A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude
submitted to Astrophysical Journal Preprint typeset using LATEX style emulateapj v. 5/2/11 A BAYESIAN APPROACH TO LOCATING THE RED GIANT BRANCH TIP MAGNITUDE (PART II); DISTANCES TO THE SATELLITES OF M31 A. R.Conn1, 2, 3,R.A.Ibata3,G.F.Lewis4,Q.A.Parker1, 2, 5,D.B.Zucker1,2, 5, N. F. Martin3, A. W. McConnachie6, M. J. Irwin7, N. Tanvir8,M.A.Fardal9,A.M.N.Ferguson10,S.C.Chapman7, and D. Valls-Gabaud11 submitted to Astrophysical Journal ABSTRACT In ‘A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (PART I),’ a new technique was introduced for obtaining distances using the TRGB standard candle. Here we describe a useful com- plement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a 3D view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satel- lite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is presented, encompassing the dwarf spheroidals Andromedas I - III, V, IX-XXVII and XXX along with NGC147, NGC 185, M33 and M31 itself.
[Show full text]