36.213095 -117.811349 36.213536 1.45 Coso 141 -117.773187 36.197433 -117.760613 36.191256 1.38 Coso 142 -117.766790 36.172506 -117.771202 36.171624 0.44 Coso 143 -117.870909 36.199198 -117.858115 36.193462 1.37 Coso 144 -117.858997 36.193242 -117.859880 36.185080 0.85 82

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Coso 145 -117.862747 36.182874 -117.847085 36.188168 1.61 Coso 146 -117.847085 36.188168 -117.815320 36.179786 5.55 Coso 147 -117.821717 36.180227 -117.821497 36.168535 1.22 Coso 148 -117.858115 36.180889 -117.839585 36.185962 1.91 Coso 149 -117.843556 36.183536 -117.839144 36.184639 0.44 Coso 150 -117.840909 36.181109 -117.834953 36.184197 0.66 Coso 151 -117.829879 36.182874 -117.863850 36.173609 3.42 Coso 152 -117.861865 36.182653 -117.862306 36.173830 0.91 Coso 153 -117.863189 36.173388 -117.863189 36.168535 0.50 Coso 154 -117.887233 36.160594 -117.827011 36.174933 6.02 Coso 155 -117.875542 36.153756 -117.800982 36.165888 7.34 Coso 156 -117.802746 36.163462 -117.811791 36.164565 0.88 Coso 157 -117.758187 36.147579 -117.762599 36.142285 0.69 Coso 158 -117.781790 36.145373 -117.786643 36.135447 1.13 Coso 159 -117.809144 36.132138 -117.788187 36.127726 2.08 Coso 160 -117.794805 36.127726 -117.806496 36.129049 1.14 Coso 161 -117.789731 36.148020 -117.826350 36.140741 3.67 Coso 162 -117.812452 36.143829 -117.829438 36.148903 1.73 Coso 163 -117.833629 36.154638 -117.852600 36.149785 1.90 Coso 164 -117.852600 36.149785 -117.852380 36.149344 0.05 Coso 165 -117.851056 36.149785 -117.841129 36.147138 1.00 Coso 166 -117.827011 36.138756 -117.831203 36.138314 0.41 Coso 167 -117.848188 36.146476 -117.858777 36.143388 1.07 Coso 168 -117.854585 36.142726 -117.862527 36.139858 0.82 Coso 169 -117.861865 36.136329 -117.836276 36.143609 2.59 Coso 170 -117.851718 36.142506 -117.854144 36.133020 1.01 Coso 171 -117.855909 36.131697 -117.848188 36.133902 0.78 Coso 172 -117.856791 36.132800 -117.863409 36.131035 0.66 Coso 173 -117.863409 36.128608 -117.856350 36.129932 0.69 Coso 174 -117.860762 36.127505 -117.855688 36.129049 0.51 Coso 175 -117.852159 36.127947 -117.843997 36.128167 0.79 Coso 176 -117.841129 36.131697 -117.838482 36.131917 0.26 Coso 177 -117.833850 36.135226 -117.838262 36.134344 0.44 Coso 178 -117.846644 36.138314 -117.840468 36.139417 0.61 Coso 179 -117.828997 36.126844 -117.822600 36.127285 0.62 Coso 180 -117.835615 36.126623 -117.839806 36.125520 0.42 Coso 181 -117.840026 36.126844 -117.848850 36.123535 0.92 Coso 182 -117.838482 36.122652 -117.829438 36.118902 0.96 Coso 183 -117.866056 36.119123 -117.858777 36.122432 0.78 Coso 184 -117.856571 36.119343 -117.849953 36.121549 0.68 Coso 185 -117.848850 36.120667 -117.841129 36.122432 0.77 Coso 186 -117.844218 36.119343 -117.840909 36.120226 0.33 Coso 187 -117.861424 36.142506 -117.865174 36.113167 3.10 Coso 188 -117.855247 36.127947 -117.862968 36.113167 1.70 Coso 189 -117.828335 36.120446 -117.838262 36.104564 1.92 Coso 190 -117.827453 36.116476 -117.822820 36.113829 0.52 Coso 191 -117.797893 36.119785 -117.781570 36.115373 1.64 Coso 192 -117.776275 36.136329 -117.784658 36.107431 3.16 83

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Coso 193 -117.753554 36.119785 -117.749804 36.111182 0.96 Coso 194 -117.741422 36.156844 -117.717598 36.138976 2.95 Coso 195 -117.738775 36.087137 -117.730392 36.065298 2.42 Coso 196 -117.729730 36.073240 -117.726642 36.058901 1.54 Coso 197 -117.723113 36.057136 -117.715612 36.040813 1.87 Coso 198 -117.752451 36.068828 -117.742304 36.054931 1.74 Coso 199 -117.740760 36.054931 -117.723774 36.034636 2.73 Coso 200 -117.768775 36.084931 -117.770099 36.077872 0.74 Coso 201 -117.767893 36.079637 -117.768113 36.075887 0.39 Coso 202 -117.809805 36.079196 -117.762599 36.073019 4.61 Coso 203 -117.801864 36.071696 -117.755098 36.063975 4.62 Coso 204 -117.772084 36.067725 -117.776716 36.054931 1.40 Coso 205 -117.791496 36.058019 -117.775393 36.051622 1.69 Coso 206 -117.783996 36.052725 -117.773628 36.049416 1.06 Coso 207 -117.785981 36.051622 -117.774511 36.047430 1.19 Coso 208 -117.789952 36.048975 -117.777158 36.044783 1.31 Coso 209 -117.789952 36.060666 -117.798335 36.046327 1.69 Coso 210 -117.832306 36.063975 -117.794143 36.053386 3.88 Coso 211 -117.840247 36.069048 -117.830541 36.066401 0.99 Coso 212 -117.850174 36.068607 -117.835173 36.062651 1.57 Coso 213 -117.838262 36.065519 -117.842453 36.061328 0.59 Coso 214 -117.859438 36.066401 -117.837820 36.056695 2.33 Coso 215 -117.866497 36.061989 -117.845982 36.056034 2.11 Coso 216 -117.882601 36.062431 -117.856791 36.046989 3.02 Coso 217 -117.895616 36.078754 -117.895174 36.066181 1.33 Coso 218 -117.908851 36.069048 -117.872453 36.053828 3.87 Coso 219 -117.871571 36.055592 -117.872233 36.044783 1.14 Coso 220 -117.886351 36.056034 -117.872453 36.051180 1.43 Coso 221 -117.875983 36.045445 -117.843115 36.026254 3.82 Coso 222 -117.831423 36.052504 -117.801643 36.041916 3.08 Coso 223 -117.807820 36.031327 -117.780246 36.020518 2.89 Coso 224 -117.782011 36.040813 -117.779364 36.020518 2.15 Coso 225 -117.792820 36.040813 -117.786202 36.024489 1.84 Coso 226 -117.827232 36.017651 -117.812011 36.014783 1.50 Coso 227 -117.857233 36.023606 -117.838041 36.019195 1.93 Coso 228 -117.746495 36.039489 -117.743848 36.030886 0.93 Coso 229 -117.770099 36.037724 -117.768996 36.024268 1.43 Coso 230 -117.778481 36.030445 -117.756201 36.015445 2.65 Coso 231 -117.770761 36.041695 -117.774290 36.005297 3.88 Coso 232 -117.781790 36.006180 -117.760834 36.002209 2.06 Coso 233 -117.764363 36.002209 -117.768775 35.992282 1.11 Coso 234 -117.770099 36.003753 -117.774290 35.992724 1.21 Coso 235 -117.778702 36.004636 -117.787967 35.973091 3.58 Coso 236 -117.778261 36.003312 -117.790393 35.984341 2.30 Coso 237 -117.836718 36.020298 -117.843776 35.995591 2.68 Coso 238 -117.848850 35.990959 -117.852600 35.979488 1.25 Coso 239 -117.847085 35.989194 -117.850394 35.971767 1.90 Coso 240 -117.876203 35.976179 -117.874218 35.966694 1.00 84

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Coso 241 -117.836056 35.992944 -117.812011 35.988753 2.37 Coso 242 -117.827011 35.988312 -117.839365 35.960738 3.17 Coso 243 -117.832526 35.971326 -117.819070 35.967135 1.37 Coso 244 -117.824364 35.979267 -117.807820 35.976179 1.64 Coso 245 -117.811570 35.977723 -117.802967 35.975738 0.86 Coso 246 -117.793923 35.994488 -117.806055 35.963385 3.47 Coso 247 -117.812673 35.975297 -117.815982 35.968679 0.76 Coso 248 -117.815761 35.966253 -117.803188 35.959635 1.39 Coso 249 -117.797673 35.975959 -117.782672 35.971988 1.51 Coso 250 -117.776496 35.975076 -117.783555 35.959855 1.73 Coso 251 -117.784437 35.969561 -117.779584 35.968017 0.49 Coso 252 -117.797232 35.980150 -117.809805 35.934487 5.00 Coso 253 -117.800320 35.960738 -117.782452 35.951693 2.02 Coso 254 -117.838923 35.962502 -117.806055 35.947502 3.54 Coso 255 -117.802526 35.945076 -117.788628 35.936473 1.61 Coso 256 -117.833629 35.948605 -117.815982 35.942208 1.83 Coso 257 -117.816423 35.942208 -117.820394 35.934046 0.93 Coso 258 -117.817305 35.937134 -117.820835 35.926325 1.17 Coso 259 -117.787967 35.921031 -117.789070 35.917061 0.43 Coso 260 -117.708333 36.061328 -117.710539 36.051401 1.05 Coso 261 -117.704583 36.059784 -117.704362 36.054710 0.53 Coso 262 -117.713627 36.056695 -117.711201 36.053828 0.38 Coso 263 -117.711862 36.038386 -117.711421 36.031327 0.73 Coso 264 -117.995323 36.081622 -117.976132 36.031548 5.69 Coso 265 -117.974146 36.046107 -117.973264 36.037945 0.90 Coso 266 -117.972382 36.024268 -117.958043 36.013680 1.89 Coso 267 -117.948337 35.989856 -117.944587 35.981473 0.94 Coso 268 -118.065251 36.057578 -118.038118 35.991400 7.37 Coso 269 -118.083781 36.015665 -118.003485 35.964488 9.44 Coso 270 -118.067236 35.983238 -117.910616 35.924561 16.33 Coso 271 -117.945469 35.970885 -117.931572 35.955002 2.19 Coso 272 -117.979220 35.958532 -117.967529 35.954341 1.21 Coso 273 -117.976352 35.955223 -117.966205 35.950370 1.10 Coso 274 -117.983191 35.952135 -117.972161 35.947061 1.19 Coso 275 -117.933337 35.883089 -117.902454 35.873163 3.17 Coso 276 -117.900248 35.913310 -117.889439 35.904266 1.40 Coso 277 -117.924293 35.955002 -117.850394 35.871398 11.51 Coso 278 -117.888115 35.899854 -117.882380 35.891251 1.05 Coso 279 -117.885468 35.898972 -117.880174 35.892354 0.86 Coso 280 -117.897601 35.906472 -117.889880 35.904487 0.77 Coso 281 -117.863409 35.881325 -117.850835 35.866766 2.08 Coso 282 -117.848629 35.871839 -117.850835 35.856177 1.69 Coso 283 -117.848850 35.858162 -117.853262 35.853089 0.68 Coso 284 -117.838482 35.869633 -117.851497 35.862354 1.47 Coso 285 -117.855688 35.870957 -117.856130 35.863898 0.73 Coso 286 -117.841350 35.862354 -117.845762 35.855736 0.81 Coso 287 -117.838262 35.861030 -117.842232 35.854192 0.81 Coso 288 -117.835835 35.855515 -117.840688 35.853309 0.52 85

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Coso 289 -117.946793 35.901399 -117.911057 35.855515 5.89 Coso 290 -118.004588 35.909781 -117.962676 35.883531 4.89 Coso 291 -118.008559 35.926325 -117.942822 35.895443 7.17 Coso 292 -118.062604 35.980150 -118.061280 35.973753 0.68 Coso 293 -118.047383 35.975517 -118.048486 35.956326 1.99 Coso 294 -118.030618 35.971988 -118.036353 35.949929 2.37 Coso 295 -118.018265 35.967797 -118.005029 35.906472 6.55 Coso 296 -118.028633 35.930075 -118.008338 35.922355 2.17 Coso 297 -118.042971 35.953238 -118.010544 35.933384 3.76 Coso 298 -117.832526 35.864118 -117.845541 35.839853 2.84 Coso 299 -117.827232 35.840295 -117.832526 35.829044 1.28 Coso 300 -117.822820 35.834339 -117.827232 35.825735 0.99 Coso 301 -117.829217 35.821985 -117.827232 35.825515 0.41 Coso 302 -117.818408 35.834339 -117.824144 35.820441 1.55 Coso 303 -117.755981 35.841397 -117.755760 35.834559 0.74 Coso 304 -117.794143 35.805882 -117.792158 35.797941 0.85 Coso 305 -117.802085 35.910002 -117.787305 35.903825 1.56 Coso 306 -117.797011 35.917943 -117.717818 35.889045 8.23 Coso 307 -117.713186 35.908678 -117.721348 35.890810 2.02 Coso 308 -117.712304 35.895001 -117.713186 35.891913 0.33 Coso 309 -117.705024 35.893016 -117.706789 35.888604 0.49 Coso 310 -117.707671 35.885295 -117.691347 35.877354 1.78 Coso 311 -117.710318 35.888825 -117.717157 35.881766 0.99 Coso 312 -117.748701 35.898972 -117.745392 35.887501 1.25 Coso 313 -117.772525 35.906472 -117.769658 35.906252 0.31 Coso 314 -117.773408 35.903604 -117.775172 35.896545 0.82 Coso 315 -117.762157 35.879780 -117.761054 35.872722 0.74 Coso 316 -117.678994 35.907354 -117.683406 35.895884 1.27 Coso 317 -117.675685 35.905149 -117.678774 35.893237 1.33 Coso 318 -117.668185 35.906913 -117.669950 35.891031 1.66 Coso 319 -117.667744 35.848236 -117.670832 35.835221 1.42 Coso 320 -117.665979 35.844706 -117.667744 35.829927 1.60 Coso 321 -117.723995 35.881986 -117.704362 35.804559 8.45 Coso 322 -117.645023 35.973753 -117.656714 35.956988 2.07 Coso 323 -117.650758 35.947943 -117.654729 35.934267 1.47 Coso 324 -117.641494 35.950591 -117.646126 35.935370 1.64 Coso 325 -117.639729 35.931840 -117.645905 35.923899 1.02 Coso 326 -117.623184 35.925664 -117.624729 35.923899 0.24 Coso 327 -117.617449 35.927428 -117.621861 35.921031 0.79 Coso 328 -117.597155 35.937796 -117.596272 35.920811 1.78 Coso 329 -117.618111 35.962723 -117.604655 35.949708 1.87 Coso 330 -117.635538 35.976620 -117.628479 35.967576 1.16 Coso 331 -117.677671 36.006621 -117.678994 36.001547 0.54 Coso 332 -117.559875 35.997135 -117.583478 35.972209 3.64 Coso 333 -117.581051 36.031768 -117.567154 36.013018 2.37 Coso 334 -117.563404 36.023606 -117.574213 36.020959 1.08 Coso 335 -117.566713 36.021621 -117.560095 35.997135 2.74 Coso 336 -117.584140 36.052504 -117.581272 36.043460 0.98

86

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Coso 337 -117.647891 36.030004 -117.649655 36.022504 0.80 Coso 338 -117.659362 36.036180 -117.653406 36.023827 1.41 Coso 339 -117.587449 36.056916 -117.646126 36.028239 7.08 Coso 340 -117.659362 36.047872 -117.662450 36.041474 0.73 Coso 341 -117.671053 36.047872 -117.665759 36.034857 1.52 Coso 342 -117.669950 36.042798 -117.669288 36.038607 0.44 Coso 343 -117.686715 36.048313 -117.690024 36.046107 0.39 Coso 344 -117.690465 36.048313 -117.689362 36.040592 0.81 Coso 345 -117.669509 36.072799 -117.645464 36.054048 3.03 Coso 346 -117.601346 36.075225 -117.647008 36.056034 4.85 Coso 347 -117.641273 36.053828 -117.646567 36.052063 0.54 Coso 348 -117.693112 36.095961 -117.692671 36.085372 1.18 Coso 349 -117.686274 36.094417 -117.681200 36.092652 0.52 Coso 350 -117.675465 36.098828 -117.674803 36.095961 0.30 Coso 351 -117.629361 36.095299 -117.623184 36.059122 3.93 Coso 352 -117.660906 36.109858 -117.615243 36.081843 5.31 Coso 353 -117.633773 36.108534 -117.610170 36.082063 3.61 Coso 354 -117.638185 36.127064 -117.638185 36.104564 2.52 Coso 355 -117.654067 36.136550 -117.641052 36.098608 4.14 Coso 356 -117.685391 36.152653 -117.659803 36.105446 5.56 Coso 357 -117.692009 36.155079 -117.669068 36.108976 5.37 Coso 358 -117.686715 36.135888 -117.679435 36.122873 1.54 Coso 359 -117.680538 36.128829 -117.670171 36.130814 1.02 Coso 360 -117.682524 36.177800 -117.674803 36.171403 1.00 Coso 361 -117.674803 36.177359 -117.669288 36.131697 4.84 Coso 362 -117.706348 36.141844 -117.696642 36.123314 2.16 Coso 363 -117.717157 36.162800 -117.703701 36.147138 2.09 Coso 364 -117.705686 36.178241 -117.723774 36.153535 3.12 Coso 365 -117.753775 36.176918 -117.738995 36.171844 1.52 Coso 366 -117.761716 36.181550 -117.753334 36.168094 1.61 Coso 367 -117.744951 36.196330 -117.747819 36.174271 2.38 Coso 368 -117.701053 36.200080 -117.728848 36.175153 3.76 Coso 369 -117.704362 36.219272 -117.698627 36.186624 3.50 Coso 370 -117.708995 36.225448 -117.746054 36.226551 3.60 Coso 371 -117.706568 36.221036 -117.719583 36.224786 1.31 Coso 372 -117.719804 36.239345 -117.722671 36.224786 1.54 Coso 373 -117.731054 36.246404 -117.734142 36.239345 0.79 Coso 374 -117.734363 36.239345 -117.727524 36.237581 0.68 Coso 375 -117.754878 36.244860 -117.754878 36.224566 2.12 Yucca 376 -116.689318 37.221000 -116.749911 37.183847 7.12 Yucca 377 -116.683568 37.236037 -116.705682 37.188270 5.36 Yucca 378 -116.595552 37.211269 -116.603513 37.130330 8.31 Yucca 379 -116.642877 37.070620 -116.653050 37.023737 4.90 Yucca 380 -116.638896 37.069293 -116.634916 37.017988 5.29 Yucca 381 -116.603071 37.022411 -116.612801 36.989239 3.52 Yucca 382 -116.666318 36.991008 -116.544246 36.492545 53.31 87

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Yucca 383 -116.489844 36.748632 -116.516381 36.691576 6.40 Yucca 384 -116.457557 36.745536 -116.473037 36.667693 8.17 Yucca 385 -116.484094 36.716787 -116.497805 36.673442 4.71 Yucca 386 -116.610147 36.899011 -116.608820 36.856109 4.40 Yucca 387 -116.634916 36.852128 -116.646858 36.800822 5.52 Yucca 388 -116.641108 36.819841 -116.615013 36.718556 11.42 Yucca 389 -116.561053 36.908299 -116.565034 36.887512 2.17 Yucca 390 -116.504882 36.919357 -116.503555 36.886185 3.45 Yucca 391 -116.477017 36.926876 -116.475248 36.888838 3.90 Yucca 392 -116.432346 36.941029 -116.460210 36.721652 23.22 Yucca 393 -116.512843 36.868051 -116.537611 36.791092 8.27 Yucca 394 -116.554861 36.882204 -116.563264 36.864070 2.03 Yucca 395 -116.551323 36.859205 -116.571226 36.744209 12.00 Yucca 396 -116.500459 36.866282 -116.501344 36.857878 0.87 Yucca 397 -116.481883 36.863186 -116.473037 36.741998 12.68 Yucca 398 -116.503555 36.839744 -116.507978 36.798169 4.29 Yucca 399 -116.481883 36.819841 -116.490286 36.778266 4.54 Yucca 400 -116.488517 36.806130 -116.482767 36.782246 2.52 Yucca 401 -116.510189 36.776939 -116.488517 36.794630 2.77 Yucca 402 -116.514612 36.778708 -116.545130 36.686711 9.99 Yucca 403 -116.453134 36.825148 -116.434557 36.805688 2.68 Yucca 404 -116.419962 36.834437 -116.429692 36.799053 3.75 Yucca 405 -116.397847 36.839744 -116.408462 36.790650 5.14 Yucca 406 -116.461537 36.828244 -116.439865 36.781362 5.25 Yucca 407 -116.454461 36.801707 -116.498690 36.690692 12.41 Yucca 408 -116.382809 36.787554 -116.354503 36.762785 3.73 Yucca 409 -116.356714 36.763228 -116.402270 36.537659 23.61 Yucca 410 -116.880564 36.734301 -116.746363 36.684332 13.93 Yucca 411 -115.810332 36.748572 -115.788322 36.764634 2.69 Yucca 412 -115.794866 36.742029 -115.747872 36.751547 4.64 Yucca 413 -115.763933 36.734891 -115.771666 36.717639 1.92 Yucca 414 -115.791297 36.717639 -115.813307 36.698009 2.93 Yucca 415 -115.812712 36.720019 -115.828178 36.698009 2.71 Yucca 416 -115.784753 36.704552 -115.876957 36.655774 10.27 Yucca 417 -115.819255 36.677784 -115.844240 36.662317 2.89 Yucca 418 -115.819255 36.657558 -115.900752 36.626625 8.49 Yucca 419 -115.764528 36.647445 -115.794866 36.641497 2.99 Yucca 420 -115.743113 36.644471 -115.775830 36.636143 3.27 Yucca 421 -115.715749 36.576062 -115.794866 36.552267 8.29 Yucca 422 -115.765123 36.573682 -115.785348 36.564164 2.18 Yucca 423 -115.794866 36.619487 -115.824609 36.610564 3.01 Yucca 424 -115.844240 36.600451 -115.882311 36.588554 3.87 Yucca 425 -115.969162 36.481478 -115.990577 36.417233 7.26 Yucca 426 -116.005448 36.590933 -115.810927 36.517765 20.22 Yucca 427 -115.925736 36.565949 -115.938229 36.552862 1.81 Yucca 428 -115.900157 36.554646 -115.945367 36.532636 4.92 Yucca 429 -115.920977 36.662912 -115.931090 36.626030 3.98 Yucca 430 -115.942987 36.648040 -115.998310 36.639117 5.42 88

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Yucca 431 -115.958454 36.659938 -115.991766 36.650420 3.36 Yucca 432 -115.975110 36.664696 -115.997120 36.658153 2.23 Yucca 433 -115.996525 36.674809 -115.944177 36.672430 5.06 Yucca 434 -116.009612 36.667076 -116.056607 36.654584 4.71 Yucca 435 -116.101816 36.635548 -116.111334 36.608779 2.90 Yucca 436 -116.118473 36.636738 -116.097058 36.581415 6.09 Yucca 437 -116.031027 36.707527 -116.052443 36.681948 3.34 Yucca 438 -116.023889 36.686707 -116.066125 36.678378 4.16 Yucca 439 -116.005448 36.693250 -115.963213 36.696819 4.09 Yucca 440 -115.958454 36.719424 -115.993551 36.700388 4.05 Yucca 441 -116.009612 36.755116 -116.023294 36.728347 3.05 Yucca 442 -116.030433 36.711691 -116.139293 36.667076 11.47 Yucca 443 -116.149406 36.658153 -116.163682 36.650420 1.59 Yucca 444 -116.177364 36.637928 -116.182718 36.614728 2.44 Yucca 445 -116.224954 36.653394 -116.243989 36.639712 2.31 Yucca 446 -116.249938 36.645661 -116.260051 36.636143 1.38 Yucca 447 -116.246964 36.632574 -116.277897 36.615918 3.44 Yucca 448 -116.108955 36.692655 -116.194021 36.658748 9.06 Yucca 449 -116.023294 36.800326 -116.032217 36.783075 1.97 Yucca 450 -116.041140 36.786049 -116.080401 36.753331 5.06 Yucca 451 -116.120852 36.820551 -116.129180 36.800326 2.23 Yucca 452 -116.158329 36.761065 -116.170821 36.738460 2.62 Yucca 453 -116.133344 36.721804 -116.284440 36.672430 15.67 Yucca 454 -116.192831 36.721209 -116.222574 36.689681 4.42 Yucca 455 -116.165467 36.777721 -116.182123 36.743219 3.89 Yucca 456 -116.177364 36.898479 -116.192831 36.880633 2.36 Yucca 457 -116.145242 36.930006 -116.201159 36.887771 7.04 Yucca 458 -116.107765 36.941904 -116.097652 36.893720 5.41 Yucca 459 -115.769882 37.013882 -115.757389 36.956775 5.97 Yucca 460 -115.762148 36.942499 -115.753820 36.919299 2.51 Yucca 461 -115.771071 36.941309 -115.771071 36.923463 1.83 Yucca 462 -115.790702 37.010908 -115.785943 36.941904 7.11 Yucca 463 -115.809143 36.942499 -115.821635 36.922273 2.40 Yucca 464 -115.882906 36.946068 -115.872198 36.911566 3.82 Yucca 465 -115.934659 37.034108 -115.928116 37.015667 1.99 Yucca 466 -115.944177 37.065636 -115.934659 37.044221 2.38 Yucca 467 -115.961428 37.194721 -115.940608 37.147132 5.26 Yucca 468 -115.823420 37.229224 -115.827584 37.162599 6.89 Yucca 469 -115.907296 37.282167 -115.923952 37.224465 6.12 Yucca 470 -115.844240 37.289305 -115.879932 37.261941 4.43 Yucca 471 -116.023889 37.217326 -116.046494 37.184014 4.04 Yucca 472 -116.031622 37.202455 -116.014371 37.005554 20.36 Yucca 473 -116.133939 37.223870 -116.126801 37.182229 4.31 Yucca 474 -116.132749 37.166168 -116.161303 37.098353 7.46 Yucca 475 -116.145836 37.119768 -116.150001 37.099543 2.11 Yucca 476 -116.229118 37.056118 -116.235661 37.025185 3.29 Yucca 477 -115.846619 37.310720 -115.850783 37.250639 6.53 Yucca 478 -115.843645 37.335704 -115.853758 37.316669 2.17 89

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Yucca 479 -115.882906 37.336894 -115.895398 37.315479 2.49 Yucca 480 -115.897183 37.321428 -115.909080 37.305366 2.00 Yucca 481 -115.907890 37.325592 -115.917408 37.310720 1.77 Yucca 482 -115.920383 37.374371 -115.939418 37.320238 5.81 Yucca 483 -115.934064 37.378535 -115.945962 37.355335 2.63 Yucca 484 -116.013182 37.324402 -116.018535 37.307151 1.83 Yucca 485 -116.004853 37.305366 -116.036381 37.223870 9.40 Yucca 486 -115.997715 37.316074 -116.007233 37.243500 7.62 Yucca 487 -116.011397 37.486205 -115.986413 37.448729 4.73 Yucca 488 -116.135724 37.481446 -116.148811 37.455272 2.95 Yucca 489 -116.162493 37.439806 -116.185098 37.389837 5.88 Yucca 490 -116.177959 37.369017 -116.189857 37.350576 2.27 Yucca 491 -116.202944 37.348197 -116.199374 37.320238 2.87 Yucca 492 -116.354634 37.493939 -116.376644 37.441591 5.73 Yucca 493 -116.280276 37.435047 -116.281466 37.398165 3.76 Yucca 494 -116.273138 37.418391 -116.273733 37.389242 2.97 Yucca 495 -116.259456 37.153081 -116.236851 37.112630 4.67 Yucca 496 -116.242800 37.106681 -116.235661 37.076938 3.12 Yucca 497 -116.406387 37.138209 -116.406387 37.109061 2.98 Jaraguay 498 -115.550630 29.872054 -115.535972 29.877551 1.54 Jaraguay 499 -115.546762 29.870426 -115.532308 29.873276 1.43 Jaraguay 500 -115.533733 29.852918 -115.520907 29.865336 1.85 Jaraguay 501 -115.520500 29.855768 -115.515818 29.859025 0.58 Jaraguay 502 -115.523554 29.849661 -115.526811 29.846607 0.46 Jaraguay 503 -115.565084 29.839889 -115.519075 29.853325 4.68 Jaraguay 504 -115.514596 29.850882 -115.526404 29.841110 1.57 Jaraguay 505 -115.473066 29.826860 -115.459223 29.811591 2.16 Jaraguay 506 -115.458001 29.821567 -115.444972 29.807723 1.99 Jaraguay 507 -115.165719 29.863127 -115.178568 29.842783 2.58 Jaraguay 508 -115.142876 29.849564 -115.127529 29.855989 1.65 Jaraguay 509 -115.159294 29.723929 -115.175356 29.718218 1.67 Jaraguay 510 -115.101830 29.732852 -115.085769 29.709295 3.04 Jaraguay 511 -115.085412 29.709295 -115.085769 29.708581 0.09 Jaraguay 512 -114.961561 29.718932 -114.966915 29.708938 1.23 Jaraguay 513 -114.946214 29.690021 -114.900171 29.680028 4.63 Jaraguay 514 -114.926940 29.683240 -114.949426 29.680741 2.27 Jaraguay 515 -114.927654 29.671461 -114.916232 29.671818 1.10 Jaraguay 516 -114.933365 29.669320 -114.973696 29.668963 3.94 Jaraguay 517 -114.974767 29.663966 -114.953709 29.661468 2.05 Jaraguay 518 -114.837353 29.845638 -114.843421 29.837429 1.08 Jaraguay 519 -114.828073 29.847423 -114.834855 29.837786 1.25 Jaraguay 520 -114.815224 29.854204 -114.823434 29.841355 1.63 Jaraguay 521 -114.809514 29.855632 -114.815938 29.840641 1.78 Jaraguay 522 -114.795237 29.859915 -114.805588 29.843853 2.04 Jaraguay 523 -114.769182 29.869195 -114.787385 29.845995 3.12 Jaraguay 524 -114.761330 29.850278 -114.785243 29.823152 3.79 Jaraguay 525 -114.785243 29.823152 -114.793452 29.800309 2.84 Jaraguay 526 -114.737773 29.838143 -114.752764 29.828863 1.78 90

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Jaraguay 527 -114.706721 29.851706 -114.742413 29.819940 4.93 Jaraguay 528 -114.744554 29.810303 -114.773822 29.779251 4.46 Jaraguay 529 -114.742056 29.788888 -114.775606 29.749984 5.40 Jaraguay 530 -114.706007 29.776039 -114.752407 29.715006 8.13 Jaraguay 531 -114.593578 29.913810 -114.592150 29.902031 1.31 Jaraguay 532 -114.582870 29.914880 -114.582513 29.909883 0.56 Jaraguay 533 -114.566809 29.910240 -114.564310 29.901674 0.98 Jaraguay 534 -114.556101 29.895964 -114.554316 29.876690 2.16 Jaraguay 535 -114.534329 29.888468 -114.539326 29.863484 2.81 Jaraguay 536 -114.545037 29.874192 -114.545393 29.855632 2.06 Jaraguay 537 -114.548606 29.834930 -114.537541 29.835287 1.07 Jaraguay 538 -114.543609 29.849921 -114.539326 29.823509 2.96 Jaraguay 539 -114.551461 29.871693 -114.554673 29.853133 2.08 Jaraguay 540 -114.580015 29.902031 -114.566095 29.872050 3.59 Jaraguay 541 -114.585725 29.895607 -114.583584 29.886684 1.01 Jaraguay 542 -114.577873 29.872764 -114.574661 29.863484 1.08 Jaraguay 543 -114.602144 29.888825 -114.592150 29.850278 4.39 Jaraguay 544 -114.609282 29.888468 -114.603571 29.859201 3.30 Jaraguay 545 -114.566809 29.838143 -114.568593 29.831361 0.77 Jaraguay 546 -114.527548 29.833146 -114.507203 29.771399 7.31 Jaraguay 547 -114.545393 29.814586 -114.498994 29.742845 9.41 Jaraguay 548 -114.524692 29.759264 -114.507917 29.746058 2.18 Jaraguay 549 -114.517911 29.771756 -114.507917 29.737491 3.93 Jaraguay 550 -114.516840 29.744630 -114.513985 29.736421 0.95 Jaraguay 551 -114.553246 29.762833 -114.532901 29.746771 2.65 Jaraguay 552 -114.557529 29.813515 -114.531474 29.780679 4.46 Jaraguay 553 -114.573233 29.817798 -114.550747 29.791386 3.65 Jaraguay 554 -114.553246 29.791029 -114.532901 29.761762 3.84 Jaraguay 555 -114.567879 29.807091 -114.553960 29.778894 3.41 Jaraguay 556 -114.611424 29.771756 -114.597861 29.762119 1.69 Jaraguay 557 -114.592507 29.765688 -114.515055 29.705726 10.11 Jaraguay 558 -114.542895 29.723929 -114.427253 29.551180 22.55 Jaraguay 559 -114.452238 29.678600 -114.436533 29.658255 2.72 Jaraguay 560 -114.379783 29.663609 -114.347303 29.652188 3.38 Jaraguay 561 -114.355156 29.624705 -114.338380 29.620065 1.72 Jaraguay 562 -114.374072 29.656828 -114.356583 29.648976 1.90 Jaraguay 563 -114.367648 29.648262 -114.375143 29.642908 0.94 Jaraguay 564 -114.377641 29.650403 -114.361937 29.637911 2.06 Jaraguay 565 -114.369075 29.648619 -114.359082 29.643622 1.11 Jaraguay 566 -114.470084 29.682883 -114.402269 29.602219 11.11 Jaraguay 567 -114.508988 29.731067 -114.390491 29.575093 20.88 Jaraguay 568 -114.357297 29.552250 -114.344805 29.535118 2.26 Jaraguay 569 -114.363722 29.551537 -114.357297 29.541186 1.31 Jaraguay 570 -114.364435 29.584730 -114.304116 29.537260 7.86 Jaraguay 571 -114.446527 29.525482 -114.421543 29.503709 3.42 Jaraguay 572 -114.417260 29.584730 -114.221311 29.403058 27.91 Jaraguay 573 -114.223452 29.403415 -114.223809 29.382714 2.31 Jaraguay 574 -114.327673 29.542257 -114.293409 29.490860 6.61 91

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Jaraguay 575 -114.235231 29.490503 -114.232375 29.477297 1.50 Jaraguay 576 -114.205250 29.501568 -114.198111 29.484079 2.07 Jaraguay 577 -114.206677 29.485507 -114.192044 29.475156 1.82 Jaraguay 578 -114.274849 29.577592 -114.224880 29.445532 15.83 Jaraguay 579 -114.379426 29.601148 -114.248794 29.476227 19.18 Jaraguay 580 -114.329814 29.550466 -114.223809 29.408769 18.98 Jaraguay 581 -114.235945 29.384855 -114.234517 29.353446 3.51 Jaraguay 582 -114.254504 29.386283 -114.243440 29.348093 4.39 Jaraguay 583 -114.280916 29.385212 -114.250935 29.317755 8.10 Jaraguay 584 -114.279846 29.373791 -114.277704 29.361656 1.37 Jaraguay 585 -114.277704 29.354874 -114.266640 29.308118 5.33 Jaraguay 586 -114.263427 29.322038 -114.253791 29.301336 2.49 Jaraguay 587 -114.319821 29.305976 -114.269495 29.290272 5.16 Jaraguay 588 -114.213459 29.398418 -114.083897 29.353803 13.47 Jaraguay 589 -114.144216 29.400560 -114.162776 29.358800 4.99 Jaraguay 590 -114.072833 29.340954 -114.104955 29.312401 4.44 Jaraguay 591 -114.091392 29.344523 -114.074617 29.308832 4.30 Jaraguay 592 -114.101029 29.320253 -114.092820 29.303478 2.03 Jaraguay 593 -114.079257 29.340954 -114.074974 29.328462 1.46 Jaraguay 594 -114.070691 29.341668 -114.063910 29.318825 2.63 Jaraguay 595 -114.072833 29.302407 -114.063196 29.293841 1.33 Jaraguay 596 -114.079614 29.300266 -114.043922 29.275638 4.41 Jaraguay 597 -114.153853 29.251725 -114.173484 29.502996 28.11 Jaraguay 598 -114.456878 29.337028 -114.288412 29.288487 17.32 Jaraguay 599 -114.430109 29.338099 -114.404054 29.317398 3.49 Jaraguay 600 -114.262357 29.287060 -114.186690 29.241731 8.90 Jaraguay 601 -114.295907 29.284204 -114.237372 29.267786 6.01 Jaraguay 602 -114.248794 29.295626 -114.168487 29.252795 9.48 Jaraguay 603 -114.270209 29.274567 -114.089965 29.166778 21.23 Jaraguay 604 -114.167773 29.295269 -114.123515 29.248869 6.72 Jaraguay 605 -114.017510 29.282063 -113.972181 29.263860 4.82 Jaraguay 606 -114.022150 29.278137 -113.993240 29.263146 3.25 Jaraguay 607 -114.041424 29.278493 -114.007159 29.249226 4.65 Jaraguay 608 -114.028218 29.247441 -113.999307 29.233165 3.33 Jaraguay 609 -113.992169 29.227811 -113.981104 29.222457 1.22 Jaraguay 610 -114.010372 29.220673 -113.986101 29.212463 2.54 Jaraguay 611 -114.015725 29.210679 -114.009301 29.207467 0.72 Jaraguay 612 -114.123515 29.137153 -114.121017 29.121449 1.77 Jaraguay 613 -114.107097 29.128587 -114.106026 29.116452 1.36 Jaraguay 614 -114.110309 29.101105 -114.106740 29.062557 4.32 Jaraguay 615 -114.122801 29.093609 -114.114235 29.040071 6.05 Jaraguay 616 -114.130297 29.086114 -114.121374 29.032933 6.01 Jaraguay 617 -114.106740 29.032933 -114.102100 28.995100 4.26 Jaraguay 618 -114.112451 28.968688 -114.090678 28.853403 13.16 Jaraguay 619 -114.244154 28.986177 -114.226308 28.904799 9.38 Jaraguay 620 -114.349802 29.043641 -114.242012 28.893021 20.04 Jaraguay 621 -114.281987 28.920147 -114.269852 28.891593 3.45 92

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Jaraguay 622 -114.263427 28.898731 -114.245581 28.870178 3.71 Jaraguay 623 -114.417260 28.892664 -114.350873 28.850904 7.96 Jaraguay 624 -114.300190 29.093252 -114.324104 29.063985 4.06 Jaraguay 625 -114.442244 29.141080 -114.371931 29.116095 7.53 Jaraguay 626 -114.446884 29.303478 -114.465444 29.297767 1.90 Jaraguay 627 -114.551461 29.290629 -114.447241 29.295982 10.08 Jaraguay 628 -114.651755 29.317398 -114.593221 29.275995 7.30 Jaraguay 629 -114.625700 29.237805 -114.593934 29.223528 3.45 Jaraguay 630 -114.614636 29.177842 -114.594648 29.151787 3.58 Jaraguay 631 -114.619633 29.161781 -114.582513 29.127874 5.35 Jaraguay 632 -113.961117 29.229952 -113.959689 29.223885 0.69 Jaraguay 633 -113.950052 29.247085 -113.953265 29.228882 2.06 Jaraguay 634 -113.943271 29.238519 -113.945769 29.226026 1.42 Jaraguay 635 -114.613653 29.078497 -114.567551 29.052025 5.34 Jaraguay 636 -115.090220 29.575563 -115.057479 29.573469 3.17 Jaraguay 637 -115.106210 29.543964 -115.059192 29.534446 4.66 San Borja 638 -114.140746 28.974194 -114.032821 28.687935 34.16 San Borja 639 -114.172488 28.749111 -114.010313 28.640033 19.94 San Borja 640 -114.083032 28.674084 -114.085341 28.648113 2.92 San Borja 641 -113.782922 28.590399 -113.748294 28.547692 5.92 San Borja 642 -113.767340 28.559234 -113.750603 28.545383 2.24 San Borja 643 -113.835441 28.601365 -113.784077 28.570777 6.03 San Borja 644 -113.927206 28.529223 -113.833133 28.544806 9.24 San Borja 645 -113.975685 28.507292 -113.850447 28.532686 12.43 San Borja 646 -113.990113 28.443230 -113.881035 28.377437 13.13 San Borja 647 -113.906429 28.381477 -113.871801 28.360123 4.12 San Borja 648 -113.753134 28.992018 -113.683178 28.950615 8.19 San Borja 649 -113.701738 28.959657 -113.674136 28.920158 5.16 San Borja 650 -113.671757 28.889225 -113.656528 28.881611 1.70 San Borja 651 -113.738382 28.804992 -113.644631 28.838304 9.81 San Borja 652 -113.624168 28.885894 -113.614174 28.822124 7.22 San Borja 653 -113.743616 28.774535 -113.655101 28.792619 8.79 San Borja 654 -113.591331 28.883514 -113.595138 28.809275 8.33 San Borja 655 -113.583241 28.892080 -113.586096 28.854961 4.27 San Borja 656 -113.578958 28.859244 -113.582289 28.832118 3.14 San Borja 657 -113.569440 28.836401 -113.578482 28.824979 1.55 San Borja 658 -113.586572 28.797378 -113.544694 28.954898 18.30 San Borja 659 -113.594662 28.942049 -113.528989 28.854485 11.75 San Borja 660 -113.559922 28.807371 -113.549452 28.793571 1.85 San Borja 661 -113.568488 28.803088 -113.554687 28.790239 1.96 San Borja 662 -113.571819 28.794522 -113.561826 28.783101 1.60 San Borja 663 -113.582289 28.795474 -113.595138 28.767396 3.39 San Borja 664 -113.463792 28.770252 -113.481400 28.748361 2.99 San Borja 665 -113.551832 28.783577 -113.500911 28.627484 18.37 San Borja 666 -113.544218 28.725518 -113.542314 28.716476 1.03 San Borja 667 -113.531369 28.705055 -113.529465 28.685067 2.25 San Borja 668 -113.524706 28.683164 -113.519947 28.654134 3.29

93

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

San Borja 669 -113.551356 28.719331 -113.535176 28.655086 7.46 San Borja 670 -113.594662 28.726946 -113.544218 28.670314 8.13 San Borja 671 -113.551832 28.711717 -113.393360 28.452356 35.18 San Borja 672 -113.517568 28.633671 -113.558494 28.597979 5.63 San Borja 673 -113.502815 28.534685 -113.455226 28.471392 8.50 San Borja 674 -113.504243 28.524691 -113.499484 28.415712 12.34 San Borja 675 -113.488062 28.437603 -113.489966 28.410953 3.00 San Borja 676 -113.518044 28.502325 -113.514236 28.460446 4.75 San Borja 677 -113.359571 28.547534 -113.357668 28.534685 1.46 San Borja 678 -113.354813 28.568474 -113.348626 28.538016 3.48 San Borja 679 -113.331018 28.517553 -113.321500 28.501849 1.99 San Borja 680 -113.337680 28.558956 -113.293898 28.504704 7.64 San Borja 681 -113.342439 28.567998 -113.273435 28.546107 7.15 San Borja 682 -113.311030 28.545631 -113.255827 28.479482 9.21 San Borja 683 -113.301989 28.553245 -113.246309 28.483765 9.48 San Borja 684 -113.308175 28.584654 -113.231556 28.507559 11.41 San Borja 685 -113.133523 28.581323 -113.145420 28.538492 4.95 San Borja 686 -113.190630 28.615111 -113.169215 28.585606 3.91 San Borja 687 -113.255827 28.643665 -113.234412 28.613683 4.32 San Borja 688 -113.254399 28.611780 -113.213948 28.587985 4.73 San Borja 689 -113.306272 28.696489 -113.301513 28.659369 4.25 San Borja 690 -113.320548 28.717904 -113.316741 28.702675 1.75 San Borja 691 -113.290567 28.729325 -113.294850 28.704579 2.86 San Borja 692 -113.239171 28.688398 -113.243454 28.672694 1.81 San Borja 693 -113.230605 28.696964 -113.232032 28.682212 1.66 San Borja 694 -113.254399 28.713621 -113.213948 28.718380 3.96 San Borja 695 -113.203479 28.737891 -113.210617 28.715048 2.65 San Borja 696 -113.193009 28.741222 -113.198720 28.706958 3.88 San Borja 697 -113.193961 28.682212 -113.196340 28.666031 1.83 San Borja 698 -113.206810 28.709814 -113.199196 28.668887 4.71 San Borja 699 -113.211093 28.700772 -113.208714 28.630340 8.11 San Borja 700 -113.218707 28.699820 -113.222039 28.689826 1.17 San Borja 701 -113.225846 28.714097 -113.232032 28.668411 5.28 San Borja 702 -113.236791 28.760258 -113.220135 28.719807 4.87 San Borja 703 -113.203955 28.765017 -113.197768 28.749313 1.86 San Borja 704 -113.260110 28.758830 -113.262965 28.746457 1.42 San Borja 705 -113.326259 28.709814 -113.327687 28.677929 3.63 San Borja 706 -113.328639 28.744078 -113.345295 28.631767 12.77 San Borja 707 -113.359571 28.676025 -113.358620 28.658417 1.99 San Borja 708 -113.361951 28.659369 -113.367186 28.639381 2.37 San Borja 709 -113.363379 28.668887 -113.366234 28.661273 0.90 San Borja 710 -113.377180 28.670790 -113.376704 28.658893 1.34 San Borja 711 -113.389553 28.675073 -113.390504 28.663652 1.29 San Borja 712 -113.384318 28.710765 -113.359571 28.694109 3.03 San Borja 713 -113.349578 28.755023 -113.358620 28.645568 12.64 San Borja 714 -113.391456 28.722663 -113.358144 28.699820 4.11 San Borja 715 -113.413823 28.733608 -113.392884 28.719807 2.55 94

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

San Borja 716 -113.413823 28.718855 -113.409064 28.714572 0.66 San Borja 717 -113.412396 28.710765 -113.413347 28.691254 2.19 San Borja 718 -113.435238 28.719331 -113.430955 28.695061 2.87 San Borja 719 -113.436666 28.702199 -113.409540 28.697916 2.66 San Borja 720 -113.367662 28.730277 -113.359096 28.720283 1.39 San Borja 721 -113.327211 28.796902 -113.156841 28.504228 37.55 San Borja 722 -113.262489 28.793571 -113.279146 28.663176 14.78 San Borja 723 -113.279146 28.787384 -113.327211 28.635574 17.72 San Borja 724 -113.283905 28.809751 -113.276766 28.783577 3.02 San Borja 725 -113.350530 28.781673 -113.360047 28.735988 5.43 San Borja 726 -113.361475 28.746457 -113.361475 28.739795 0.75 San Borja 727 -113.364806 28.747409 -113.365758 28.735512 1.34 San Borja 728 -113.367662 28.747885 -113.376228 28.743126 0.98 San Borja 729 -113.388125 28.751216 -113.395739 28.737415 1.71 San Borja 730 -113.422389 28.760258 -113.392408 28.731229 4.42 San Borja 731 -113.419534 28.746933 -113.409064 28.733132 1.85 San Borja 732 -113.425721 28.747885 -113.417630 28.736463 1.50 San Borja 733 -113.410492 28.768824 -113.419058 28.683164 9.80 San Borja 734 -113.390029 28.777390 -113.387173 28.755975 2.42 San Borja 735 -113.453798 28.916351 -113.420010 28.917778 3.26 San Borja 736 -113.425245 28.916351 -113.395739 28.900170 3.37 San Borja 737 -113.380035 28.901598 -113.353385 28.863527 5.02 San Borja 738 -113.389077 28.879707 -113.384794 28.771680 13.27 San Borja 739 -113.387649 28.785004 -113.420486 28.711241 8.86 San Borja 740 -113.404781 28.793095 -113.424293 28.765969 3.73 San Borja 741 -113.425245 28.837829 -113.411444 28.815937 2.79 San Borja 742 -113.265563 28.407523 -113.203102 28.406333 6.05 San Borja 743 -113.220353 28.389082 -113.207266 28.373616 2.15 San Borja 744 -113.203102 28.374805 -113.185256 28.362908 2.18 San Borja 745 -113.179902 28.377780 -113.159082 28.360528 2.79 San Borja 746 -113.107924 28.389677 -113.088888 28.375995 2.40 San Borja 747 -113.086509 28.376590 -113.072232 28.361123 2.22 San Borja 748 -113.091862 28.371831 -113.078775 28.359934 1.84 San Borja 749 -113.080560 28.379564 -113.000253 28.280817 13.84 San Borja 750 -113.072827 28.392651 -113.060929 28.380754 1.76 San Borja 751 -113.072827 28.404549 -113.017504 28.351011 8.18 San Borja 752 -113.031781 28.356959 -113.026427 28.347441 1.19 San Borja 753 -113.046058 28.360528 -113.032376 28.349226 1.83 San Borja 754 -113.066878 28.374210 -113.058550 28.363503 1.45 San Borja 755 -112.983002 28.297473 -112.989545 28.222520 8.67 San Borja 756 -113.090078 28.311155 -113.065688 28.276058 4.60 San Borja 757 -113.069852 28.319483 -113.240579 28.408118 19.62 San Borja 758 -113.332188 28.310560 -113.302445 28.273678 5.05 San Borja 759 -113.411305 28.300447 -113.256045 28.183853 21.10 San Borja 760 -113.432125 28.265350 -113.342895 28.239176 9.24 San Borja 761 -113.451161 28.247504 -113.358957 28.211812 9.97 San Borja 762 -113.340516 28.221925 -113.379777 28.200510 4.49 95

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

San Borja 763 -113.235225 28.234417 -113.230466 28.228468 0.81 San Borja 764 -113.237009 28.229063 -113.231061 28.218356 1.34 San Borja 765 -113.243553 28.265350 -113.217974 28.230848 4.61 San Borja 766 -113.191800 28.232632 -113.178118 28.177310 6.39 San Borja 767 -113.260804 28.213002 -113.228681 28.201699 3.35 San Borja 768 -113.247122 28.200510 -113.141831 28.190992 10.27 San Borja 769 -113.240579 28.180879 -113.185256 28.160059 6.02 San Borja 770 -113.176928 28.155895 -113.140046 28.151136 3.62 San Borja 771 -113.168005 28.152921 -113.093052 28.143998 7.40 San Borja 772 -113.184661 28.280222 -113.154323 28.240366 5.36 San Borja 773 -113.232845 28.396815 -113.044868 28.130316 35.50 San Borja 774 -113.177523 28.336734 -113.149564 28.284386 6.48 San Borja 775 -113.154918 28.315914 -113.126364 28.284386 4.59 San Borja 776 -113.112683 28.306991 -113.092457 28.265945 5.02 San Borja 777 -113.084129 28.268324 -113.073421 28.239176 3.44 San Borja 778 -113.100785 28.268919 -113.075801 28.255237 2.86 San Borja 779 -113.062714 28.247504 -113.069257 28.244530 0.71 San Borja 780 -113.121606 28.273083 -113.115657 28.270109 0.66 San Borja 781 -113.121011 28.264755 -113.108519 28.254048 1.71 San Borja 782 -113.105544 28.254048 -113.097811 28.249289 0.92 San Borja 783 -113.128149 28.261781 -113.121606 28.257617 0.79 San Borja 784 -113.134693 28.258212 -113.116847 28.244530 2.31 San Borja 785 -112.940172 28.318293 -112.887229 28.210028 13.39 San Borja 786 -112.892582 28.230253 -112.860460 28.221330 3.26 San Borja 787 -112.888418 28.273083 -112.875926 28.249884 2.88 San Borja 788 -112.878306 28.271894 -112.872952 28.253453 2.14 San Borja 789 -112.869383 28.256427 -112.869978 28.242745 1.54 San Borja 790 -112.886634 28.252858 -112.796214 28.179689 12.29 San Borja 791 -112.978243 28.317103 -112.968725 28.246314 8.09 San Borja 792 -113.069852 28.320673 -112.853321 28.097598 33.48 San Borja 793 -112.889013 28.153515 -112.872357 28.131505 3.17 San Borja 794 -112.988951 28.125557 -112.979433 28.101167 2.90 San Borja 795 -112.969915 28.141023 -112.966346 28.130910 1.19 San Borja 796 -112.960992 28.143998 -112.958612 28.127341 1.89 San Borja 797 -112.933033 28.155895 -112.932438 28.141618 1.61 San Borja 798 -112.893772 28.117823 -112.900911 28.057147 6.88 San Borja 799 -112.896746 28.089270 -112.894962 28.048819 4.70 San Borja 800 -112.883065 28.033353 -112.887824 28.011937 2.46 San Borja 801 -112.874142 28.035137 -112.875926 28.019076 1.82 Michoacan-Guanauato 802 -101.572921 20.803352 -101.616369 20.769779 5.80 Michoacan-Guanauato 803 -101.626902 20.761221 -101.616369 20.746738 2.01 Michoacan-Guanauato 804 -101.651917 20.745422 -101.668374 20.730281 2.41 Michoacan-Guanauato 805 -101.653233 20.715140 -101.667058 20.697366 2.51 Michoacan-Guanauato 806 -101.584112 20.771095 -101.578188 20.775045 0.74 Michoacan-Guanauato 807 -101.574238 20.773728 -101.554489 20.791502 2.85 Michoacan-Guanauato 808 -101.559097 20.759246 -101.585429 20.747397 2.91 Michoacan-Guanauato 809 -101.588720 20.725673 -101.578188 20.715140 1.62 Michoacan-Guanauato 810 -101.577529 20.712507 -101.592670 20.706582 1.62 96

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 811 -101.597937 20.713165 -101.584771 20.699999 2.02 Michoacan-Guanauato 812 -101.580163 20.696708 -101.576213 20.692758 0.61 Michoacan-Guanauato 813 -101.574238 20.693416 -101.564364 20.682225 1.64 Michoacan-Guanauato 814 -101.499192 20.730281 -101.527499 20.714482 3.32 Michoacan-Guanauato 815 -101.513017 20.711849 -101.506434 20.700658 1.48 Michoacan-Guanauato 816 -101.494584 20.699999 -101.509067 20.692758 1.64 Michoacan-Guanauato 817 -101.485368 20.686833 -101.497217 20.682225 1.27 Michoacan-Guanauato 818 -101.521574 20.693416 -101.569630 20.673668 5.20 Michoacan-Guanauato 819 -101.558439 20.678276 -101.538690 20.649311 3.95 Michoacan-Guanauato 820 -101.538032 20.674326 -101.549881 20.667743 1.39 Michoacan-Guanauato 821 -101.511042 20.682225 -101.505775 20.662477 2.42 Michoacan-Guanauato 822 -101.501826 20.664451 -101.518283 20.657210 1.81 Michoacan-Guanauato 823 -101.451137 20.678276 -101.482077 20.652602 4.28 Michoacan-Guanauato 824 -101.401106 20.707241 -101.416247 20.694075 2.15 Michoacan-Guanauato 825 -101.384649 20.705266 -101.412297 20.683542 3.72 Michoacan-Guanauato 826 -101.668374 20.560441 -101.640726 20.505144 7.13 Michoacan-Guanauato 827 -101.667058 20.539375 -101.659158 20.543325 0.90 Michoacan-Guanauato 828 -101.666399 20.512385 -101.651258 20.521601 1.83 Michoacan-Guanauato 829 -101.549223 20.422199 -101.501167 20.441948 5.20 Michoacan-Guanauato 830 -101.530791 20.427465 -101.532765 20.393892 4.03 Michoacan-Guanauato 831 -101.548564 20.411008 -101.524208 20.383360 4.06 Michoacan-Guanauato 832 -101.516308 20.416274 -101.516966 20.388626 3.31 Michoacan-Guanauato 833 -101.549881 20.393234 -101.524208 20.370194 3.71 Michoacan-Guanauato 834 -101.521574 20.365586 -101.493268 20.383360 3.46 Michoacan-Guanauato 835 -101.668374 20.279349 -101.646650 20.289882 2.45 Michoacan-Guanauato 836 -101.668374 20.270791 -101.652575 20.278691 1.79 Michoacan-Guanauato 837 -101.669032 20.264208 -101.644675 20.272766 2.56 Michoacan-Guanauato 838 -101.613077 20.251042 -101.605836 20.239193 1.58 Michoacan-Guanauato 839 -101.611102 20.235902 -101.571605 20.254992 4.45 Michoacan-Guanauato 840 -101.357001 20.246434 -101.344493 20.233927 1.92 Michoacan-Guanauato 841 -101.325403 20.245118 -101.355026 20.209570 5.19 Michoacan-Guanauato 842 -101.355026 20.221419 -101.346468 20.226027 0.99 Michoacan-Guanauato 843 -101.334619 20.229977 -101.316845 20.241168 2.18 Michoacan-Guanauato 844 -101.340543 20.226685 -101.335935 20.214178 1.56 Michoacan-Guanauato 845 -101.312237 20.226685 -101.337252 20.206937 3.38 Michoacan-Guanauato 846 -101.330011 20.207595 -101.323428 20.201670 0.95 Michoacan-Guanauato 847 -101.284588 20.152956 -101.284588 20.136499 1.97 Michoacan-Guanauato 848 -101.496559 20.160856 -101.510383 20.152956 1.64 Michoacan-Guanauato 849 -101.491951 20.154931 -101.504459 20.147690 1.49 Michoacan-Guanauato 850 -101.529474 20.134524 -101.550539 20.125308 2.31 Michoacan-Guanauato 851 -101.580163 20.112800 -101.569630 20.109509 1.09 Michoacan-Guanauato 852 -101.582796 20.098318 -101.568972 20.110167 1.95 Michoacan-Guanauato 853 -101.501826 20.085810 -101.482077 20.088444 1.93 Michoacan-Guanauato 854 -101.313553 20.117409 -101.324744 20.106876 1.66 Michoacan-Guanauato 855 -101.322769 20.098976 -101.306312 20.118067 2.79 Michoacan-Guanauato 856 -101.301046 20.106876 -101.310262 20.098318 1.36 Michoacan-Guanauato 857 -101.297754 20.096343 -101.348443 20.099635 4.91 Michoacan-Guanauato 858 -101.355026 20.099635 -101.341202 20.090418 1.73 97

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 859 -101.358317 20.093052 -101.348443 20.089760 1.03 Michoacan-Guanauato 860 -101.367533 20.093710 -101.355026 20.085152 1.58 Michoacan-Guanauato 861 -101.364900 20.089102 -101.393865 20.079886 3.01 Michoacan-Guanauato 862 -101.424147 20.077911 -101.464303 20.060137 4.42 Michoacan-Guanauato 863 -101.475494 20.060795 -101.487343 20.063428 1.19 Michoacan-Guanauato 864 -101.301704 20.081861 -101.320136 20.075936 1.92 Michoacan-Guanauato 865 -101.301704 20.095685 -101.349759 20.076594 5.17 Michoacan-Guanauato 866 -101.352393 20.063428 -101.330669 20.072645 2.37 Michoacan-Guanauato 867 -101.336594 20.060795 -101.312895 20.063428 2.31 Michoacan-Guanauato 868 -101.274056 20.083177 -101.253648 20.087127 2.03 Michoacan-Guanauato 869 -101.274056 20.071328 -101.258257 20.075278 1.60 Michoacan-Guanauato 870 -101.551856 20.063428 -101.586746 20.046971 4.13 Michoacan-Guanauato 871 -101.557781 20.050262 -101.545273 20.058820 1.58 Michoacan-Guanauato 872 -101.526182 20.064745 -101.504459 20.050921 2.67 Michoacan-Guanauato 873 -101.466278 20.042363 -101.393865 20.074619 8.26 Michoacan-Guanauato 874 -101.395182 20.079227 -101.362925 20.049604 4.73 Michoacan-Guanauato 875 -101.216126 20.064745 -101.268131 20.048288 5.45 Michoacan-Guanauato 876 -101.264839 20.050262 -101.272739 20.034463 2.04 Michoacan-Guanauato 877 -101.317503 20.025906 -101.260890 20.036438 5.62 Michoacan-Guanauato 878 -101.345151 20.039730 -101.376091 20.023931 3.69 Michoacan-Guanauato 879 -101.368192 20.052896 -101.398473 20.030514 3.97 Michoacan-Guanauato 880 -101.403740 20.043680 -101.417564 20.035780 1.64 Michoacan-Guanauato 881 -101.461670 20.035780 -101.444554 20.035122 1.65 Michoacan-Guanauato 882 -101.454428 20.026564 -101.439288 20.033147 1.66 Michoacan-Guanauato 883 -101.497217 20.036438 -101.467594 20.053554 3.52 Michoacan-Guanauato 884 -101.508408 20.041705 -101.459036 20.012081 5.94 Michoacan-Guanauato 885 -101.446529 20.016689 -101.482735 19.998257 4.17 Michoacan-Guanauato 886 -101.396498 20.033147 -101.462328 19.996282 8.12 Michoacan-Guanauato 887 -101.407031 20.023931 -101.387941 20.002207 3.19 Michoacan-Guanauato 888 -101.395840 20.006815 -101.422830 19.998257 2.80 Michoacan-Guanauato 889 -101.347785 20.029855 -101.359634 20.021298 1.54 Michoacan-Guanauato 890 -101.344493 20.025906 -101.368192 20.014056 2.69 Michoacan-Guanauato 891 -101.338568 20.023272 -101.303021 20.000232 4.41 Michoacan-Guanauato 892 -101.318820 20.016689 -101.287221 20.010765 3.13 Michoacan-Guanauato 893 -101.297096 20.011423 -101.302362 19.992333 2.35 Michoacan-Guanauato 894 -101.275372 20.011423 -101.283930 19.991674 2.51 Michoacan-Guanauato 895 -101.254307 20.015373 -101.197693 20.035780 6.09 Michoacan-Guanauato 896 -101.191110 20.018006 -101.218759 20.012740 2.74 Michoacan-Guanauato 897 -101.203618 20.004182 -101.181236 20.010107 2.27 Michoacan-Guanauato 898 -101.191769 19.996941 -101.201643 19.994307 1.00 Michoacan-Guanauato 899 -101.270764 19.996282 -101.210859 19.994966 6.08 Michoacan-Guanauato 900 -101.249699 19.989041 -101.194402 19.987066 5.35 Michoacan-Guanauato 901 -101.194402 19.987066 -101.247724 19.977192 5.54 Michoacan-Guanauato 902 -101.231925 19.972584 -101.202301 19.980483 3.01 Michoacan-Guanauato 903 -101.220075 19.971925 -101.179261 19.964026 4.16 Michoacan-Guanauato 904 -101.311578 20.004182 -101.366217 19.994307 5.50 Michoacan-Guanauato 905 -101.360292 20.000232 -101.336594 20.000890 2.29 Michoacan-Guanauato 906 -101.345151 19.991674 -101.308945 19.985091 3.58 98

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 907 -101.324086 20.005498 -101.596620 19.942960 28.20 Michoacan-Guanauato 908 -101.534082 19.971925 -101.565022 19.958101 3.46 Michoacan-Guanauato 909 -101.551856 19.985750 -101.584771 19.967976 3.83 Michoacan-Guanauato 910 -101.536057 20.026564 -101.549881 20.013398 2.07 Michoacan-Guanauato 911 -101.582796 20.008790 -101.571605 19.994966 1.98 Michoacan-Guanauato 912 -101.545931 20.002865 -101.524866 20.003524 2.03 Michoacan-Guanauato 913 -101.520258 20.023272 -101.520258 20.010765 1.50 Michoacan-Guanauato 914 -101.509067 20.019323 -101.518941 20.008132 1.65 Michoacan-Guanauato 915 -101.499851 20.010765 -101.479444 20.008132 1.99 Michoacan-Guanauato 916 -101.590037 19.981800 -101.620319 19.963368 3.67 Michoacan-Guanauato 917 -101.709847 19.978508 -101.698656 19.985091 1.34 Michoacan-Guanauato 918 -101.750003 19.937036 -101.726304 19.948227 2.65 Michoacan-Guanauato 919 -101.745395 19.925845 -101.718404 19.942960 3.32 Michoacan-Guanauato 920 -101.743420 19.921895 -101.655208 19.940986 9.61 Michoacan-Guanauato 921 -101.685490 19.931769 -101.660475 19.944935 2.89 Michoacan-Guanauato 922 -101.719063 19.927820 -101.697997 19.948227 3.18 Michoacan-Guanauato 923 -101.697997 19.944935 -101.706555 19.925845 2.44 Michoacan-Guanauato 924 -101.688123 19.952177 -101.639409 19.984433 6.16 Michoacan-Guanauato 925 -101.630193 19.983116 -101.648625 19.950860 4.26 Michoacan-Guanauato 926 -101.661791 19.958101 -101.688123 19.948227 2.80 Michoacan-Guanauato 927 -101.663108 19.986408 -101.689440 19.973242 2.99 Michoacan-Guanauato 928 -101.642042 19.934403 -101.620319 19.944935 2.45 Michoacan-Guanauato 929 -101.642042 19.911362 -101.622952 19.921895 2.25 Michoacan-Guanauato 930 -101.584771 19.935719 -101.556464 19.946910 3.04 Michoacan-Guanauato 931 -101.582137 19.925186 -101.545273 19.939669 3.96 Michoacan-Guanauato 932 -101.544615 19.939669 -101.520258 19.932428 2.51 Michoacan-Guanauato 933 -101.526841 19.937036 -101.405715 19.970609 13.48 Michoacan-Guanauato 934 -101.636776 19.833684 -101.602545 19.844875 3.57 Michoacan-Guanauato 935 -101.664424 19.815251 -101.605836 19.824467 5.80 Michoacan-Guanauato 936 -101.585429 19.824467 -101.566338 19.826442 1.86 Michoacan-Guanauato 937 -101.622293 19.819201 -101.661791 19.796161 4.71 Michoacan-Guanauato 938 -101.633484 19.802744 -101.612419 19.803402 2.03 Michoacan-Guanauato 939 -101.570288 19.879764 -101.489976 19.917287 9.09 Michoacan-Guanauato 940 -101.491951 19.915970 -101.511042 19.894905 3.13 Michoacan-Guanauato 941 -101.403081 19.952177 -101.478785 19.923870 8.23 Michoacan-Guanauato 942 -101.402423 19.939011 -101.422830 19.932428 2.12 Michoacan-Guanauato 943 -101.370825 19.930453 -101.400448 19.921237 3.22 Michoacan-Guanauato 944 -101.450479 19.917287 -101.385966 19.889639 7.06 Michoacan-Guanauato 945 -101.484710 19.895563 -101.459695 19.914654 3.33 Michoacan-Guanauato 946 -101.474177 19.892272 -101.443237 19.902804 3.24 Michoacan-Guanauato 947 -101.524866 19.861990 -101.486026 19.877789 4.20 Michoacan-Guanauato 948 -101.570288 19.840266 -101.529474 19.854091 4.27 Michoacan-Guanauato 949 -101.561730 19.832367 -101.546590 19.842900 1.93 Michoacan-Guanauato 950 -101.536715 19.837633 -101.514333 19.848824 2.54 Michoacan-Guanauato 951 -101.517625 19.852116 -101.488660 19.860015 2.95 Michoacan-Guanauato 952 -101.473519 19.857382 -101.466278 19.860674 0.80 Michoacan-Guanauato 953 -101.509067 19.839608 -101.447845 19.858699 6.43 Michoacan-Guanauato 954 -101.492609 19.829734 -101.482077 19.831050 1.03 99

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 955 -101.470227 19.833684 -101.460353 19.836975 1.03 Michoacan-Guanauato 956 -101.492609 19.815251 -101.482077 19.817226 1.04 Michoacan-Guanauato 957 -101.561072 19.796819 -101.505117 19.817226 5.93 Michoacan-Guanauato 958 -101.605836 19.777070 -101.527499 19.792211 7.84 Michoacan-Guanauato 959 -101.474177 19.792869 -101.466278 19.795502 0.83 Michoacan-Guanauato 960 -101.466936 19.817226 -101.347785 19.873840 13.43 Michoacan-Guanauato 961 -101.419539 19.827759 -101.411639 19.840266 1.69 Michoacan-Guanauato 962 -101.445870 19.803402 -101.426780 19.811960 2.11 Michoacan-Guanauato 963 -101.417564 19.815251 -101.397157 19.817884 1.99 Michoacan-Guanauato 964 -101.430071 19.795502 -101.416247 19.804060 1.68 Michoacan-Guanauato 965 -101.367533 19.857382 -101.289196 19.891613 8.85 Michoacan-Guanauato 966 -101.280639 19.896222 -101.171362 19.843558 12.38 Michoacan-Guanauato 967 -101.245091 19.856724 -101.232583 19.860674 1.30 Michoacan-Guanauato 968 -101.337910 19.865940 -101.290513 19.877131 4.86 Michoacan-Guanauato 969 -101.299729 19.865940 -101.291171 19.870548 0.99 Michoacan-Guanauato 970 -101.358317 19.843558 -101.345810 19.850799 1.49 Michoacan-Guanauato 971 -101.343177 19.834342 -101.380699 19.813276 4.58 Michoacan-Guanauato 972 -101.337910 19.842900 -101.295121 19.858699 4.54 Michoacan-Guanauato 973 -101.278005 19.853432 -101.344493 19.824467 7.52 Michoacan-Guanauato 974 -101.279322 19.850141 -101.255623 19.860015 2.58 Michoacan-Guanauato 975 -101.253648 19.838292 -101.227317 19.816568 3.64 Michoacan-Guanauato 976 -101.231925 19.849483 -101.200327 19.813935 5.25 Michoacan-Guanauato 977 -101.237191 19.808010 -101.255623 19.787603 12.14 Michoacan-Guanauato 978 -101.274714 19.840266 -101.258257 19.810643 3.90 Michoacan-Guanauato 979 -101.279322 19.823151 -101.286563 19.805377 2.25 Michoacan-Guanauato 980 -101.286563 19.841583 -101.308287 19.820518 3.29 Michoacan-Guanauato 981 -101.321453 19.801427 -101.370167 19.765221 6.44 Michoacan-Guanauato 982 -101.317503 19.791553 -101.336594 19.765879 3.59 Michoacan-Guanauato 983 -101.275372 19.744814 -101.246407 19.755346 3.07 Michoacan-Guanauato 984 -101.236533 19.750080 -101.170703 19.763246 6.66 Michoacan-Guanauato 985 -101.927742 19.952177 -101.916551 19.954151 1.11 Michoacan-Guanauato 986 -101.910627 19.957443 -101.898777 19.985091 3.51 Michoacan-Guanauato 987 -101.904044 19.956126 -101.879687 19.960076 2.40 Michoacan-Guanauato 988 -101.881662 19.946910 -101.853355 19.950202 2.76 Michoacan-Guanauato 989 -101.799375 19.980483 -101.769093 19.986408 3.01 Michoacan-Guanauato 990 -101.799375 19.898196 -101.778309 19.900171 2.06 Michoacan-Guanauato 991 -101.640067 19.617763 -101.611102 19.634879 3.72 Michoacan-Guanauato 992 -101.599253 19.625662 -101.636118 19.605255 4.44 Michoacan-Guanauato 993 -101.626902 19.519019 -101.726304 19.476230 11.42 Michoacan-Guanauato 994 -101.470227 19.565758 -101.483393 19.553908 1.91 Michoacan-Guanauato 995 -101.482077 19.539426 -101.489318 19.524943 1.88 Michoacan-Guanauato 996 -101.385307 19.655286 -101.402423 19.647386 1.91 Michoacan-Guanauato 997 -101.359634 19.633562 -101.394524 19.599989 5.34 Michoacan-Guanauato 998 -101.372800 19.599331 -101.383332 19.567074 4.01 Michoacan-Guanauato 999 -101.405056 19.561150 -101.410981 19.535476 3.14 Michoacan-Guanauato 1000 -101.421514 19.534818 -101.427438 19.520994 1.76 Michoacan-Guanauato 1001 -101.368850 19.496637 -101.354368 19.506511 1.91 Michoacan-Guanauato 1002 -101.462328 19.447265 -101.436654 19.428174 3.38 100

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1003 -101.365559 19.615130 -101.231266 19.631587 13.32 Michoacan-Guanauato 1004 -101.259573 19.606572 -101.237191 19.603939 2.18 Michoacan-Guanauato 1005 -101.274056 19.598672 -101.334619 19.575632 6.47 Michoacan-Guanauato 1006 -101.245091 19.571682 -101.302362 19.546009 6.89 Michoacan-Guanauato 1007 -101.257598 19.563124 -101.245749 19.553250 1.65 Michoacan-Guanauato 1008 -101.278005 19.540742 -101.315528 19.492029 6.93 Michoacan-Guanauato 1009 -101.206910 19.665160 -101.270106 19.635537 7.61 Michoacan-Guanauato 1010 -101.156221 19.563783 -101.183211 19.536793 4.16 Michoacan-Guanauato 1011 -101.254307 19.561808 -101.242457 19.553250 1.54 Michoacan-Guanauato 1012 -101.445870 19.039122 -101.410323 19.020690 4.09 Michoacan-Guanauato 1013 -101.408348 19.045047 -101.445212 19.010157 5.51 Michoacan-Guanauato 1014 -101.297096 19.159590 -101.273397 19.138524 3.42 Michoacan-Guanauato 1015 -101.260890 19.178680 -101.230608 19.151032 4.43 Michoacan-Guanauato 1016 -101.227975 19.188555 -101.245091 19.165514 3.23 Michoacan-Guanauato 1017 -101.242457 19.127992 -101.217442 19.106268 3.56 Michoacan-Guanauato 1018 -101.129889 19.093760 -101.068668 19.107584 6.14 Michoacan-Guanauato 1019 -101.058793 19.208962 -101.084467 19.187238 3.61 Michoacan-Guanauato 1020 -101.065376 19.237927 -101.014029 19.218178 5.50 Michoacan-Guanauato 1021 -101.110140 19.266892 -101.072617 19.243851 4.56 Michoacan-Guanauato 1022 -101.108824 19.193163 -101.185844 19.173414 7.80 Michoacan-Guanauato 1023 -101.135155 19.252409 -101.187819 19.239243 5.32 Michoacan-Guanauato 1024 -101.186502 19.288616 -101.155563 19.250434 5.53 Michoacan-Guanauato 1025 -101.007446 19.208962 -100.983089 19.184605 3.76 Michoacan-Guanauato 1026 -100.998230 19.188555 -100.984406 19.177364 1.90 Michoacan-Guanauato 1027 -100.993622 19.069403 -101.009421 19.055579 2.26 Michoacan-Guanauato 1028 -101.006130 19.085202 -100.981773 19.064795 3.41 Michoacan-Guanauato 1029 -100.988356 19.055579 -101.010738 19.044388 2.55 Michoacan-Guanauato 1030 -101.010079 19.179339 -100.978481 19.155640 4.18 Michoacan-Guanauato 1031 -100.944250 19.175389 -100.960707 19.145107 3.98 Michoacan-Guanauato 1032 -100.922526 19.122725 -100.935034 19.082569 5.00 Michoacan-Guanauato 1033 -100.960707 19.087177 -100.981114 19.073353 2.58 Michoacan-Guanauato 1034 -100.979140 19.065454 -100.963340 19.076645 2.04 Michoacan-Guanauato 1035 -100.973873 19.039122 -101.015346 19.011473 5.21 Michoacan-Guanauato 1036 -100.952149 19.023981 -100.928451 18.999624 3.73 Michoacan-Guanauato 1037 -100.916602 19.022664 -100.900144 19.006207 2.54 Michoacan-Guanauato 1038 -100.856697 19.031881 -100.862621 19.016740 1.92 Michoacan-Guanauato 1039 -100.833656 19.066770 -100.851430 19.027273 5.07 Michoacan-Guanauato 1040 -100.846822 19.027273 -100.855380 19.010815 2.15 Michoacan-Guanauato 1041 -100.902777 19.057554 -100.876446 19.029906 4.20 Michoacan-Guanauato 1042 -101.015346 19.135233 -100.873154 19.010157 20.53 Michoacan-Guanauato 1043 -100.894878 19.069403 -100.875129 19.050313 2.99 Michoacan-Guanauato 1044 -100.909360 19.102318 -100.875787 19.068087 5.25 Michoacan-Guanauato 1045 -100.835631 19.158931 -100.856038 19.120092 5.08 Michoacan-Guanauato 1046 -100.752028 19.169464 -100.718455 19.022006 18.11 Michoacan-Guanauato 1047 -100.703972 19.075986 -100.722405 19.068087 2.02 Michoacan-Guanauato 1048 -100.734912 19.064137 -100.752686 19.056896 1.92 Michoacan-Guanauato 1049 -100.701997 19.044388 -100.719113 19.041097 1.70 Michoacan-Guanauato 1050 -100.667766 19.054921 -100.625635 19.016082 6.23 101

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1051 -100.588771 19.105610 -100.603912 19.039122 8.16 Michoacan-Guanauato 1052 -100.567705 19.191188 -100.632877 19.120092 10.64 Michoacan-Guanauato 1053 -100.549931 19.236610 -100.585479 19.205012 5.13 Michoacan-Guanauato 1054 -100.565730 19.218178 -100.543348 19.189871 4.04 Michoacan-Guanauato 1055 -100.530183 19.241218 -100.547298 19.229369 2.18 Michoacan-Guanauato 1056 -100.562439 19.268208 -100.598645 19.245168 4.46 Michoacan-Guanauato 1057 -100.617077 19.307048 -100.578238 19.265575 6.25 Michoacan-Guanauato 1058 -100.646701 19.310339 -100.621027 19.281374 4.28 Michoacan-Guanauato 1059 -100.677641 19.345887 -100.639459 19.320214 4.81 Michoacan-Guanauato 1060 -100.646701 19.380118 -100.670399 19.359053 3.42 Michoacan-Guanauato 1061 -100.668424 19.359711 -100.632218 19.335354 4.56 Michoacan-Guanauato 1062 -100.618394 19.368927 -100.569680 19.334038 6.31 Michoacan-Guanauato 1063 -100.530183 19.357078 -100.571655 19.312972 6.65 Michoacan-Guanauato 1064 -100.555198 19.408425 -100.533474 19.410400 2.11 Michoacan-Guanauato 1065 -100.644068 19.407767 -100.605228 19.403159 3.79 Michoacan-Guanauato 1066 -100.752686 19.274791 -100.710555 19.252409 4.88 Michoacan-Guanauato 1067 -100.809300 19.318897 -100.759927 19.288616 6.00 Michoacan-Guanauato 1068 -100.753344 19.382093 -100.751370 19.310339 8.65 Michoacan-Guanauato 1069 -100.818516 19.366294 -100.769802 19.332721 6.20 Michoacan-Guanauato 1070 -100.871838 19.251093 -100.848797 19.229369 3.44 Michoacan-Guanauato 1071 -100.986381 19.297832 -100.931084 19.266892 6.53 Michoacan-Guanauato 1072 -100.979798 19.316264 -100.959391 19.301781 2.63 Michoacan-Guanauato 1073 -100.996914 19.369586 -100.958074 19.339304 5.23 Michoacan-Guanauato 1074 -101.200327 19.382093 -101.191110 19.340621 5.08 Michoacan-Guanauato 1075 -101.162804 19.395918 -101.146346 19.409742 2.30 Michoacan-Guanauato 1076 -101.140422 19.418958 -101.118698 19.435415 2.89 Michoacan-Guanauato 1077 -101.097633 19.434757 -101.069326 19.424883 2.98 Michoacan-Guanauato 1078 -101.002180 19.432782 -100.965315 19.416325 4.07 Michoacan-Guanauato 1079 -101.239166 19.441340 -101.267473 19.417641 3.95 Michoacan-Guanauato 1080 -101.206910 19.478204 -101.225342 19.461747 2.66 Michoacan-Guanauato 1081 -101.173336 19.461089 -101.154904 19.445290 2.60 Michoacan-Guanauato 1082 -101.168070 19.494662 -101.187819 19.476888 2.87 Michoacan-Guanauato 1083 -101.187819 19.499928 -101.157537 19.526260 4.31 Michoacan-Guanauato 1084 -101.161487 19.495978 -101.146346 19.476230 2.79 Michoacan-Guanauato 1085 -101.152929 19.512436 -101.160829 19.484787 3.42 Michoacan-Guanauato 1086 -101.131206 19.478863 -101.112115 19.492687 2.48 Michoacan-Guanauato 1087 -101.164120 19.476888 -101.112115 19.482812 6.18 Michoacan-Guanauato 1088 -101.130547 19.515727 -101.148321 19.498612 2.68 Michoacan-Guanauato 1089 -101.118698 19.520335 -101.076567 19.497295 4.92 Michoacan-Guanauato 1090 -101.093683 19.497953 -101.109482 19.460430 4.77 Michoacan-Guanauato 1091 -101.078542 19.490712 -101.069984 19.461089 7.68 Michoacan-Guanauato 1092 -101.094341 19.455164 -101.073276 19.447265 2.24 Michoacan-Guanauato 1093 -101.071959 19.499928 -101.026537 19.467013 5.91 Michoacan-Guanauato 1094 -101.098949 19.532185 -101.079859 19.517044 2.59 Michoacan-Guanauato 1095 -101.074592 19.519677 -101.044311 19.527577 3.07 Michoacan-Guanauato 1096 -101.093683 19.545350 -101.121331 19.531526 3.14 Michoacan-Guanauato 1097 -101.134497 19.533501 -101.147663 19.519019 2.16 Michoacan-Guanauato 1098 -101.143713 19.533501 -101.120015 19.565099 4.44 102

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1099 -101.121990 19.570366 -101.114748 19.574974 0.89 Michoacan-Guanauato 1100 -101.115407 19.582215 -101.099607 19.571682 1.98 Michoacan-Guanauato 1101 -101.116723 19.582215 -101.131864 19.566416 2.40 Michoacan-Guanauato 1102 -101.125281 19.582873 -101.101582 19.603280 3.36 Michoacan-Guanauato 1103 -101.110798 19.590115 -101.105532 19.592089 0.56 Michoacan-Guanauato 1104 -101.108165 19.606572 -101.136472 19.580898 4.12 Michoacan-Guanauato 1105 -101.137130 19.634220 -101.106190 19.615130 3.77 Michoacan-Guanauato 1106 -101.164779 19.671085 -101.155563 19.661869 1.42 Michoacan-Guanauato 1107 -101.237191 19.669110 -101.094341 19.674376 13.81 Michoacan-Guanauato 1108 -101.092366 19.670426 -101.021929 19.661869 6.87 Michoacan-Guanauato 1109 -101.042336 19.661869 -101.048919 19.648044 1.78 Michoacan-Guanauato 1110 -101.062085 19.666477 -101.073276 19.655286 1.73 Michoacan-Guanauato 1111 -101.097633 19.667793 -101.110798 19.659894 1.59 Michoacan-Guanauato 1112 -101.075909 19.686884 -101.085125 19.678326 1.36 Michoacan-Guanauato 1113 -101.069984 19.700050 -101.077225 19.690175 1.38 Michoacan-Guanauato 1114 -101.048260 19.675693 -101.019296 19.680301 2.87 Michoacan-Guanauato 1115 -101.004155 19.681617 -100.953466 19.685567 4.91 Michoacan-Guanauato 1116 -101.066693 19.628954 -101.052210 19.636195 1.65 Michoacan-Guanauato 1117 -101.093025 19.615788 -101.059452 19.625662 4.21 Michoacan-Guanauato 1118 -101.048260 19.623029 -101.006130 19.597356 5.12 Michoacan-Guanauato 1119 -101.041678 19.638170 -101.023904 19.626321 2.23 Michoacan-Guanauato 1120 -101.003496 19.630929 -101.023245 19.628296 1.93 Michoacan-Guanauato 1121 -101.025220 19.627637 -101.046286 19.599989 3.90 Michoacan-Guanauato 1122 -101.011396 19.613813 -100.994280 19.603280 2.08 Michoacan-Guanauato 1123 -101.049577 19.590773 -101.031145 19.576949 2.44 Michoacan-Guanauato 1124 -101.080517 19.586823 -101.068668 19.579582 1.44 Michoacan-Guanauato 1125 -101.056160 19.571024 -101.087758 19.555225 3.59 Michoacan-Guanauato 1126 -101.095658 19.563783 -101.079859 19.557200 1.72 Michoacan-Guanauato 1127 -101.086442 19.574315 -101.071959 19.564441 1.83 Michoacan-Guanauato 1128 -101.081175 19.555883 -101.033778 19.530210 5.52 Michoacan-Guanauato 1129 -101.058135 19.557200 -101.010738 19.534159 5.35 Michoacan-Guanauato 1130 -101.007446 19.568391 -101.039703 19.553250 3.61 Michoacan-Guanauato 1131 -101.029828 19.567074 -101.004813 19.557200 2.69 Michoacan-Guanauato 1132 -100.996914 19.563783 -100.977165 19.557200 2.06 Michoacan-Guanauato 1133 -101.016662 19.593406 -100.903436 19.584848 11.15 Michoacan-Guanauato 1134 -100.927134 19.592089 -100.906069 19.592748 2.03 Michoacan-Guanauato 1135 -100.925818 19.597356 -100.908702 19.598014 1.65 Michoacan-Guanauato 1136 -100.939642 19.577607 -100.960049 19.576949 1.97 Michoacan-Guanauato 1137 -101.002180 19.540742 -100.979140 19.532185 2.45 Michoacan-Guanauato 1138 -100.946225 19.536134 -100.931742 19.529551 1.61 Michoacan-Guanauato 1139 -100.950833 19.524943 -100.928451 19.519677 2.25 Michoacan-Guanauato 1140 -100.998230 19.516385 -100.974531 19.522968 2.42 Michoacan-Guanauato 1141 -100.987039 19.507169 -100.967949 19.515069 2.07 Michoacan-Guanauato 1142 -100.980456 19.501903 -100.933059 19.488737 4.86 Michoacan-Guanauato 1143 -100.962024 19.492029 -100.983089 19.478204 2.63 Michoacan-Guanauato 1144 -100.914627 19.526918 -100.896194 19.536134 2.10 Michoacan-Guanauato 1145 -100.892245 19.512436 -100.876446 19.524285 2.09 Michoacan-Guanauato 1146 -100.927793 19.466355 -100.856697 19.499928 8.04 103

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1147 -100.871838 19.486104 -100.868546 19.448581 4.53 Michoacan-Guanauato 1148 -100.877104 19.477546 -100.873812 19.464380 1.62 Michoacan-Guanauato 1149 -100.813908 19.426199 -100.786918 19.387360 5.36 Michoacan-Guanauato 1150 -100.814566 19.492029 -100.760586 19.442656 7.91 Michoacan-Guanauato 1151 -100.868546 19.522310 -100.832998 19.555225 5.24 Michoacan-Guanauato 1152 -100.851430 19.554567 -100.823124 19.540742 3.23 Michoacan-Guanauato 1153 -100.859988 19.551275 -100.825099 19.526918 4.46 Michoacan-Guanauato 1154 -100.861305 19.522968 -100.821807 19.499928 4.71 Michoacan-Guanauato 1155 -100.798109 19.576949 -100.775726 19.587481 2.50 Michoacan-Guanauato 1156 -100.784943 19.607888 -100.753344 19.554567 7.11 Michoacan-Guanauato 1157 -100.906727 19.609863 -100.793500 19.559175 15.32 Michoacan-Guanauato 1158 -100.793500 19.607888 -100.825099 19.599989 3.19 Michoacan-Guanauato 1159 -100.898169 19.619738 -100.883029 19.604597 2.34 Michoacan-Guanauato 1160 -100.879737 19.613155 -100.855380 19.616446 2.38 Michoacan-Guanauato 1161 -100.957416 19.655944 -100.970582 19.628954 3.49 Michoacan-Guanauato 1162 -100.962024 19.642778 -100.922526 19.654627 4.07 Michoacan-Guanauato 1163 -100.938325 19.661210 -100.925818 19.619738 5.13 Michoacan-Guanauato 1164 -100.925818 19.640803 -100.900144 19.647386 2.60 Michoacan-Guanauato 1165 -100.911993 19.628954 -100.886320 19.633562 2.54 Michoacan-Guanauato 1166 -100.873154 19.653311 -100.830365 19.603280 7.30 Michoacan-Guanauato 1167 -100.832998 19.613155 -100.800742 19.626979 3.53 Michoacan-Guanauato 1168 -100.836948 19.652652 -100.857355 19.652652 1.97 Michoacan-Guanauato 1169 -100.805350 19.637512 -100.848139 19.627637 4.34 Michoacan-Guanauato 1170 -100.852747 19.640145 -100.817857 19.646728 3.46 Michoacan-Guanauato 1171 -100.769802 19.663844 -100.751370 19.667135 1.82 Michoacan-Guanauato 1172 -100.759927 19.695442 -100.776385 19.680959 2.36 Michoacan-Guanauato 1173 -100.782309 19.711241 -100.802058 19.704658 2.06 Michoacan-Guanauato 1174 -101.038386 19.653311 -101.021929 19.637512 2.48 Michoacan-Guanauato 1175 -100.990989 19.655286 -100.973873 19.648703 1.83 Michoacan-Guanauato 1176 -101.000205 19.670426 -100.968607 19.655944 3.51 Michoacan-Guanauato 1177 -100.923843 19.678984 -100.896853 19.686226 2.75 Michoacan-Guanauato 1178 -100.886978 19.694783 -100.935034 19.688859 4.70 Michoacan-Guanauato 1179 -100.935034 19.700050 -100.873154 19.708608 6.06 Michoacan-Guanauato 1180 -100.861305 19.730990 -100.841556 19.716507 2.58 Michoacan-Guanauato 1181 -100.967290 19.725723 -100.948858 19.730990 1.89 Michoacan-Guanauato 1182 -101.013371 19.712557 -100.956099 19.717824 5.56 Michoacan-Guanauato 1183 -100.994280 19.702683 -100.945567 19.709266 4.77 Michoacan-Guanauato 1184 -101.052210 19.725065 -101.043652 19.725065 0.83 Michoacan-Guanauato 1185 -101.187161 19.752055 -101.026537 19.802744 16.94 Michoacan-Guanauato 1186 -101.016662 19.760613 -100.998230 19.769171 2.05 Michoacan-Guanauato 1187 -101.014029 19.735598 -100.976506 19.742181 3.71 Michoacan-Guanauato 1188 -100.983748 19.732964 -101.057477 19.711241 7.58 Michoacan-Guanauato 1189 -101.069984 19.717165 -101.107507 19.705974 3.86 Michoacan-Guanauato 1190 -101.133839 19.701366 -101.149638 19.692808 1.84 Michoacan-Guanauato 1191 -101.129231 19.696758 -101.141738 19.688200 1.59 Michoacan-Guanauato 1192 -101.147005 19.702025 -101.132522 19.686884 2.30 Michoacan-Guanauato 1193 -100.955441 19.747447 -100.890270 19.760613 6.48 Michoacan-Guanauato 1194 -100.849456 19.758638 -100.831023 19.763904 1.89 104

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1195 -100.831023 19.798794 -100.821149 19.803402 1.10 Michoacan-Guanauato 1196 -100.865913 19.791553 -100.849456 19.794844 1.64 Michoacan-Guanauato 1197 -100.744128 19.829734 -100.946883 19.788919 22.44 Michoacan-Guanauato 1198 -100.759269 19.827101 -100.756636 19.806693 2.47 Michoacan-Guanauato 1199 -100.756636 19.852774 -100.756636 19.839608 1.58 Michoacan-Guanauato 1200 -100.758611 19.845533 -100.771777 19.838292 1.54 Michoacan-Guanauato 1201 -100.812591 19.872523 -100.874471 19.866598 6.09 Michoacan-Guanauato 1202 -100.860647 19.876473 -100.875787 19.871206 1.59 Michoacan-Guanauato 1203 -100.888295 19.887005 -100.886320 19.873840 1.59 Michoacan-Guanauato 1204 -101.050894 19.819859 -101.071959 19.805377 2.68 Michoacan-Guanauato 1205 -100.973873 19.867257 -100.836290 19.888322 14.98 Michoacan-Guanauato 1206 -100.751370 19.910046 -100.779018 19.900830 2.89 Michoacan-Guanauato 1207 -100.790867 19.903463 -100.821149 19.904121 2.92 Michoacan-Guanauato 1208 -100.836290 19.896880 -100.806008 19.894247 2.94 Michoacan-Guanauato 1209 -101.032461 19.861332 -101.061426 19.854091 3.34 Michoacan-Guanauato 1210 -101.121331 19.818543 -101.094999 19.821176 2.61 Michoacan-Guanauato 1211 -101.170703 19.841583 -101.150954 19.839608 1.92 Michoacan-Guanauato 1212 -101.234558 19.856066 -101.137130 19.893588 10.43 Michoacan-Guanauato 1213 -101.164120 19.890955 -101.141080 19.900171 2.48 Michoacan-Guanauato 1214 -101.192427 19.865940 -101.161487 19.877789 3.31 Michoacan-Guanauato 1215 -101.146346 19.862649 -101.122648 19.869890 2.45 Michoacan-Guanauato 1216 -101.131206 19.854749 -101.100266 19.863307 3.16 Michoacan-Guanauato 1217 -101.072617 19.873181 -101.044311 19.883714 3.01 Michoacan-Guanauato 1218 -101.056160 19.891613 -101.102899 19.882397 4.94 Michoacan-Guanauato 1219 -101.138447 19.956126 -101.116723 19.966001 2.41 Michoacan-Guanauato 1220 -101.125939 19.952835 -101.105532 19.962051 2.26 Michoacan-Guanauato 1221 -101.098949 19.960076 -101.091708 19.962709 0.77 Michoacan-Guanauato 1222 -100.981773 19.929136 -100.972557 19.933086 1.02 Michoacan-Guanauato 1223 -100.994939 19.913995 -100.980456 19.915970 1.42 Michoacan-Guanauato 1224 -100.992305 19.948885 -100.982431 19.952177 1.03 Michoacan-Guanauato 1225 -100.987697 19.978508 -101.006130 19.968634 2.14 Michoacan-Guanauato 1226 -101.012054 19.951518 -100.987039 19.965342 2.93 Michoacan-Guanauato 1227 -101.004813 19.949543 -100.985723 19.958760 2.15 Michoacan-Guanauato 1228 -101.002180 19.968634 -100.983748 19.975217 1.95 Michoacan-Guanauato 1229 -100.982431 19.978508 -100.892245 19.986408 8.94 Michoacan-Guanauato 1230 -100.916602 19.973900 -100.927793 19.967976 1.29 Michoacan-Guanauato 1231 -100.937009 19.958760 -100.950833 19.953493 1.48 Michoacan-Guanauato 1232 -100.918576 19.961393 -100.906069 19.964684 1.27 Michoacan-Guanauato 1233 -100.906069 19.971925 -100.896194 19.974559 1.00 Michoacan-Guanauato 1234 -100.906069 19.965342 -100.896853 19.971267 1.14 Michoacan-Guanauato 1235 -100.904094 19.998257 -100.871838 20.005498 3.23 Michoacan-Guanauato 1236 -100.867888 20.018006 -100.838923 20.018006 2.97 Michoacan-Guanauato 1237 -100.810616 20.012081 -100.881054 19.994307 7.25 Michoacan-Guanauato 1238 -100.854722 19.990358 -100.840898 19.994966 1.44 Michoacan-Guanauato 1239 -100.829048 19.995624 -100.821149 19.998916 0.86 Michoacan-Guanauato 1240 -100.803375 20.002865 -100.787576 20.009448 1.72 Michoacan-Guanauato 1241 -100.807325 19.992991 -100.796134 19.994966 1.11 Michoacan-Guanauato 1242 -100.810616 19.986408 -100.784943 19.977192 2.71 105

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1243 -100.810616 19.977850 -100.836948 19.975875 2.57 Michoacan-Guanauato 1244 -100.836948 19.975875 -100.802717 19.975217 3.58 Michoacan-Guanauato 1245 -100.827732 19.985750 -100.874471 19.983775 4.55 Michoacan-Guanauato 1246 -100.851430 19.979167 -100.834315 19.985091 1.80 Michoacan-Guanauato 1247 -100.870521 19.951518 -100.796134 19.948227 7.31 Michoacan-Guanauato 1248 -100.814566 19.925845 -100.798767 19.931111 1.65 Michoacan-Guanauato 1249 -100.768485 19.941644 -100.752686 19.946252 1.62 Michoacan-Guanauato 1250 -100.892245 20.272766 -100.827073 20.301731 7.23 Michoacan-Guanauato 1251 -101.118040 20.278691 -101.096316 20.287907 2.37 Michoacan-Guanauato 1252 -101.135814 20.108851 -101.012713 20.142424 12.72 Michoacan-Guanauato 1253 -100.989014 20.135183 -100.959391 20.138474 2.89 Michoacan-Guanauato 1254 -100.956099 20.135841 -100.925159 20.152298 3.58 Michoacan-Guanauato 1255 -100.954124 20.128600 -100.915943 20.132549 3.71 Michoacan-Guanauato 1256 -100.925818 20.122675 -100.899486 20.126625 2.58 Michoacan-Guanauato 1257 -100.990989 20.125966 -100.956758 20.125308 3.30 Michoacan-Guanauato 1258 -101.064718 20.128600 -101.015346 20.133208 4.80 Michoacan-Guanauato 1259 -101.064718 20.117409 -101.036411 20.120042 2.76 Michoacan-Guanauato 1260 -101.061426 20.110167 -101.039703 20.113459 2.22 Michoacan-Guanauato 1261 -101.012054 20.122017 -100.984406 20.121358 2.67 Michoacan-Guanauato 1262 -101.100266 20.110826 -101.079859 20.115434 2.05 Michoacan-Guanauato 1263 -101.137130 20.096343 -101.119356 20.100293 1.78 Michoacan-Guanauato 1264 -101.133181 20.093052 -101.120015 20.093052 1.27 Michoacan-Guanauato 1265 -101.117381 20.087127 -101.093025 20.094368 2.51 Michoacan-Guanauato 1266 -101.081834 20.099635 -101.006788 20.114775 7.47 Michoacan-Guanauato 1267 -101.058793 20.091077 -101.040361 20.093052 1.79 Michoacan-Guanauato 1268 -101.035095 20.088444 -100.986381 20.087785 4.70 Michoacan-Guanauato 1269 -101.131206 20.080544 -101.114748 20.081202 1.59 Michoacan-Guanauato 1270 -101.125281 20.075936 -101.089075 20.086469 3.72 Michoacan-Guanauato 1271 -101.106849 20.069353 -101.060110 20.077253 4.61 Michoacan-Guanauato 1272 -101.050894 20.070670 -101.000863 20.077911 4.93 Michoacan-Guanauato 1273 -101.084467 20.068036 -101.046944 20.060137 3.74 Michoacan-Guanauato 1274 -100.902777 20.090418 -100.863938 20.094368 3.97 Michoacan-Guanauato 1275 -101.009421 20.110167 -100.990989 20.110167 1.78 Michoacan-Guanauato 1276 -100.834315 20.191796 -100.814566 20.181263 2.29 Michoacan-Guanauato 1277 -100.844189 20.185871 -100.825757 20.177313 2.05 Michoacan-Guanauato 1278 -100.834315 20.170730 -100.786918 20.170730 4.73 Michoacan-Guanauato 1279 -100.806008 20.158223 -100.785601 20.162173 2.10 Michoacan-Guanauato 1280 -100.851430 20.169414 -100.826415 20.157565 2.80 Michoacan-Guanauato 1281 -101.180578 20.499878 -101.145688 20.476179 4.64 Michoacan-Guanauato 1282 -101.124623 20.584798 -101.099607 20.597964 2.88 Michoacan-Guanauato 1283 -101.102241 20.632853 -101.077884 20.651286 3.22 Michoacan-Guanauato 1284 -101.085125 20.653919 -101.052210 20.646677 3.29 Michoacan-Guanauato 1285 -101.034436 20.690125 -101.017321 20.674326 2.51 Michoacan-Guanauato 1286 -101.065376 20.725015 -101.045627 20.709874 2.63 Michoacan-Guanauato 1287 -101.085125 20.725673 -101.106190 20.710532 2.72 Michoacan-Guanauato 1288 -101.123964 20.736206 -101.111457 20.708557 3.52 Michoacan-Guanauato 1289 -101.154904 20.725673 -101.133839 20.694733 4.22 Michoacan-Guanauato 1290 -101.150296 20.678934 -101.200327 20.659185 5.37 106

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1291 -101.200985 20.722381 -101.178603 20.691442 4.28 Michoacan-Guanauato 1292 -101.227975 20.717773 -101.199668 20.703949 3.19 Michoacan-Guanauato 1293 -101.219417 20.704607 -101.202301 20.694075 2.08 Michoacan-Guanauato 1294 -101.195060 20.698024 -101.224683 20.678934 3.66 Michoacan-Guanauato 1295 -101.094999 20.770437 -101.104874 20.751346 2.47 Michoacan-Guanauato 1296 -101.099607 20.749371 -101.075251 20.742130 2.50 Michoacan-Guanauato 1297 -101.074592 20.767804 -101.091708 20.755954 2.18 Michoacan-Guanauato 1298 -101.052210 20.756613 -101.068668 20.743447 2.24 Michoacan-Guanauato 1299 -101.065376 20.723040 -101.045627 20.706582 2.74 Michoacan-Guanauato 1300 -101.052869 20.813226 -101.068009 20.798085 2.32 Michoacan-Guanauato 1301 -101.150954 20.845482 -101.108165 20.819151 5.19 Michoacan-Guanauato 1302 -101.121990 20.840216 -101.096316 20.826392 2.98 Michoacan-Guanauato 1303 -100.993622 20.829683 -100.969265 20.815859 2.87 Michoacan-Guanauato 1304 -101.002180 20.816518 -100.985064 20.805326 2.12 Michoacan-Guanauato 1305 -100.930426 20.713165 -100.938325 20.673009 4.88 Michoacan-Guanauato 1306 -100.917918 20.692100 -100.938984 20.673009 3.06 Michoacan-Guanauato 1307 -100.929767 20.666426 -100.898828 20.684200 3.73 Michoacan-Guanauato 1308 -100.935692 20.644703 -100.937667 20.633512 1.35 Michoacan-Guanauato 1309 -100.906069 20.663793 -100.880395 20.638778 3.88 Michoacan-Guanauato 1310 -100.877104 20.646677 -100.863280 20.637461 1.73 Michoacan-Guanauato 1311 -100.847481 20.631537 -100.812591 20.661818 4.94 Michoacan-Guanauato 1312 -100.836290 20.659843 -100.814566 20.629562 4.21 Michoacan-Guanauato 1313 -100.856038 20.665110 -100.863938 20.649969 1.96 Michoacan-Guanauato 1314 -100.863280 20.683542 -100.867229 20.671693 1.47 Michoacan-Guanauato 1315 -100.879079 20.688808 -100.885003 20.671693 2.12 Michoacan-Guanauato 1316 -100.925159 20.818492 -100.953466 20.812568 2.82 Michoacan-Guanauato 1317 -100.936350 20.855357 -100.968607 20.842849 3.45 Michoacan-Guanauato 1318 -100.937667 20.859307 -100.921210 20.851407 1.85 Michoacan-Guanauato 1319 -100.910677 20.853382 -100.883029 20.832975 3.61 Michoacan-Guanauato 1320 -100.885003 20.844166 -100.896853 20.811251 4.09 Michoacan-Guanauato 1321 -100.918576 20.827050 -100.904094 20.816518 1.88 Michoacan-Guanauato 1322 -100.929109 20.852065 -100.939642 20.824417 3.45 Michoacan-Guanauato 1323 -100.919235 20.816518 -100.927134 20.792819 2.93 Michoacan-Guanauato 1324 -100.902777 20.810593 -100.908044 20.796769 1.73 Michoacan-Guanauato 1325 -100.906727 20.805326 -100.878420 20.780311 4.05 Michoacan-Guanauato 1326 -100.789551 20.856015 -100.799425 20.824417 3.89 Michoacan-Guanauato 1327 -101.316845 20.985699 -101.335277 20.973192 2.32 Michoacan-Guanauato 1328 -101.239166 20.963976 -101.261548 20.954101 2.46 Michoacan-Guanauato 1329 -101.229950 20.975825 -101.203618 20.933694 5.63 Michoacan-Guanauato 1330 -101.217442 20.959367 -101.244432 20.950151 2.83 Michoacan-Guanauato 1331 -101.225342 20.950810 -101.219417 20.943568 1.04 Michoacan-Guanauato 1332 -101.240483 20.941593 -101.214809 20.921186 3.47 Michoacan-Guanauato 1333 -101.247724 20.929744 -101.232583 20.920528 1.83 Michoacan-Guanauato 1334 -101.197035 20.977141 -101.215467 20.965950 2.22 Michoacan-Guanauato 1335 -101.189136 20.982408 -101.150296 20.946860 5.66 Michoacan-Guanauato 1336 -101.172020 20.942910 -101.156879 20.932377 1.93 Michoacan-Guanauato 1337 -101.172678 20.923161 -101.191110 20.908679 2.48 Michoacan-Guanauato 1338 -101.164779 20.910654 -101.181236 20.899463 2.08 107

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1339 -101.137789 20.940935 -101.129889 20.928428 1.68 Michoacan-Guanauato 1340 -101.141738 20.962659 -101.106849 20.941593 4.20 Michoacan-Guanauato 1341 -101.172678 20.841533 -101.083150 20.875106 9.53 Michoacan-Guanauato 1342 -100.980456 20.904071 -100.999547 20.883664 3.05 Michoacan-Guanauato 1343 -100.985723 20.857332 -100.974531 20.863256 1.29 Michoacan-Guanauato 1344 -100.955441 20.876422 -100.966632 20.845482 3.85 Michoacan-Guanauato 1345 -100.933717 20.866548 -100.917918 20.856015 1.98 Michoacan-Guanauato 1346 -100.742812 20.983724 -100.752028 20.852065 16.00 Michoacan-Guanauato 1347 -100.740837 20.838900 -100.727013 20.816518 2.99 Michoacan-Guanauato 1348 -100.727013 20.829025 -100.690806 20.841533 3.80 Michoacan-Guanauato 1349 -100.774410 20.838241 -100.748736 20.811909 4.00 Michoacan-Guanauato 1350 -100.741495 20.805985 -100.755319 20.792819 2.08 Michoacan-Guanauato 1351 -100.767827 20.812568 -100.784284 20.808618 1.66 Michoacan-Guanauato 1352 -100.758611 20.786894 -100.790867 20.775703 3.39 Michoacan-Guanauato 1353 -100.766510 20.768462 -100.745445 20.779653 2.43 Michoacan-Guanauato 1354 -100.725696 20.806643 -100.713189 20.794794 1.88 Michoacan-Guanauato 1355 -100.710555 20.806643 -100.677641 20.821784 3.65 Michoacan-Guanauato 1356 -100.716480 20.784919 -100.727671 20.775703 1.64 Michoacan-Guanauato 1357 -100.697389 20.777678 -100.671716 20.758588 3.37 Michoacan-Guanauato 1358 -100.662500 20.754638 -100.646042 20.739497 2.41 Michoacan-Guanauato 1359 -100.634193 20.728306 -100.611811 20.713165 2.82 Michoacan-Guanauato 1360 -100.665791 20.737522 -100.642093 20.723040 2.87 Michoacan-Guanauato 1361 -100.604570 20.831000 -100.630243 20.816518 3.02 Michoacan-Guanauato 1362 -100.609836 20.807301 -100.584163 20.789527 3.26 Michoacan-Guanauato 1363 -100.532157 20.829025 -100.616419 20.780311 10.05 Michoacan-Guanauato 1364 -100.580871 20.796769 -100.584163 20.781628 1.86 Michoacan-Guanauato 1365 -100.572313 20.802693 -100.557831 20.798744 1.54 Michoacan-Guanauato 1366 -100.552565 20.791502 -100.564414 20.769779 3.29 Michoacan-Guanauato 1367 -100.563097 20.778336 -100.599962 20.756613 4.40 Michoacan-Guanauato 1368 -100.520966 20.806643 -100.551248 20.787553 3.71 Michoacan-Guanauato 1369 -100.552565 20.779653 -100.529524 20.764512 2.87 Michoacan-Guanauato 1370 -100.715822 20.708557 -100.702656 20.681567 3.47 Michoacan-Guanauato 1371 -100.713847 20.702633 -100.736887 20.690125 2.68 Michoacan-Guanauato 1372 -100.734912 20.675642 -100.705289 20.684859 3.06 Michoacan-Guanauato 1373 -100.723721 20.667743 -100.674349 20.684200 5.15 Michoacan-Guanauato 1374 -100.698706 20.670376 -100.692123 20.657868 1.62 Michoacan-Guanauato 1375 -100.666450 20.636145 -100.658550 20.615738 2.56 Michoacan-Guanauato 1376 -100.628268 20.661160 -100.618394 20.638778 2.84 Michoacan-Guanauato 1377 -100.604570 20.661160 -100.595354 20.642069 2.45 Michoacan-Guanauato 1378 -100.603253 20.638120 -100.626952 20.613763 3.70 Michoacan-Guanauato 1379 -100.639459 20.606521 -100.645384 20.601255 0.85 Michoacan-Guanauato 1380 -100.639459 20.596647 -100.600620 20.611788 4.34 Michoacan-Guanauato 1381 -100.613128 20.592697 -100.631560 20.580848 2.27 Michoacan-Guanauato 1382 -100.600620 20.619687 -100.570339 20.555833 8.33 Michoacan-Guanauato 1383 -100.561122 20.649969 -100.600620 20.628245 4.68 Michoacan-Guanauato 1384 -100.555198 20.644703 -100.549273 20.635486 1.24 Michoacan-Guanauato 1385 -100.544007 20.626270 -100.532157 20.607838 2.48 Michoacan-Guanauato 1386 -100.551248 20.688150 -100.506484 20.582823 13.98 108

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1387 -100.547957 20.735547 -100.528208 20.696050 5.10 Michoacan-Guanauato 1388 -100.524258 20.700658 -100.513067 20.659185 5.08 Michoacan-Guanauato 1389 -100.522941 20.736864 -100.503851 20.696050 5.21 Michoacan-Guanauato 1390 -100.493976 20.732914 -100.482127 20.720406 1.88 Michoacan-Guanauato 1391 -100.497926 20.743447 -100.467645 20.718432 4.44 Michoacan-Guanauato 1392 -100.450529 20.737522 -100.446579 20.667743 8.39 Michoacan-Guanauato 1393 -100.403790 20.819809 -100.362317 20.784919 5.78 Michoacan-Guanauato 1394 -100.413664 20.716457 -100.408398 20.674326 5.06 Michoacan-Guanauato 1395 -100.419589 20.701316 -100.389966 20.680251 3.81 Michoacan-Guanauato 1396 -100.422881 20.688808 -100.391282 20.660502 4.56 Michoacan-Guanauato 1397 -100.441971 20.637461 -100.432097 20.602572 4.28 Michoacan-Guanauato 1398 -100.406423 20.645361 -100.387991 20.586114 7.76 Michoacan-Guanauato 1399 -100.375483 20.600597 -100.397207 20.595989 2.17 Michoacan-Guanauato 1400 -100.376800 20.617054 -100.404448 20.606521 2.95 Michoacan-Guanauato 1401 -100.499243 20.570974 -100.480810 20.516993 6.70 Michoacan-Guanauato 1402 -100.568364 20.541350 -100.557173 20.404425 16.52 Michoacan-Guanauato 1403 -100.379433 20.578215 -100.353760 20.499219 9.93 Michoacan-Guanauato 1404 -100.353760 20.495270 -100.347177 20.482762 1.63 Michoacan-Guanauato 1405 -100.361001 20.496586 -100.378117 20.491320 1.77 Michoacan-Guanauato 1406 -100.375483 20.497903 -100.399182 20.495270 2.31 Michoacan-Guanauato 1407 -100.393916 20.521601 -100.434072 20.504486 4.39 Michoacan-Guanauato 1408 -100.462378 20.507119 -100.437363 20.482762 3.78 Michoacan-Guanauato 1409 -100.460403 20.497903 -100.499243 20.480787 4.27 Michoacan-Guanauato 1410 -100.492660 20.467621 -100.470936 20.472888 2.19 Michoacan-Guanauato 1411 -100.542032 20.451164 -100.525575 20.453797 1.62 Michoacan-Guanauato 1412 -100.539399 20.441948 -100.509775 20.448531 2.96 Michoacan-Guanauato 1413 -100.507801 20.442606 -100.480810 20.444581 2.61 Michoacan-Guanauato 1414 -100.434730 20.468938 -100.425514 20.449189 2.53 Michoacan-Guanauato 1415 -100.428147 20.466963 -100.425514 20.446556 2.46 Michoacan-Guanauato 1416 -100.435388 20.445898 -100.421564 20.449189 1.39 Michoacan-Guanauato 1417 -100.419589 20.447872 -100.399182 20.387968 7.44 Michoacan-Guanauato 1418 -100.411031 20.504486 -100.377458 20.423516 10.61 Michoacan-Guanauato 1419 -100.369559 20.428124 -100.351126 20.434707 1.95 Michoacan-Guanauato 1420 -100.420906 20.472229 -100.408398 20.437340 4.35 Michoacan-Guanauato 1421 -100.404448 20.370194 -100.351785 20.385334 5.40 Michoacan-Guanauato 1422 -100.513725 20.298440 -100.455137 20.318847 6.16 Michoacan-Guanauato 1423 -100.486735 20.244459 -100.436046 20.265525 5.50 Michoacan-Guanauato 1424 -100.447237 20.244459 -100.401157 20.267500 5.23 Michoacan-Guanauato 1425 -100.386674 20.289882 -100.347177 20.307656 4.37 Michoacan-Guanauato 1426 -100.369559 20.215494 -100.361001 20.188504 3.34 Michoacan-Guanauato 1427 -100.409056 20.201012 -100.361659 20.187846 4.84 Michoacan-Guanauato 1428 -100.584163 20.199037 -100.550590 20.195746 3.26 Michoacan-Guanauato 1429 -100.580871 20.178630 -100.552565 20.185213 2.84 Michoacan-Guanauato 1430 -100.602595 20.177972 -100.580213 20.168097 2.46 Michoacan-Guanauato 1431 -100.567047 20.165464 -100.530183 20.152956 3.86 Michoacan-Guanauato 1432 -100.542690 20.149007 -100.532157 20.145057 1.12 Michoacan-Guanauato 1433 -100.540715 20.143082 -100.533474 20.139132 0.84 Michoacan-Guanauato 1434 -100.567705 20.159539 -100.560464 20.147690 1.58 109

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1435 -100.580871 20.149665 -100.631560 20.135183 5.19 Michoacan-Guanauato 1436 -100.626952 20.147690 -100.637485 20.139132 1.44 Michoacan-Guanauato 1437 -100.599962 20.115434 -100.628268 20.099635 3.32 Michoacan-Guanauato 1438 -100.400499 20.119383 -100.436046 20.114117 3.56 Michoacan-Guanauato 1439 -100.397207 20.110826 -100.418931 20.096343 2.72 Michoacan-Guanauato 1440 -100.387333 20.102268 -100.405765 20.088444 2.43 Michoacan-Guanauato 1441 -100.455137 20.093710 -100.407081 20.063428 5.89 Michoacan-Guanauato 1442 -100.670399 20.017348 -100.651309 20.017348 1.84 Michoacan-Guanauato 1443 -100.635510 20.019981 -100.617736 20.023931 1.78 Michoacan-Guanauato 1444 -100.673691 19.995624 -100.609836 20.005498 6.44 Michoacan-Guanauato 1445 -100.669083 19.985091 -100.738204 19.967976 7.00 Michoacan-Guanauato 1446 -100.743470 19.952177 -100.629585 19.964026 11.12 Michoacan-Guanauato 1447 -100.664475 19.985091 -100.661842 19.962709 2.70 Michoacan-Guanauato 1448 -100.694098 19.973242 -100.676324 19.942302 4.09 Michoacan-Guanauato 1449 -100.723063 19.949543 -100.703314 19.933086 2.75 Michoacan-Guanauato 1450 -100.630902 19.981142 -100.563756 19.981142 6.48 Michoacan-Guanauato 1451 -100.556514 19.973242 -100.599962 19.964684 4.52 Michoacan-Guanauato 1452 -100.548615 19.966001 -100.544665 19.966659 0.39 Michoacan-Guanauato 1453 -100.605886 19.977850 -100.633535 19.952835 4.02 Michoacan-Guanauato 1454 -100.744128 19.913995 -100.716480 19.923870 2.96 Michoacan-Guanauato 1455 -100.727671 19.924528 -100.701339 19.913337 2.87 Michoacan-Guanauato 1456 -100.707922 19.912021 -100.696073 19.915970 1.24 Michoacan-Guanauato 1457 -100.680932 19.921237 -100.669741 19.924528 1.15 Michoacan-Guanauato 1458 -100.656575 19.927820 -100.635510 19.927161 2.03 Michoacan-Guanauato 1459 -100.624319 19.925186 -100.605886 19.915970 2.09 Michoacan-Guanauato 1460 -100.608520 19.902146 -100.596012 19.908729 1.44 Michoacan-Guanauato 1461 -100.600620 19.926503 -100.572313 19.931111 2.79 Michoacan-Guanauato 1462 -100.455137 19.967976 -100.403790 19.969292 4.96 Michoacan-Guanauato 1463 -100.349152 19.971925 -100.276081 19.981800 7.27 Michoacan-Guanauato 1464 -100.277397 19.973900 -100.255015 19.983116 2.43 Michoacan-Guanauato 1465 -100.274106 19.966659 -100.245141 19.977192 3.07 Michoacan-Guanauato 1466 -100.356393 19.962051 -100.289247 19.962709 6.53 Michoacan-Guanauato 1467 -100.407081 19.954810 -100.368900 19.970609 4.14 Michoacan-Guanauato 1468 -100.414981 19.949543 -100.380750 19.953493 3.34 Michoacan-Guanauato 1469 -100.369559 19.952177 -100.332036 19.951518 3.62 Michoacan-Guanauato 1470 -100.355076 19.930453 -100.301096 19.937036 5.27 Michoacan-Guanauato 1471 -100.210910 19.952835 -100.199719 19.954151 1.09 Michoacan-Guanauato 1472 -100.422881 19.936378 -100.385358 19.939011 3.63 Michoacan-Guanauato 1473 -100.500559 19.933086 -100.439996 19.937036 5.86 Michoacan-Guanauato 1474 -100.590746 19.875156 -100.530841 19.875814 5.78 Michoacan-Guanauato 1475 -100.562439 19.871865 -100.562439 19.853432 2.21 Michoacan-Guanauato 1476 -100.631560 19.866598 -100.595354 19.866598 3.49 Michoacan-Guanauato 1477 -100.730962 19.817226 -100.681590 19.817226 4.76 Michoacan-Guanauato 1478 -100.684882 19.833025 -100.676324 19.804719 3.50 Michoacan-Guanauato 1479 -100.715163 19.809327 -100.689490 19.808010 2.48 Michoacan-Guanauato 1480 -100.694098 19.805377 -100.643409 19.800111 4.95 110

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1481 -100.693440 19.798136 -100.667108 19.798136 2.54 Michoacan-Guanauato 1482 -100.698048 19.792211 -100.663816 19.789578 3.32 Michoacan-Guanauato 1483 -100.688173 19.779703 -100.658550 19.782337 2.88 Michoacan-Guanauato 1484 -100.635510 19.785628 -100.625635 19.785628 0.95 Michoacan-Guanauato 1485 -100.599304 19.810643 -100.608520 19.795502 2.03 Michoacan-Guanauato 1486 -100.602595 19.792869 -100.590087 19.795502 1.25 Michoacan-Guanauato 1487 -100.693440 19.771146 -100.708580 19.757980 2.15 Michoacan-Guanauato 1488 -100.694756 19.759955 -100.593379 19.775095 10.66 Michoacan-Guanauato 1489 -100.676324 19.769171 -100.649992 19.769829 2.54 Michoacan-Guanauato 1490 -100.673691 19.763904 -100.641434 19.756005 3.35 Michoacan-Guanauato 1491 -100.638143 19.775754 -100.630902 19.747447 3.47 Michoacan-Guanauato 1492 -100.632877 19.754688 -100.619052 19.769829 2.26 Michoacan-Guanauato 1493 -100.402473 19.651336 -100.377458 19.634879 3.12 Michoacan-Guanauato 1494 -100.197744 19.717824 -100.193136 19.700050 2.18 Michoacan-Guanauato 1495 -100.208276 19.721773 -100.200377 19.696100 3.18 Michoacan-Guanauato 1496 -100.224076 19.703341 -100.200377 19.671085 4.50 Michoacan-Guanauato 1497 -100.228025 19.615788 -100.181286 19.606572 4.64 Michoacan-Guanauato 1498 -100.165487 19.586165 -100.218809 19.572341 5.72 Michoacan-Guanauato 1499 -100.382725 19.623688 -100.356393 19.602622 3.59 Michoacan-Guanauato 1500 -100.326770 19.567732 -100.253041 19.523627 8.88 Michoacan-Guanauato 1501 -100.397207 19.536134 -100.369559 19.509803 4.14 Michoacan-Guanauato 1502 -100.336644 19.763246 -100.327428 19.755346 1.30 Michoacan-Guanauato 1503 -100.332694 19.768512 -100.317553 19.755346 2.15 Michoacan-Guanauato 1504 -100.370217 19.784311 -100.376800 19.774437 1.35 Michoacan-Guanauato 1505 -100.388649 19.777070 -100.324136 19.801427 7.27 Michoacan-Guanauato 1506 -100.306362 19.799452 -100.282664 19.807352 2.48 Michoacan-Guanauato 1507 -100.268840 19.812618 -100.242508 19.816568 2.58 Michoacan-Guanauato 1508 -100.366925 19.821834 -100.375483 19.808010 1.86 Michoacan-Guanauato 1509 -100.397865 19.861990 -100.384699 19.859357 1.31 Michoacan-Guanauato 1510 -100.338619 19.858699 -100.322820 19.850141 1.84 Michoacan-Guanauato 1511 -100.320187 19.859357 -100.389966 19.837633 7.51 Michoacan-Guanauato 1512 -100.404448 19.854749 -100.391282 19.854749 1.27 Michoacan-Guanauato 1513 -100.406423 19.854091 -100.378117 19.846191 2.92 Michoacan-Guanauato 1514 -100.355734 19.854749 -100.297805 19.829734 6.35 Michoacan-Guanauato 1515 -100.305046 19.848166 -100.312287 19.823151 3.09 Michoacan-Guanauato 1516 -100.359026 19.821834 -100.291222 19.815910 6.98 Michoacan-Guanauato 1517 -100.303729 19.846191 -100.243824 19.830392 6.55 Michoacan-Guanauato 1518 -100.239875 19.843558 -100.253699 19.836317 1.59 Michoacan-Guanauato 1519 -100.230658 19.851457 -100.195111 19.845533 3.55 Michoacan-Guanauato 1520 -100.384699 19.479521 -100.378775 19.474913 0.80 Michoacan-Guanauato 1521 -100.375483 19.470305 -100.369559 19.462405 1.11 Michoacan-Guanauato 1522 -100.396549 19.459772 -100.391282 19.445290 1.82 Michoacan-Guanauato 1523 -100.352443 19.375510 -100.376800 19.370244 2.43 Michoacan-Guanauato 1524 -100.505167 19.412375 -100.518992 19.411717 1.34 Michoacan-Guanauato 1525 -100.684882 19.491370 -100.640776 19.447265 6.81 Michoacan-Guanauato 1526 -100.706606 19.461089 -100.678957 19.445290 3.28 Michoacan-Guanauato 1527 -100.634193 19.449898 -100.616419 19.435415 2.45 Michoacan-Guanauato 1528 -100.606545 19.428832 -100.539399 19.347862 11.71 111

Appendix B (Continued)

Field Name ID # Start X Start Y End X End Y Length (km)

Michoacan-Guanauato 1529 -100.139814 19.349179 -100.126648 19.316264 4.45 Michoacan-Guanauato 1530 -100.228684 19.598014 -100.156929 19.621713 7.64 Michoacan-Guanauato 1531 -100.090442 19.782337 -100.074643 19.774437 1.80 Michoacan-Guanauato 1532 -100.106241 19.775095 -100.090442 19.770487 1.62 Michoacan-Guanauato 1533 -100.104266 19.765879 -100.085175 19.760613 1.95 Michoacan-Guanauato 1534 -100.263573 19.846191 -100.150347 19.833025 11.13 Michoacan-Guanauato 1535 -100.137839 19.827759 -100.114140 19.823151 2.35 Michoacan-Guanauato 1536 -100.102291 19.821834 -100.094391 19.820518 0.78 Michoacan-Guanauato 1537 -100.086492 19.817884 -100.066743 19.813935 1.96 Michoacan-Guanauato 1538 -100.109532 19.838950 -100.137839 19.840925 2.74 Michoacan-Guanauato 1539 -100.111507 19.844216 -100.192477 19.838950 7.98 Michoacan-Guanauato 1540 -100.110191 19.869231 -100.105583 19.849483 2.41 Michoacan-Guanauato 1541 -100.104924 19.847508 -100.066085 19.835000 4.04 Michoacan-Guanauato 1542 -100.093733 19.848824 -100.072668 19.844875 2.09 Michoacan-Guanauato 1543 -100.102949 19.872523 -100.068060 19.865940 3.46 Michoacan-Guanauato 1544 -100.203668 19.960076 -100.164171 19.960076 3.81 Michoacan-Guanauato 1545 -100.153638 19.942960 -100.122040 19.933086 3.27 Michoacan-Guanauato 1546 -100.120723 19.938352 -100.093075 19.925845 3.06 Michoacan-Guanauato 1547 -100.085834 19.919262 -100.066085 19.908729 2.29 Michoacan-Guanauato 1548 -100.073984 19.935061 -100.064110 19.929136 1.19 Michoacan-Guanauato 1549 -100.079909 19.929136 -100.065427 19.923870 1.53 Michoacan-Guanauato 1550 -100.075959 19.894905 -100.067401 19.887664 1.20 Michoacan-Guanauato 1551 -100.079251 19.889639 -100.063452 19.879764 1.93 Michoacan-Guanauato 1552 -100.410373 20.783603 -100.349152 20.778336 5.94 Michoacan-Guanauato 1553 -100.370875 20.689467 -100.349152 20.690125 2.10 Michoacan-Guanauato 1554 -100.408398 20.636145 -100.349810 20.647336 6.00

112

Appendix C: Additional Fault Graphs

113

Appendix C (Continued)

Figure C1. Fault analysis for the Big Pine Volcanic Field. The left axis shows the azimuth frequency for fault traces (blue line) and the right axis indicates the fault length vs. azimuth of fault strike. These data help to understand the basic tectonic regime of the volcanic field by way of fault geometry.

Figure C2. Fault analysis for the Camargo Volcanic Field. The left axis shows the azimuth frequency for fault traces (blue line) and the right axis indicates the fault length vs. azimuth of fault strike. These data help to understand the basic tectonic regime of the volcanic field by way of fault geometry.

114

Appendix C (Continued)

Figure C3. Fault analysis for the Coso Volcanic Field. The left axis shows the azimuth frequency for fault traces (blue line) and the right axis indicates the fault length vs. azimuth of fault strike. These data help to understand the basic tectonic regime of the volcanic field by way of fault geometry.

Figure C4. Fault analysis for the Yucca Volcanic Field. The left axis shows the azimuth frequency for fault traces (blue line) and the right axis indicates the fault length vs. azimuth of fault strike. These data help to understand the basic tectonic regime of the volcanic field by way of fault geometry.

115

Appendix C (Continued)

Figure C5. Fault analysis for the Jaraguay Volcanic Field. The left axis shows the azimuth frequency for fault traces (blue line) and the right axis indicates the fault length vs. azimuth of fault strike. These data help to understand the basic tectonic regime of the volcanic field by way of fault geometry.

Figure C6. Fault analysis for the San Borja Volcanic Field. The left axis shows the azimuth frequency for fault traces (blue line) and the right axis indicates the fault length vs. azimuth of fault strike. These data help to understand the basic tectonic regime of the volcanic field by way of fault geometry.

116

Appendix C (Continued)

Figure C7. Fault analysis for the Michoacán-Guanajuato Volcanic Field. The left axis shows the azimuth frequency for fault traces (blue line) and the right axis indicates the fault length vs. azimuth of fault strike. These data help to understand the basic tectonic regime of the volcanic field by way of fault geometry.

117