Ten Seconds in the Field: Rapid Armenian Obsidian Sourcing With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 2-24-2016 Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon Arron Richard Steiner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Volcanology Commons Let us know how access to this document benefits ou.y Recommended Citation Steiner, Arron Richard, "Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon" (2016). Dissertations and Theses. Paper 2712. https://doi.org/10.15760/etd.2708 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon by Arron Richard Steiner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences and Resources: Geology Dissertation Committee: Martin J. Streck, Chair Michael L. Cummings Jonathan Fink John A.Wolff Dirk Iwata-Reuyl Portland State University 2016 © 2015 Arron Richard Steiner i ABSTRACT The Strawberry Volcanics of Northeast Oregon are a group of geochemically related lavas with a diverse chemical range (basalt to rhyolite) that erupted between 16.2 and 12.5 Ma and co-erupted with the large, (~200,000 km3) Middle Miocene tholeiitic lavas of the Columbia River Basalt Group (CRBG), which erupted near and geographically surround the Strawberry Volcanics. The rhyolitic lavas of the Strawberry Volcanics produced the oldest 40Ar/39Ar ages measured in this study with ages ranging from 16.2 Ma to 14.6 Ma, and have an estimated total erupted volume of 100 km3. -
The Bearhead Rhyolite, Jemez Volcanic Field, NM
Journal of Volcanology and Geothermal Research 107 32001) 241±264 www.elsevier.com/locate/jvolgeores Effusive eruptions from a large silicic magma chamber: the Bearhead Rhyolite, Jemez volcanic ®eld, NM Leigh Justet*, Terry L. Spell Department of Geosciences, University of Nevada, Las Vegas, NV, 89154-4010, USA Received 23 February 2000; accepted 6 November 2000 Abstract Large continental silicic magma systems commonly produce voluminous ignimbrites and associated caldera collapse events. Less conspicuous and relatively poorly documented are cases in which silicic magma chambers of similar size to those associated with caldera-forming events produce dominantly effusive eruptions of small-volume rhyolite domes and ¯ows. The Bearhead Rhyolite and associated Peralta Tuff Member in the Jemez volcanic ®eld, New Mexico, represent small-volume eruptions from a large silicic magma system in which no caldera-forming event occurred, and thus may have implications for the genesis and eruption of large volumes of silicic magma and the long-term evolution of continental silicic magma systems. 40Ar/39Ar dating reveals that most units mapped as Bearhead Rhyolite and Peralta Tuff 3the Main Group) were erupted during an ,540 ka interval between 7.06 and 6.52 Ma. These rocks de®ne a chemically coherent group of high-silica rhyolites that can be related by simple fractional crystallization models. Preceding the Main Group, minor amounts of unrelated trachydacite and low silica rhyolite were erupted at ,11±9 and ,8 Ma, respectively, whereas subsequent to the Main Group minor amounts of unrelated rhyolites were erupted at ,6.1 and ,1.5 Ma. The chemical coherency, apparent fractional crystallization-derived geochemical trends, large areal distribution of rhyolite domes 3,200 km2), and presence of a major hydrothermal system support the hypothesis that Main Group magmas were derived from a single, large, shallow magma chamber. -
"A Review of Pertinent Literature on Volcanic-Magmatic and Tectonic
CNWRA 92 025 ~~~_- _ -N A A0on 0 ~~~~~~~~- 0 -~~~ A I M Prepared for Nuclear Regulatory Commission Contract NRC-02-88-005 Prepared by Center for Nuclear Waste Regulatory Analyses San Antonio, Texas September 1992 462.2 --- T1993032400 0 1 A Review of Pertinent Lite-rture on Volcanic-Magmatic and Tectonic History of the Basin CNWRA 92-025 Property of CNWRA Library A REVIEW OF PERTINENT LITERATURE ON VOLCANIC- MAGMATIC AND TECTONIC HISTORY OF THE BASIN AND RANGE Prepared for Nuclear Regulatory Commission Contract NRC-02-88-005 Prepared by Gerry L. Stirewalt Stephen R. Young Kenneth D. Mahrer Center for Nuclear Waste Regulatory Analyses San Antonio, Texas September 1992 ABSTRACT The long-range goal of the Volcanism Research Project is to assess likelihood of volcanic and magmatic activity in the Yucca Mountain area and the potential for disruption of a repository at Yucca Mountain by that activity. To this end, this report discusses extent of available volcanic and tectonic data for the Basin and Range Physiographic Province, assesses usefulness of these data for constraining conceptual models of tectonism and associated volcanism in the Basin and Range, and addresses use of nonlinear dynamics for analyzing patterns of volcanism. Based on data from review of existing literature, the following conclusions and recommendations are drawn to provide guidance for future work in the remaining tasks of this project: (i) middle to late Cenozoic (i.e., less than 55 million years ago) volcanism in the Basin and Range Province can be broadly correlated -
Federal Interagency Geothermal Activities 2011
FEDERAL INTERAGENCY GEOTHERMAL ACTIVITIES Updated JUNE 2011 WORKING DRAFT Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy FEDERAL INTERAGENCY GEOTHERMAL ACTIVITIES The principal organizers of this updated document were Arlene Anderson of the Geothermal Technologies Program, U.S. Department of Energy, and Loretta Prencipe, Richard M. Todaro (technical editor), New West Technologies, LLC, and David Cuyler, Distinguished Technical Fellow, Sandia National Laboratory, Contractor to DOE, in cooperation with the Federal Interagency Geothermal Working Group facilitated by Elizabeth Eide of the National Research Council’s Committee on Earth Resources. Arlene Anderson U.S. Department of Energy, Geothermal Technologies Program Seth Broadfoot U.S. Department of Defense, U.S. Army Corps of Engineers Chris Cassidy U.S. Department of Agriculture Kara Chadwick U.S. Department of Agriculture, U.S. Forest Service Paul Crigler U.S. Department of Defense, Army National Guard James Critchfield U.S. Environmental Protection Agency Jennifer Derstine U.S. Department of Commerce Ronald Diehl U.S. Department of Defense, Department of the Army Robert Fujimoto U.S. Department of Agriculture, U.S. Forest Service Al McKee U.S. Department of Interior, Bureau of Land Management Jason McKenna U.S. Department of Defense, U.S. Army Corps of Engineers Elena Melchert U.S. Department of Energy, Office of Fossil Energy David Meyer U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Brenda Pierce Department of the Interior, U.S. Geological Survey Andrew Sabin U.S. Department of Defense, U.S. Naval Air Weapons Station, Geothermal Program Office Christopher Swihart U.S. -
150 Geologic Facts About California
California Geological Survey - 150th Anniversary 150 Geologic Facts about California California’s geology is varied and complex. The high mountains and broad valleys we see today were created over long periods of time by geologic processes such as fault movement, volcanism, sea level change, erosion and sedimentation. Below are 150 facts about the geology of California and the California Geological Survey (CGS). General Geology and Landforms 1 California has more than 800 different geologic units that provide a variety of rock types, mineral resources, geologic structures and spectacular scenery. 2 Both the highest and lowest elevations in the 48 contiguous states are in California, only 80 miles apart. The tallest mountain peak is Mt. Whitney at 14,496 feet; the lowest elevation in California and North America is in Death Valley at 282 feet below sea level. 3 California’s state mineral is gold. The Gold Rush of 1849 caused an influx of settlers and led to California becoming the 31st state in 1850. 4 California’s state rock is serpentine. It is apple-green to black in color and is often mottled with light and dark colors, similar to a snake. It is a metamorphic rock typically derived from iron- and magnesium-rich igneous rocks from the Earth’s mantle (the layer below the Earth’s crust). It is sometimes associated with fault zones and often has a greasy or silky luster and a soapy feel. 5 California’s state fossil is the saber-toothed cat. In California, the most abundant fossils of the saber-toothed cat are found at the La Brea Tar Pits in Los Angeles. -
Transforming Tomorrow
TRANSFORMING TOMORROW calstate.edu/impact-of-the-csu/research CSU research, scholarship and creative activity positively impact student success and faculty excellence with opportunities to explore, investigate and solve the issues facing California’s diverse communities, the nation and the world. The hallmark of a CSU education includes experiential learning to engage, retain and propel students to successful careers. Within the following pages are delightful exemplars from our 23 campuses and 10 affinity groups that showcase innovative applications of discoveries and the creation of new knowledge. TABLE OF CONTENTS AFFINITY CSU GROUPS CAMPUSES 7 Agriculture 41 Bakersfield Research 45 Channel Islands Institute 49 Chico 11 California Desert Studies 53 Dominguez Hills Consortium 57 East Bay 15 Council on Ocean 61 Fresno Affairs, Science and Technology 65 Fullerton 19 CSU Program 69 Humboldt for Education 73 Long Beach and Research in 77 Los Angeles Biotechnology 81 Maritime Academy 23 Moss Landing Marine 85 Monterey Bay Laboratories 89 Northridge 27 Ocean Studies 93 Pomona Institute 97 Sacramento 29 CSU Shiley Institute for 101 San Bernardino Palliative Care 105 San Diego 33 Social Science 109 San Francisco Research and 113 San José Instructional Council 117 San Luis Obispo 35 STEM-NET 121 San Marcos 39 Water Resources 125 Sonoma and Policy 129 Stanislaus Initiatives 3 On behalf of the entire California State University, I congratulate the students and faculty who distinguish themselves through exemplary research, scholarship and creative activity. Working together, they advance knowledge, understanding and creative expression at the forefront of their disciplines to benefit California’s diverse communities, the nation and the world. -
Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report West Flank of Coso, CA
SANDIA REPORT SAND2016-8930 Printed September 2016 ORIGINALLY SUBMITTED FOR DOE REVIEW, April 2016 Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report West Flank of Coso, CA Douglas Blankenship, Sandia National Laboratories, Albuquerque, New Mexico 87185 Kelly Blake1, Wendy Calvin2, Steve DeOreo3, James E. Faulds4, Jonathan Glen5, Stephen Hickman5, Nick Hinz4, Ole Kaven5, Mike Lazaro1, Jesse McCulloch3, David Meade1, Mack Kennedy6, Geoff Phelps5, Andrew Sabin1, Martin Schoenball5, Drew Silar6, Ann Robertson-Tait7, Colin Williams5 1U.S. Navy Geothermal Program Office, China Lake, 93555 2Department of Geological Sciences and Engineering, University of Nevada, Reno 89557 3Coso Operating Company LLC, Coso Junction, 93542 4Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557 5U.S. Geological Survey, Menlo Park, California 6Lawrence Berkeley National Laboratory, Berkeley, California 7GeothermEx/Schlumberger Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. -
Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith. -
Environmental Assessment RE Cinco Gen-Tie Project
Appendix E Cultural Resources Technical Studies Supplemental Project Statistics Report 1. Project Name. RE Cinco Gen-Tie Line Project 2. BLM State Permit Number. CA-12-22 3. Field Authorization Number. Issued on May 14, 2014 4. Dates of Field Survey. May 19-25, 2014 5. Total acreage of lands surveyed at BLM Class II level. 0 Of Item 5 above: A) Acreage of BLM lands surveyed 0 B) Acreage of other lands surveyed (Private, 0 State, Other Federal) List separately 6. Total acreage of lands surveyed at BLM Class III level. 200 Of Item 6 above: A) Acreage of BLM lands surveyed 150 B) Acreage of other lands surveyed (Private, 50 State, Other Federal) List separately 7. Total number of cultural properties in project Area (of Potential 8 Effect). Of Item 7 above: A) Total number of cultural properties for which site records were completed (newly recorded 8 cultural properties). B) Number of new cultural properties on BLM 6 lands C) Number of new cultural properties on other 1 lands (Private, State, Other Federal) 8. Of the cultural properties located within the Area (of Potential Effect): [If properties are not located on BLM, place this number in parentheses ( ) after the number of BLM properties.] A) Number of cultural properties that you are recommending as eligible for the National 0 Register. B) Number of cultural properties you are a recommending as not eligible for the National 7, (1) Register. Of Item 8A above: a) Number of cultural properties that can/will be 0 avoided. b) Number of cultural properties that will be 0 affected. -
Present Knowledge of the Magmatic Evolution of the Eastern Cordillera of Peru
Earth-Science Reviews, 18 (1982) 253-283 253 Elsevier Scientific Publishing Company, Amsterdam-Printed in The Netherlands Present Knowledge of the Magmatic Evolution of the Eastern Cordillera of Peru G. Carlier', G. Grandin', G. Laubacher', R. and F. M6gard2 ' ORSTOM, Mission Peru, Apartado 270, Lima 18 (Peru) and 2'4 rue Bayard75008 Paris (France) ' Institut Francais #Etudes Andines, Apartado 278, Lima I8 (Peru) Pontificia Universidad Catdica del Perú, Avda S. Boliuar, Lima 27 (Peru) ABSTRACT Carlier, G., Grandin, G., Laubacher, G., Marócco, R. and Mégard, F., 1982. Present knowledge of the magmatic evolution of the Eastern Cordillera of Peru. Earth-Sci. Rev., 18: 253-283. The studies which have been carried out in the Eastern Cordillera of Peru over the past 20 years prove the existence of at least three orogenic cycles: the Late Precambrian, the Hercynian and the Andean, each one accompanied by a more or less abundant magmatism. (1) The Precambrian. Leaving aside the prasinites, possibly derived from synsedimentary , volcanites, Precambrian magmatism (in the Huanuco region) consists of: a meta-igneous ultramafic to mafic association (serpentinites, meta-gabbros, meta-diorites); syntectonic meta-tonalites; and post-tectonic dioritic and granitic intrusive bodies. (2) The Hercynian (550 to 220 my.). From the Cambrian to the Upper Devonian the existence of a synsedimentary magmatism is known. Syntectonic granites were emplaced during the Eohercynian phase, but the major part of magmatism is of a Late Permian to Early Trias age, and is characterized by the intrusion of granitoids and by volcanism of calc-al- kaline tendency. It appears that the nepheline syenite of Macusani may belong to a terminal episode of this magmatic period. -
Petrologic and Geochemical Tracers of Magmatic Movement in Volcanic Arc Systems: Case Studies from the Aleutian Islands and Kamchatka, Russia
Petrologic And Geochemical Tracers Of Magmatic Movement In Volcanic Arc Systems: Case Studies From The Aleutian Islands And Kamchatka, Russia Item Type Thesis Authors Neill, Owen Kelly Download date 04/10/2021 04:22:53 Link to Item http://hdl.handle.net/11122/9176 PETROLOGIC AND GEOCHEMICAL TRACERS OF MAGMATIC MOVEMENT IN VOLCANIC ARC SYSTEMS: CASE STUDIES FROM THE ALEUTIAN ISLANDS AND KAMCHATKA, RUSSIA By Owen Kelly Neill RECOMMENDED: APPROVED: PETROLOGIC AND GEOCHEMICAL TRACERS OF MAGMATIC MOVEMENT IN VOLCANIC ARC SYSTEMS: CASE STUDIES FROM THE ALEUTIAN ISLANDS AND KAMCHATKA, RUSSIA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Owen Kelly Neill Fairbanks, Alaska May 2013 UMI Number: 3573010 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Di!ss8?t&iori Publishing UMI 3573010 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 iii Abstract Mixing, crystallization and degassing commonly affect magmas during storage, ascent and eruption from volcanoes. As these interactions cannot be observed directly, they must be characterized using chemical signatures of volcanic eruptive products. -
Voluminous and Compositionally Diverse, Middle Miocene Strawberry Volcanics of NE Oregon: Magmatism Cogenetic with fl Ood Basalts of the Columbia River Basalt Group
OLD G The Geological Society of America Special Paper 538 OPEN ACCESS Voluminous and compositionally diverse, middle Miocene Strawberry Volcanics of NE Oregon: Magmatism cogenetic with fl ood basalts of the Columbia River Basalt Group Arron Steiner Department of Geology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, USA, and Department of Geology, Washington State University, P.O. Box 642812, Pullman, Washington 99164-2812, USA Martin J. Streck Department of Geology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, USA ABSTRACT The mid-Miocene Strawberry volcanic fi eld of northeastern Oregon is an exam- ple of intracontinental fl ood volcanism that produced lavas of both tholeiitic and calc- alkaline compositions derived by open-system processes. Until now, these dominantly calc-alkaline lavas have not been considered to have a petrogenetic origin similar to that of the fl ood basalts of the Pacifi c Northwest because of their calc-alkaline composition. These lavas are situated in between and co-erupted with the domi- nant volcanic fi eld of the Columbia River Basalt Group (CRBG). Due to the timing, location, and diversity of these erupted units, the Strawberry Volcanics may hold valuable information about the role of crustal modifi cation during large magmatic events such as hotspot volcanism. The earliest eruptions of the Strawberry Volca- nics began at 16.2 Ma and appear continuous to 15.3 Ma, characterized by low-sil- ica rhyolite. High-silica, A-type rhyolite eruptions followed at 15.3 Ma. The silicic eruptions continued until 14.6 Ma, with an estimated total volume up to ~100 km3.