C:\NWR\Wpdocs\= SOURCE ATLAS ===\Description and References

Total Page:16

File Type:pdf, Size:1020Kb

C:\NWR\Wpdocs\= SOURCE ATLAS ===\Description and References NORTHWEST RESEARCH OBSIDIAN STUDIES LABORATORY # WWW.OBSIDIANLAB.COM CALIFORNIA OBSIDIAN SOURCES Location area for the Sugarloaf Mountain and West Sugarloaf Coso Volcanic Field obsidian subsources. COSO VOLCANIC FIELD ALTERNATE NAMES: Coso (Joshua Ridge), Coso (Sugarloaf Mountain), Coso (West Cactus Peak), Coso (West Sugarloaf). LOCATION - COUNTY: Inyo. ACKNOWLEDGMENTS: Byl Bryce, Mike Glascock. REFERENCES Bacon, Charles R. 1981 Geologic Map of the Coso Volcanic Field and Adjacent Areas, Inyo County, California. U. S. Geological Survey Miscellaneous Investigations Series Map I-200. Bacon, Charles R., Wendell A. Duffield, and Kazuaki Nakamura 1980 Distribution of Quaternary Rhyolite Domes of the Coso Range, California: Implications for Extent of the Geothermal Anomaly. Journal of Geophysical Research 85B:2,425-2,433. Bacon, Charles R., Dennis M. Giovanetti, Wendell A. Duffield, G. Brent Dalrymple, and Robert E. Drake 1982 Age of the Coso Formation, Inyo County, California. U. S. Geological Survey Bulletin 1527. 1 NORTHWEST RESEARCH OBSIDIAN STUDIES LABORATORY # WWW.OBSIDIANLAB.COM Bacon, Charles R., Ray MacDonald, Robert L. Smith, and Philip A. Baedecker 1981 Pleistocene High-Silica Rhyolites of the Coso Volcanic Field, Inyo County, California. Journal of Geophysical Research 86B:10,223-10,241. Draucker, Anne C. 2007 Geochemical Characterization of Obsidian Subsources from the Coso Range, California Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry as a Tool for Archaeological Investigations. Unpublished Master’s Thesis, Department of Geology, California State University, Bakersfield, California. Duffield, Wendell A., Charles A. Bacon, and G. Brent Dalrymple 1980 Volcanism, Geochronology, and Structure of the Coso Range, Inyo County, California. Journal of Geophysical Research 85B:2,381-2,404. Eerkens, Jelmer W. and Jeffrey S. Rosenthal 2004 Are Obsidian Subsources Meaningful Units of Analysis?: Temporal and Spatial Patterning of Subsources in the Coso Volcanic Field, Southeastern California. Journal of Archaeological Science 31:21-29. Ericson, Jonathon E. 1981 Exchange and Production Systems in Californian Prehistory: The Results of Hydration Dating and Chemical Characterization of Obsidian Sources. BAR International Series 110, Oxford, England. 1989 Toward Flow-Specific Obsidian Hydration Rates: Coso Volcanic Field, Inyo County, California. In Current Directions in California Obsidian Studies, edited by Richard E. Hughes, pp. 13-22. Contributions of the University of California Archaeological. Research Facility No. 48, Berkeley, California. Ericson, Jonathon E. and Michael D. Glascock 2004 Subsource Characterization: Obsidian Utilization of Subsources of the Coso Volcanic Field, Coso Junction, California, USA. Geoarchaeology 19:779-805. Ericson, Jonathon E.; T. A. Hagan, and C. W. Chesterman 1976 Prehistoric Obsidian in California II: Geologic and Geographic Aspects. In Advances in Obsidian Glass Studies, edited by R. E. Taylor, pp. 218-239. Noyes Press, Park Ridge, New Jersey. Farmer, Malcolm F. 1937 An Obsidian Quarry Near Coso Hot Springs, California. The Masterkey 11(1):7-9. Faull, Mark R. 2006 Emerging Efforts to Define the Coso Obsidian Economic Exchange System in the Rose, Fremont and Antelope Valleys of the Western Mojave Desert, California. Proceedings of the Society for California Archaeology 18:159-167. Faull, Mark R. 2007 The Coso Obsidian Economy and Possible Links to Village Establishment and Cultural Transition in the Rose Valley of Eastern California. Proceedings of the Society for California Archaeology 19:66-76. Findlow, Frank J., Phyllis M. Martin, and Jonathan E. Ericson 1982 An Examination of the Effects of Temperature Variation on the Hydration Characteristics of Two California Obsidians. North American Archaeologist 3:37-49. Fredrickson, David A., Janine Loyd, Ted Jones, Sue-Ann Schroder, and Tom Origer 2006 The Coso - Casa Diablo Hydration Conundrum. Proceedings of the Society for California Archaeology 20:151-156. Friedman, I. and J. Obradovich 1981 Obsidian Hydration Dating of Volcanic Events. Quaternary Research 16:37-47. Garfinkel, Alan P. 2003 Dating "Classic" Coso Sheep Style Petroglyphs in the Coso Range and El Paso Mountains: Implications for Regional Prehistory. Society for California Archaeology Newsletter 27:34-37. 2 NORTHWEST RESEARCH OBSIDIAN STUDIES LABORATORY # WWW.OBSIDIANLAB.COM Gilreath, Amy J. and William R. Hildebrandt 1996 Archaeological Investigations Within the Coso Volcanic Field. Society for California Archaeology Newsletter 30:1,3-5. Gilreath, Amy J. and William R. Hildebrandt 1997 Prehistoric Use of the Coso Volcanic Field. Contributions of the University of California Archaeological Research Facility No. 56, Berkeley, California. Gilreath, Amy J. and William R. Hildebrandt 2011 Current Perspectives on the Production and Conveyance of Coso Obsidian. In Perspectives on Prehistoric Trade and Exchange in California and the Great Basin, edited by Richard E. Hughes, pp. 171-188. The University of Utah Press, Salt Lake, Utah. Haarklau, Lynn, Lynn Johnson, David L. Wagner, Richard E. Hughes, Craig E. Skinner, Jennifer J. Thatcher, and Keith Myhrer 2005 Fingerprints in the Great Basin: The Nellis Air Force Base Regional Sourcing Study. Report prepared for Nellis Air Force Base by Prewitt and Associates, Inc., Austin, Texas. Harrington, Mark R. 1951 A Colossal Quarry. The Masterkey 25(1):15-18. Heizer, Robert F. and Adan E. Treganza 1944 Mines and Quarries of the Indians of California. California Journal of Mines and Geology 49:291-359. Hildebrandt, William R. 1997 Late Holocene Use of Wetlands Habitats in Central California: A Reply to Jones. Journal of California and Great Basin Anthropology 19:288-293. Hughes, Richard E. 1994 Intrasource Chemical Variability of Artefact-Quality Obsidians from the Casa Diablo Area, California. Journal of Archaeological Science 21:263-271. Hosseinion, Namat 2008 Comparative Diachronic Procurement and Distribution Patterns of Three Eastern California Obsidian Sources: Casa Diablo, Bodie Hills, and Coso Volcanic Field. Unpublished Master’s Thesis, California State University, Sacramento, California. Hughes, Richard E. 1988 The Coso Volcanic Field Reexamined: Implications for Obsidian Sourcing and Hydration Dating Research. Geoarchaeology 3:253-265. King, Jerome 2004 Re-Examining Coso Hydration Rates. Proceedings of the Society for California Archaeology 14:135-142. Lanphere, Marvin A., G. Brent Dalrymple, and Robert L. Smith 1975 K-Ar Ages of Pleistocene Rhyolitic Volcanism in the Coso Range, California. Geology 3:339-341. Laylander, Don. 2002 Assessing the Magnitude of Hydration Chronology Error for Coso Obsidian in Western Inyo County. Proceedings of the Society for California Archaeology 15:61-65. Manley, Curtis R. and Charles R Bacon 2000 Rhyolite Thermobarometry and the Shallowing of the Magma Reservoir, Coso Volcanic Field, California. Journal of Petrology 41:149-174. Novak, Steven W. and Charles R. Bacon 1986 Pliocene Volcanic Rocks of the Coso Range, Inyo County, California. U. S. Geological Survey Professional Paper 1383. 3 NORTHWEST RESEARCH OBSIDIAN STUDIES LABORATORY # WWW.OBSIDIANLAB.COM Remus, Jeremiah J., Jennifer L. Gottfried, Russell S. Harmon, Anne Draucker, Dirk Baron, and Robert Yohe 2010 Archaeological Applications of Laser-Induced Breakdown Spectroscopy: An Example from the Coso Volcanic Field, California, Using Advanced Statistical Signal Processing Analysis. Applied Optics 49:C120-C131. Rogers, Alexander K. 2003 Rethinking the Chronology of Ray Cave (CA-INY-444) in the Coso Range, California. Pacific Coast Archaeological Society Quarterly 39:25-44. 2008 A Reassessment of Obsidian Hydration Ages of Projectile Points from the Coso Volcanic Field. Pacific Coast Archaeological Society Quarterly 39:24-38. 2009a An Evaluation of Obsidian Hydration Dating as a Chronometric Technique, Based on Data from Rose Spring (CA-INY-372), Eastern California. International Association for Obsidian Studies Bulletin 40:12-32. 2009b An Estimate of Coso Obsidian Hydration Rate, Based on Obsidian-Radiocarbon Pairings, and the “Weighted Total Least Squares” Method. International Association for Obsidian Studies Bulletin 41:9-20. 2011 Do Flow-Specific Hydration Rates Improve Chronological Analysis? A Case Study for Coso Obsidian. International Association for Obsidian Studies Bulletin 45:18-25. Rogers, Alexander K. And Robert M. Yohe III 2011 An Improved Equation for Coso Obsidian Hydration Dating, Based on Obsidian-Radiocarbon Association. Proceedings of the Society for California Archaeology 25:1-15. Roper, C. Kristina 1992 A Study of High Altitude Obsidian Distribution in the Southern Sierra Nevada, California. Unpublished Master’s Thesis, Department of Anthropology, Sonoma State University, Rohnert Park, California. 1993 Spatial and Temporal Characteristics of High Altitude Site Patterning in the Southern Sierra Nevada. In There Grows a Green Tree, edited by Greg White, Pat Mikkelsen, William R. Hildebrandt, and Mark E. Basgall, pp. 285-301. University of California Center for Archaeological Research at Davis Publication No. 11, Davis, California. Stevenson, Christopher M. and Barry E. Scheetz 1989 Induced Hydration Rate Development of Obsidians from the Coso Volcanic Field: A Comparison of Experimental Procedures. In Current Directions in California Obsidian Studies, edited by Richard E. Hughes, pp. 23-30. Contributions of the University of California Archaeological. Research Facility No. 48, Berkeley, California. Stevenson, Christopher M., Elizabeth Knaus, James J. Mazer, and John K. Bates 1993 Homogeneity of Water Content in Obsidian from the Coso Volcanic Field: Implications for Obsidian Hydration Dating. Geoarchaeology 8:371-384. Whitley, David S. 1988 Obsidian Hydration Dates from the Coso Range. In Obsidian Dates IV, edited by C. W. Meighan and Janet L. Scalise, pp. 75-76. University of California Institute of Archaeology Monograph 29, Los Angeles, California. 4.
Recommended publications
  • The Bearhead Rhyolite, Jemez Volcanic Field, NM
    Journal of Volcanology and Geothermal Research 107 32001) 241±264 www.elsevier.com/locate/jvolgeores Effusive eruptions from a large silicic magma chamber: the Bearhead Rhyolite, Jemez volcanic ®eld, NM Leigh Justet*, Terry L. Spell Department of Geosciences, University of Nevada, Las Vegas, NV, 89154-4010, USA Received 23 February 2000; accepted 6 November 2000 Abstract Large continental silicic magma systems commonly produce voluminous ignimbrites and associated caldera collapse events. Less conspicuous and relatively poorly documented are cases in which silicic magma chambers of similar size to those associated with caldera-forming events produce dominantly effusive eruptions of small-volume rhyolite domes and ¯ows. The Bearhead Rhyolite and associated Peralta Tuff Member in the Jemez volcanic ®eld, New Mexico, represent small-volume eruptions from a large silicic magma system in which no caldera-forming event occurred, and thus may have implications for the genesis and eruption of large volumes of silicic magma and the long-term evolution of continental silicic magma systems. 40Ar/39Ar dating reveals that most units mapped as Bearhead Rhyolite and Peralta Tuff 3the Main Group) were erupted during an ,540 ka interval between 7.06 and 6.52 Ma. These rocks de®ne a chemically coherent group of high-silica rhyolites that can be related by simple fractional crystallization models. Preceding the Main Group, minor amounts of unrelated trachydacite and low silica rhyolite were erupted at ,11±9 and ,8 Ma, respectively, whereas subsequent to the Main Group minor amounts of unrelated rhyolites were erupted at ,6.1 and ,1.5 Ma. The chemical coherency, apparent fractional crystallization-derived geochemical trends, large areal distribution of rhyolite domes 3,200 km2), and presence of a major hydrothermal system support the hypothesis that Main Group magmas were derived from a single, large, shallow magma chamber.
    [Show full text]
  • Stratigraphy and Geochemistry of Volcanic Rocks in the Lava Mountains, California: Implications for the Miocene Development of the Garlock Fault
    Geological Society of America Memoir 195 2002 Stratigraphy and geochemistry of volcanic rocks in the Lava Mountains, California: Implications for the Miocene development of the Garlock fault Eugene I. Smith Alexander Sa´nchez Deborah L. Keenan Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154-4010, USA Francis C. Monastero Geothermal Program Office, Naval Air Weapons Station, China Lake, California 93555-6001, USA ABSTRACT Volcanism in the Lava Mountains occurred between 11.7 and 5.8 Ma and was contemporaneous with sinistral motion on the Garlock fault. Volcanic rocks, equiv- alent in age and chemistry to those in the Lava Mountains, crop out 40 km to the southwest in the El Paso Mountains across the Garlock fault. Three chemical groups of volcanic rocks erupted in the Lava Mountains over a period of 5 m.y. These are (1) andesite of Summit Diggings, Almond Mountain volcanic section, and Lava Moun- tains Andesite, (2) basalt of Teagle Wash, and (3) tuffs in the northeastern Lava Moun- tains and dacite in the Summit Range. Volcanic rocks of each group have distinctive chemical signatures useful for correlation of units across the Garlock fault. Our work demonstrated that tuffs in the Almond Mountain volcanic section may be equivalent to a tuff in member 5 of the Miocene Dove Spring Formation, El Paso Mountains. The basalt of Teagle Wash probably correlates with basalt flows in member 4, and tuffs in the northeast Lava Mountains may be equivalent to tuff of member 2. Cor- relation of these units across the Garlock fault implies that the Lava Mountains were situated south of the El Paso Mountains between 10.3 and 11.6 Ma and that 32–40 km of offset occurred on the Garlock fault in ϳ10.4 m.y., resulting in a displacement rate of 3.1 to 3.8 mm/yr.
    [Show full text]
  • Acknowledgments
    DATING TECHNIQUES 3 Schultz's definition (1937, p.79) of the Coso should be clarified because the lava flows in the Coso Range have a wide age range. We believe that the lava flows referred to by Schultz are the rhyodacite flows on the Haiwee Ridge (fig. 1) described in the section on Pliocene rhyodacite lava flows. Parts of the Coso Formation have been described by Hopper (1947), Power (1959, 1961), Bacon and Duffield (1978), Duffield, Bacon, and Roquemore (1979), Duffield, Bacon, and Dalrymple (1980), and Giovannetti (1979a, b). Deposits mapped as the Coso (fig. 1) Occur in the Haiwee Reservoir (Stinson, 1977a), Keeler (Stinson, 1977b), and Darwin (Hall and MacKevett, 1962) 15-minute quadrangles and have been mapped in the Coso volcanic field (Duffield and Bacon, 1981). Potassium-argon dating of volcanic rocks intercalated with, and overlying, the Coso Formation has been used by Evernden, Savage, Curtis, and James (1964), Bacon, Giovannetti, Duffield, and Dalrymple (1979), and Duffield, Bacon, and Dalrymple (1980) to constrain the age of the Coso. In this report, we review these potassium-argon ages and present additional data that provide more accurate limits on the age of the Coso Formation. ACKNOWLEDGMENTS We thank C. A. Repenning for advice on paleontologic aspects of this study. G. R. Roquemore contributed valuable observations offieldrela- tions of pyroclastic rocks near Sugar Loaf. J. Metz painstakingly prepared and analyzed glass fractions of tuffs. C. E. Meyer and M. J. Woodward kindly determined fission-track ages of zircons. Part of this report is based on the second author's M. S.
    [Show full text]
  • "A Review of Pertinent Literature on Volcanic-Magmatic and Tectonic
    CNWRA 92 025 ~~~_- _ -N A A0on 0 ~~~~~~~~- 0 -~~~ A I M Prepared for Nuclear Regulatory Commission Contract NRC-02-88-005 Prepared by Center for Nuclear Waste Regulatory Analyses San Antonio, Texas September 1992 462.2 --- T1993032400 0 1 A Review of Pertinent Lite-rture on Volcanic-Magmatic and Tectonic History of the Basin CNWRA 92-025 Property of CNWRA Library A REVIEW OF PERTINENT LITERATURE ON VOLCANIC- MAGMATIC AND TECTONIC HISTORY OF THE BASIN AND RANGE Prepared for Nuclear Regulatory Commission Contract NRC-02-88-005 Prepared by Gerry L. Stirewalt Stephen R. Young Kenneth D. Mahrer Center for Nuclear Waste Regulatory Analyses San Antonio, Texas September 1992 ABSTRACT The long-range goal of the Volcanism Research Project is to assess likelihood of volcanic and magmatic activity in the Yucca Mountain area and the potential for disruption of a repository at Yucca Mountain by that activity. To this end, this report discusses extent of available volcanic and tectonic data for the Basin and Range Physiographic Province, assesses usefulness of these data for constraining conceptual models of tectonism and associated volcanism in the Basin and Range, and addresses use of nonlinear dynamics for analyzing patterns of volcanism. Based on data from review of existing literature, the following conclusions and recommendations are drawn to provide guidance for future work in the remaining tasks of this project: (i) middle to late Cenozoic (i.e., less than 55 million years ago) volcanism in the Basin and Range Province can be broadly correlated
    [Show full text]
  • Federal Interagency Geothermal Activities 2011
    FEDERAL INTERAGENCY GEOTHERMAL ACTIVITIES Updated JUNE 2011 WORKING DRAFT Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy FEDERAL INTERAGENCY GEOTHERMAL ACTIVITIES The principal organizers of this updated document were Arlene Anderson of the Geothermal Technologies Program, U.S. Department of Energy, and Loretta Prencipe, Richard M. Todaro (technical editor), New West Technologies, LLC, and David Cuyler, Distinguished Technical Fellow, Sandia National Laboratory, Contractor to DOE, in cooperation with the Federal Interagency Geothermal Working Group facilitated by Elizabeth Eide of the National Research Council’s Committee on Earth Resources. Arlene Anderson U.S. Department of Energy, Geothermal Technologies Program Seth Broadfoot U.S. Department of Defense, U.S. Army Corps of Engineers Chris Cassidy U.S. Department of Agriculture Kara Chadwick U.S. Department of Agriculture, U.S. Forest Service Paul Crigler U.S. Department of Defense, Army National Guard James Critchfield U.S. Environmental Protection Agency Jennifer Derstine U.S. Department of Commerce Ronald Diehl U.S. Department of Defense, Department of the Army Robert Fujimoto U.S. Department of Agriculture, U.S. Forest Service Al McKee U.S. Department of Interior, Bureau of Land Management Jason McKenna U.S. Department of Defense, U.S. Army Corps of Engineers Elena Melchert U.S. Department of Energy, Office of Fossil Energy David Meyer U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Brenda Pierce Department of the Interior, U.S. Geological Survey Andrew Sabin U.S. Department of Defense, U.S. Naval Air Weapons Station, Geothermal Program Office Christopher Swihart U.S.
    [Show full text]
  • 150 Geologic Facts About California
    California Geological Survey - 150th Anniversary 150 Geologic Facts about California California’s geology is varied and complex. The high mountains and broad valleys we see today were created over long periods of time by geologic processes such as fault movement, volcanism, sea level change, erosion and sedimentation. Below are 150 facts about the geology of California and the California Geological Survey (CGS). General Geology and Landforms 1 California has more than 800 different geologic units that provide a variety of rock types, mineral resources, geologic structures and spectacular scenery. 2 Both the highest and lowest elevations in the 48 contiguous states are in California, only 80 miles apart. The tallest mountain peak is Mt. Whitney at 14,496 feet; the lowest elevation in California and North America is in Death Valley at 282 feet below sea level. 3 California’s state mineral is gold. The Gold Rush of 1849 caused an influx of settlers and led to California becoming the 31st state in 1850. 4 California’s state rock is serpentine. It is apple-green to black in color and is often mottled with light and dark colors, similar to a snake. It is a metamorphic rock typically derived from iron- and magnesium-rich igneous rocks from the Earth’s mantle (the layer below the Earth’s crust). It is sometimes associated with fault zones and often has a greasy or silky luster and a soapy feel. 5 California’s state fossil is the saber-toothed cat. In California, the most abundant fossils of the saber-toothed cat are found at the La Brea Tar Pits in Los Angeles.
    [Show full text]
  • Transforming Tomorrow
    TRANSFORMING TOMORROW calstate.edu/impact-of-the-csu/research CSU research, scholarship and creative activity positively impact student success and faculty excellence with opportunities to explore, investigate and solve the issues facing California’s diverse communities, the nation and the world. The hallmark of a CSU education includes experiential learning to engage, retain and propel students to successful careers. Within the following pages are delightful exemplars from our 23 campuses and 10 affinity groups that showcase innovative applications of discoveries and the creation of new knowledge. TABLE OF CONTENTS AFFINITY CSU GROUPS CAMPUSES 7 Agriculture 41 Bakersfield Research 45 Channel Islands Institute 49 Chico 11 California Desert Studies 53 Dominguez Hills Consortium 57 East Bay 15 Council on Ocean 61 Fresno Affairs, Science and Technology 65 Fullerton 19 CSU Program 69 Humboldt for Education 73 Long Beach and Research in 77 Los Angeles Biotechnology 81 Maritime Academy 23 Moss Landing Marine 85 Monterey Bay Laboratories 89 Northridge 27 Ocean Studies 93 Pomona Institute 97 Sacramento 29 CSU Shiley Institute for 101 San Bernardino Palliative Care 105 San Diego 33 Social Science 109 San Francisco Research and 113 San José Instructional Council 117 San Luis Obispo 35 STEM-NET 121 San Marcos 39 Water Resources 125 Sonoma and Policy 129 Stanislaus Initiatives 3 On behalf of the entire California State University, I congratulate the students and faculty who distinguish themselves through exemplary research, scholarship and creative activity. Working together, they advance knowledge, understanding and creative expression at the forefront of their disciplines to benefit California’s diverse communities, the nation and the world.
    [Show full text]
  • USGS Scientific Investigations Map 3040, Pamphlet
    Surficial Geologic Map of the Darwin Hills 30’ x 60’ Quadrangle, Inyo County, California By A.S. Jayko Pamphlet to accompany Scientific Investigations Map 3040 2009 U.S. Department of the Interior U.S. Geological Survey Introduction This map shows the distribution of surficial deposits within the Darwin Hills 30’ x 60’ quadrangle, Inyo County, California, located between 36o to 36.5o latitude and 117o to 118o longitude. The quadrangle extends from the southern Owens Valley and Coso Range on the west to the northern and central Panamint Range on the east. Four additional 7.5’ quadrangles are included along the westernmost edge of the quadrangle adjacent to the Sierra Nevada range front to completely show the west side of the Owens Valley basin area. A limited time period was available for mapping the quadrangle; field studies were conducted during the field seasons from 2001 until 2004. Remote sensing images, digital orthophoto quadrangles, and 1:80,000-scale air photos were used extensively to delineate map units in addition to field observations. The map area consists of four principal geologic and geomorphic domains: Quaternary and Pliocene basin deposits, Quaternary and Pliocene volcanic rocks, late Miocene and early Pliocene erosional surfaces or peneplains, and Mesozoic or older plutonic and metamorphic rocks. There is no preserved lithologic record between about 80 Ma and 13 Ma in the map area and most of the Tertiary record is not much older than about 6 to 7 Ma, or early Pliocene and very latest Miocene age. Late Miocene rocks of about 12 to 13 Ma have been identified on the east flank of the Argus Range near Shepherd Canyon, but they occupy less than 1 percent of the map area, although they do occur in much greater abundance in adjacent regions south and east of the map area.
    [Show full text]
  • Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report West Flank of Coso, CA
    SANDIA REPORT SAND2016-8930 Printed September 2016 ORIGINALLY SUBMITTED FOR DOE REVIEW, April 2016 Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report West Flank of Coso, CA Douglas Blankenship, Sandia National Laboratories, Albuquerque, New Mexico 87185 Kelly Blake1, Wendy Calvin2, Steve DeOreo3, James E. Faulds4, Jonathan Glen5, Stephen Hickman5, Nick Hinz4, Ole Kaven5, Mike Lazaro1, Jesse McCulloch3, David Meade1, Mack Kennedy6, Geoff Phelps5, Andrew Sabin1, Martin Schoenball5, Drew Silar6, Ann Robertson-Tait7, Colin Williams5 1U.S. Navy Geothermal Program Office, China Lake, 93555 2Department of Geological Sciences and Engineering, University of Nevada, Reno 89557 3Coso Operating Company LLC, Coso Junction, 93542 4Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557 5U.S. Geological Survey, Menlo Park, California 6Lawrence Berkeley National Laboratory, Berkeley, California 7GeothermEx/Schlumberger Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights.
    [Show full text]
  • Environmental Assessment RE Cinco Gen-Tie Project
    Appendix E Cultural Resources Technical Studies Supplemental Project Statistics Report 1. Project Name. RE Cinco Gen-Tie Line Project 2. BLM State Permit Number. CA-12-22 3. Field Authorization Number. Issued on May 14, 2014 4. Dates of Field Survey. May 19-25, 2014 5. Total acreage of lands surveyed at BLM Class II level. 0 Of Item 5 above: A) Acreage of BLM lands surveyed 0 B) Acreage of other lands surveyed (Private, 0 State, Other Federal) List separately 6. Total acreage of lands surveyed at BLM Class III level. 200 Of Item 6 above: A) Acreage of BLM lands surveyed 150 B) Acreage of other lands surveyed (Private, 50 State, Other Federal) List separately 7. Total number of cultural properties in project Area (of Potential 8 Effect). Of Item 7 above: A) Total number of cultural properties for which site records were completed (newly recorded 8 cultural properties). B) Number of new cultural properties on BLM 6 lands C) Number of new cultural properties on other 1 lands (Private, State, Other Federal) 8. Of the cultural properties located within the Area (of Potential Effect): [If properties are not located on BLM, place this number in parentheses ( ) after the number of BLM properties.] A) Number of cultural properties that you are recommending as eligible for the National 0 Register. B) Number of cultural properties you are a recommending as not eligible for the National 7, (1) Register. Of Item 8A above: a) Number of cultural properties that can/will be 0 avoided. b) Number of cultural properties that will be 0 affected.
    [Show full text]
  • Ten Seconds in the Field: Rapid Armenian Obsidian Sourcing With
    Journal of Archaeological Science 41 (2014) 333e348 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Ten seconds in the field: rapid Armenian obsidian sourcing with portable XRF to inform excavations and surveys Ellery Frahm a, *, Beverly A. Schmidt b, Boris Gasparyan c, Benik Yeritsyan c, Sergei Karapetian d, Khachatur Meliksetian d, Daniel S. Adler b a Department of Archaeology, The University of Sheffield, Northgate House, West Street, Sheffield S1 4ET, United Kingdom b Department of Anthropology, Old World Archaeology Program, University of Connecticut, 354 Mansfield Road, Unit 1176, Storrs, CT 06269, United States c Institute of Archaeology and Ethnography, National Academy of Sciences, 15 Charents Street, Yerevan, Armenia d Institute of Geological Sciences, National Academy of Sciences, 24 Baghramian Avenue, Yerevan, Armenia article info abstract Article history: Armenia has one of the most obsidian-rich natural and cultural landscapes in the world, and the lithic Received 19 May 2013 assemblages of numerous Palaeolithic sites are predominantly, if not entirely, composed of obsidian. Received in revised form Recent excavations at the Middle Palaeolithic cave of Lusakert 1 recovered, on average, 470 obsidian 30 July 2013 artifacts daily. After sourcing more than 1700 artifacts using portable XRF (pXRF) in our field house, our Accepted 12 August 2013 team sought to shift pXRF-based obsidian sourcing into the field itself, believing that the geological origins of artifacts would be useful information to have on-site during an excavation or survey. Despite Keywords: increasing use of portable instruments, previous studies have principally focused on collections in Obsidian pXRF museums and other archives, and as a result, obsidian sourcing has remained embedded in post- fi Field methods excavation studies.
    [Show full text]
  • "Coso" Style Pictographs of the Southern Sierra Nevada
    COSO STYLE PICTOGRAPHS 95 Kroeber, A. L. 1925 Handbook of the Indians of Califomia. "Coso" Style Pictographs of Washington: Smithsonian Institution, the Southern Sierra Nevada Bureau of American Ethnology Bulletin 78. ALAN PHILIP GARFINKEL Reid, Hugo Two recently discovered pictograph sites 1968 The Indians of Los Angeles County. have similarities indicating common origin to Robert Heizer, ed. Southwest Museum the "Coso" style petroglyphs identified by Paper No. 21. Grant, Baird and Pringle (1968). These sites Rust, Horatio N. were located during field reconnaissance in the 1906 A Puberty Ceremony of the Mission Southern Sierra Nevada. The two sites appear Indians. American Anthropologist 8:28- unique for two reasons: (1) they date to the late 32. prehistoric and historic periods which pre­ Sparkman, Philip S. viously have not been noted as containing 1908 The Culture of the Luiseno Indians. "Coso" style rock art; and (2) "Coso" style University of Califomia Publications in pictographs are exceedingly rare and are un­ American Archaeology and Ethnology known for these periods. 8:187-234. Grant, Baird, and Pringle (1968) defined a Strong, WiUiam Duncan pecuhar petroglyph style found within the 1929 Aboriginal Society in Southern Cali­ Coso Range located in the westem Mojave fornia. University of Califomia PubUca­ Desert. Petroglyphs are found on patinated tions in American Archaeology and basaltic clhfs and boulders and display a Etbnology 26. (Reprinted 1972, Malki wealth of representational zoomorphic and Museum Press, Banning.) anthropomorphic forms. The most recurrent zoomorphic form and that which has come to Winterboume, John W. characterize this locality is the full front-facing 1935 Reports on Limestone Canyon Excava­ tions, Historical Research Project, 31 horned and boat-shaped bodied bighorn F2-96.
    [Show full text]