Impact Des Fusions Majeures Sur L'evolution Des Galaxies Spirales Et

Total Page:16

File Type:pdf, Size:1020Kb

Impact Des Fusions Majeures Sur L'evolution Des Galaxies Spirales Et Impact des fusions majeures sur l’evolution des galaxies spirales et naines Sylvain Fouquet To cite this version: Sylvain Fouquet. Impact des fusions majeures sur l’evolution des galaxies spirales et naines. Astro- physique galactique [astro-ph.GA]. Université Paris-Diderot - Paris VII, 2013. Français. tel-00975096 HAL Id: tel-00975096 https://tel.archives-ouvertes.fr/tel-00975096 Submitted on 7 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS. DIDEROT (Paris 7) École doctorale d’Astronomie et d’Astrophysique d’Île de France Observatoire de Paris-Meudon Laboratoire Galaxies, Étoiles, Physique et Instrumentation - UMR 8111 THÈSE Présentée en vue de l’obtention du titre de : Docteur en astronomie par Sylvain FOUQUET Impact des fusions majeures sur l’évolution des galaxies spirales et naines Thèse dirigée par François Hammer Soutenue le 24 juin 2013 M. Didier Pelat, Président M. François Hammer, Directeur de thèse M. Pavel Kroupa, Rapporteur M. Rodrigo Ibata, Rapporteur Mme Simona Mei, Examinateur M. Albert Bosma, Examinateur Remerciements La thèse comme la plupart de ce que l’on accomplit n’est pas une oeuvre personnelle mais le résultat d’une collaboration. Mes collègues proches mais aussi d’autres personnes ont eu un impact sur le travail de ma thèse de manière plus ou moins directe. C’est toutes ces personnes qui ont compté pour moi durant les quatre annnées de ma thèse que j’aimerais remercier ici. Je souhaiterais tout d’abord remercier les membres de mon jury de thèse qui ont convenu que mon travail était digne d’intérêt et que je méritai le grade de Docteur. Chacun a compté à un degrée divers pour mon travail de thèse. Pavel Kroupa, avec son travail sur le VPOS et les galaxies naines, m’a ouvert la voie pour mon travail sur le Groupe Local. Rodrigo Ibata et sa découverte du plan de galaxies naines autour de M31 a permis à mon travail de thèse de prendre de l’ampleur en étudiant le système de satellite de M31. Didier Pelat a été un des mes professeurs durant ma deuxième année de Master et m’a inculqué les bases de l’outil statistique qui m’ont ensuite servi durant ma thèse. Une rapide discussion avec Albert Bosma sur la science lors d’une conférence m’a conforté dans mon envie de faire de la recherche. Enfin, Simona Mei en tant que représentante de Paris VII, l’Université où j’ai étudié deux ans et fait trois ans de monitorat, m’a aidé dans la mise en place de ma soutenance. Je remercierais ensuite ceux qui ont contribué à ma formation. En premier, ma pensée va à mon directeur de thèse. Souvent présent, François Hammer est un directeur de thèse exigeant mais juste. Avec lui, on ne reste pas cantonné à un domaine très spécifique de la science ; ses idées obligent à manipuler différents phénomènes physiques, ce qui est très formateur. Bon pédagogue, il est aussi un bon professeur pour apprendre la démarche scientifique : l’esprit critique et la rigueur scientifique. Ensuite, je remercie un trio de chercheur, Hector Flores, Matthieu Puech et Yanbin Yang. Ces trois personnes m’ont beaucoup appris concernant le traitement des données et les simulations numériques. Un remerciement spécial pour Matthieu qui à passer en plus du temps à relire et corriger mes écrits scientifiques. Je remercie aussi Karen Disseau pour sa relecture attentive de ma thèse et ses corrections orthographiques et Marc Joos pour ses conseils en latex. Plus éloignés de mon travail mais proches géographiquement, il faut aussi que je remercie mes collègues actuels mais aussi passés de mon laboratoire, le GEPI. Il y a trop de monde à citer pour ne pas en oublier entre les anciens et les actuels doctorants (Myriam, Rodney, Loïc, Thierry, Anand, Xuchui, Gohuo, Cathy, Lauriane, Mélanie, Hélène, Rossella, Chloé, Céline, . ), les Post- Doc (Jianling, Susanna, Cyril, Paola, . ), les membres permanents des équipes scientifiques (Chantal, David, Marc, Piercarlo, Catherine, . ), les personnes du pôle instrumental avec qui ont été fait tant de goûter (Phillippe, Gilles, Delphine, Mathieu, Jean-Philippe, Pascal, . ), les secrétaires (Sabine, les deux Pascale, . ) qui ont toujours été présentes dans ce domaine où je suis si mauvais, l’administration, l’équipe informatique (Sylvestre, Michèle, Patrick) et aussi les stagiaires de M1 et M2 de passage au GEPI durant l’été (Celino, Cateline, Lisheng, Grégory, Raphaël, Ingrid, . ). Ces quatre années de doctorat sont aussi quatre années de monitorat. En effet, pendant trois ans j’ai eu des étudiants à l’Université Paris VII et j’ai été recruté en tant qu’ATER pour ma dernière année de thèse. Cela a été une expérience très enrichissante ; enseigner oblige à revoir les bases d’anciens cours et l’on en apprend autant si ce n’est plus que nos étudiants. Là encore beaucoup de personnes à remercier. Les premières font parties des équipes pédagogiques des cours dans lesquels j’étais impliqué à Paris VII, cours de Mécanique en L1 en particulier (Martine, Yves, Antoine, . ), cours d’hydrodynamique en L1 (Patrice, . ), TP d’optique en L3 (Gerard, . ) et TD d’informatique. Grâce à eux j’ai pu découvrir le métier d’enseignant chercheur, mais aussi grâce à mes collègues durant mon ATER à l’observatoire de Meudon (Chantal, Matthieu, Audrey, Françoise, . ). En dehors du milieu professionnel, il y a évidemment les membres de ma famille avec en tête mes parents qu’il faut remercier pour leur soutien durant ces quatre années. Enfin, la vie ne se réduisant pas seulement au travail, je remercie mes amis, les plus anciens (Christophe, Mathieu, Claire, Khanh-Dang, Nicolas, Jonathan, Chloé, Godefroy, Marc, . ) comme les nouveaux fait durant mon M2 et ma thèse (Sophie, Laurent, Jennyfer, Romain S. et H., Anne, Benjamin, Morgan, Matteo, Laure, . ). Résumé La découverte de l’expansion de l’univers par Edwin Hubble en 1929 et l’étude de modèles cosmologiques ont retiré à l’univers son image statique et infinie ; l’univers évolue depuis plus de 13 milliards d’années, depuis le Big Bang. Le modèle cosmologique standard hiérarchique ΛCDM prédit que, durant cette évolution, les halos de matière noire auraient principalement accrété de la masse par fusions successives. L’évolution des baryons, qui se trouveraient être en quantité bien plus faible, aurait suivi celle de la matière noire. Deux types de fusions auraient structuré l’évolution des galaxies : les fusions mineures et majeures. De plus, une accrétion continue de gaz froid, similaire à de nombreuses fusions mineures, aurait aussi pu jouer un rôle dans l’assemblage de la masse des galaxies. Les fusions mineures et l’accrétion de gaz entraînent une évolution douce des galaxies. A contrario, les fusions majeures modifient brutalement la morphologie aussi bien que la cinématique des galaxies en fusion et forment ainsi de nouvelles galaxies. Une dernière forme d’évolution apparaît lorsque la galaxie est isolée ou pendant une période séparant deux épisodes de fusion : l’évolution séculaire. La morphologie et la cinématique d’une galaxie peuvent alors changer via des perturbations internes ou générées par la dernière fusion. L’évolution séculaire n’ajoute pas de masse à la galaxie ; seule, elle est insuffisante pour créer une galaxie. Pour mieux contraindre l’évolution des galaxies, je me suis tout d’abord penché sur l’évolution des galaxies durant les huit derniers milliards d’années. Dans cette optique, j’ai travaillé sur des données observationnelles du programme IMAGES (Intermediate MAss Galaxies Evolution Sequence), une étude, basée sur 63 galaxies situées à des redshifts intermédiaires (z 0.6), ∼ ayant pour objectif de dresser un portrait de l’état des galaxies à redshifts intermédiaires et de comprendre les mécanismes à l’oeuvre dans leur évolution. J’ai principalement utilisé les méthodes de travail développées sur l’échantillon du projet IMAGES pour 12 nouvelles galaxies ayant un redshift moyen légèrement plus grand (z 0.7 au lieu de 0.6). Avec les données ∼ du HST provenant du relevé GOODS, j’ai classé morphologiquement les galaxies du nouvel échantillon. Puis, utilisant les données du spectrographe multi-objets GIRAFFE, j’ai déterminé la cinématique de ces galaxies. Je retrouve, pour une plus petite statistique, les résultats du projet IMAGES : la fraction importante de galaxies particulières qui représentent plus de 50 % des galaxies de masses intermédiaires à des redshifts intermédiaires, au détriment des galaxies spirales ; une corrélation entre la classe morphologique des galaxies spirales et celle cinématique des galaxies en rotation ; une tendance pour les galaxies particulières à avoir une cinématique complexe ou perturbée. Ces résultats impliquent que les galaxies ont changé de morphologie entre z = 0.7 et z = 0. Les galaxies ayant une cinématique complexe ou perturbée sur de grandes échelles (> 5 kpc) requièrent des mécanismes bouleversant l’ensemble du gaz. Le mécanisme d’évolution le plus apte à les expliquer est la fusion majeure plutôt que l’accrétion lente de gaz ou la fusion mineure de galaxies naines. Les galaxies elliptiques de l’univers proche étant déjà en place à z > 1, les galaxies particulières ont dû alors évoluer en galaxies spirales. Tester le scénario de reconstruction des galaxies spirales après une fusion majeure a été le second axe de mon travail de recherche. La fraction de gaz, plus élevée dans le passé (> 50 % à z 1 2), joue un rôle primordial dans ce processus de reconstruction.
Recommended publications
  • The Feeble Giant. Discovery of a Large and Diffuse Milky Way Dwarf Galaxy in the Constellation of Crater
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo MNRAS 459, 2370–2378 (2016) doi:10.1093/mnras/stw733 Advance Access publication 2016 April 13 The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater G. Torrealba,‹ S. E. Koposov, V. Belokurov and M. Irwin Institute of Astronomy, Madingley Rd, Cambridge CB3 0HA, UK Downloaded from https://academic.oup.com/mnras/article-abstract/459/3/2370/2595158 by University of Cambridge user on 24 July 2019 Accepted 2016 March 24. Received 2016 March 24; in original form 2016 January 26 ABSTRACT We announce the discovery of the Crater 2 dwarf galaxy, identified in imaging data of the VLT Survey Telescope ATLAS survey. Given its half-light radius of ∼1100 pc, Crater 2 is the fourth largest satellite of the Milky Way, surpassed only by the Large Magellanic Cloud, Small Magellanic Cloud and the Sgr dwarf. With a total luminosity of MV ≈−8, this galaxy is also one of the lowest surface brightness dwarfs. Falling under the nominal detection boundary of 30 mag arcsec−2, it compares in nebulosity to the recently discovered Tuc 2 and Tuc IV and UMa II. Crater 2 is located ∼120 kpc from the Sun and appears to be aligned in 3D with the enigmatic globular cluster Crater, the pair of ultrafaint dwarfs Leo IV and Leo V and the classical dwarf Leo II. We argue that such arrangement is probably not accidental and, in fact, can be viewed as the evidence for the accretion of the Crater-Leo group.
    [Show full text]
  • Newly Discovered Olympian Galaxy Will Provide Fresh Insights Into Galactic Formation 30 May 2007
    Newly Discovered Olympian Galaxy Will Provide Fresh Insights into Galactic Formation 30 May 2007 A newly discovered dwarf galaxy in our local group have likely already been seriously harassed by has been found to have formed in a region of Andromeda and the Milky Way." space far from our own and is falling into our system for the first time in its history. The Olympian Galaxy was first discovered in October 2006 during a wide-field survey taken with The dwarf is formally known as Andromeda XII the Canada-France-Hawaii Telescope's MegaCam because it is the 12th dwarf galaxy associated with instrument. It is the faintest dwarf galaxy ever Andromeda, our nearest galactic neighbor. The discovered near Andromeda (also known as M31), discoverers have nicknamed it the Olympian and may have the lowest mass ever measured. Galaxy after the 12 Olympian gods in the Greek Dwarf galaxies are the smallest stellar systems pantheon. The discovery was made possible with showing evidence for a substantial amount of dark data obtained at the W. M. Keck Observatory atop matter. Mauna Kea, Hawaii. Chapman's observations confirmed that the According to Andrew Blain, an astronomer at the Olympian Galaxy is distinct from all other satellite California Institute of Technology and a member of galaxies in the local group. It is a fast-moving the discovery team, the Olympian Galaxy marks galaxy on a highly eccentric orbit, located at a great the best piece of evidence that at least some small distance-about 115 kiloparsecs (375,000 light- galaxies are just now arriving in our local group, years)-from the center of M31.
    [Show full text]
  • The Andromeda Galaxy's Most Important Merger
    The Andromeda Galaxy’s most important merger ~ 2 Gyrs ago as M32’s likely progenitor Richard D’Souza* & Eric F. Bell Although the Andromeda Galaxy’s (M31) proximity offers a singular opportunity to understand how mergers affect galaxies1, uncertainty remains about M31’s most important mergers. Previous studies focused individually on the giant stellar stream2 or the impact of M32 on M31’s disk3,4, thereby suggesting many significant satellite interactions5. Yet, models of M31’s disk heating6 and the similarity between the stellar populations of different tidal substructures in M31’s outskirts7 both suggested a single large merger. M31’s outer low- surface brightness regions (its stellar halo) is built up from the tidal debris of satellites5 and provides decisive guidance about its important mergers8. Here we use cosmological models of galaxy formation9,10 to show that M31’s massive11 and metal-rich12 stellar halo, containing intermediate-age stars7, dramatically narrows the range of allowed interactions, requiring a 10 single dominant merger with a large galaxy (M*~2.5x10 M¤, the third largest member of the Local Group) ~2 Gyr ago. This single event explains many observations that were previously considered separately: its compact and metal-rich satellite M3213 is likely to be the stripped core of the disrupted galaxy, M31’s rotating inner stellar halo14 contains most of the merger debris, and the giant stellar stream15 is likely to have been thrown out during the merger. This interaction may explain M31’s global burst of star formation ~2 Gyr ago16 in which ~1/5 of its stars were formed.
    [Show full text]
  • The Feeble Giant. Discovery of a Large and Diffuse Milky Way Dwarf Galaxy in the Constellation of Crater
    Edinburgh Research Explorer The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater Citation for published version: Torrealba, G, Koposov, SE, Belokurov, V & Irwin, M 2016, 'The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater', Monthly Notices of the Royal Astronomical Society . https://doi.org/10.1093/mnras/stw733 Digital Object Identifier (DOI): 10.1093/mnras/stw733 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Monthly Notices of the Royal Astronomical Society General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Mon. Not. R. Astron. Soc. 000, 1–10 (2015) Printed 2 August 2016 (MN LATEX style file v2.2) The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater⋆ G. Torrealba1, S.E. Koposov1, V. Belokurov1 & M. Irwin1 1Institute of Astronomy, Madingley Rd, Cambridge, CB3 0HA 2 August 2016 ABSTRACT We announce the discovery of the Crater 2 dwarf galaxy, identified in imaging data of the VST ATLAS survey.
    [Show full text]
  • Isolated Dwarf Galaxies As Probes of Dark Matter
    Isolated dwarf galaxies as probes of dark matter Michelle Collins University of Surrey Isolated dwarf galaxies as probes of dark matter Michelle Collins University of Surrey Low density dark matter halos 4 M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat ‘Too big to fail’ ‘Cusp-Core’ spherical Jeans equation, Thomas et al. (2011)haveshown that this mass estimator accurately reflects the mass as de- rived from axisymmetric orbit superposition models as well. This result suggests that Eqns. (1)and(2) are also applica- ble in the absence of spherical symmetry, a conclusion that is also supported by an analysis of Via Lactea II subhalos (Rashkov et al. 2012). We focus on the bright MW dSphs – those with LV > 105 L – for several reasons. Primary among them is that these systems have the highest quality kinematic data and the largest samples of spectroscopically confirmed member stars to resolve the dynamics at r1/2.Thecensusofthese bright dwarfs is also likely complete to the virial radius of the Milky Way ( 300 kpc), with the possible exception of ⇠ yet-undiscovered systems in the plane of the Galactic disk; the same can not be said for fainter systems (Koposov et al. 2008; Tollerud et al. 2008). Finally, these systems all have half-light radii that can be accurately resolved with the high- est resolution N-body simulations presently available. The Milky Way contains 10 known dwarf spheroidals 5 satisfying our luminosity cut of LV > 10 L :the9clas- sical (pre-SDSS) dSphs plus Canes Venatici I, which has a V -band luminosity comparable to Draco (though it is sig- Figure 1.
    [Show full text]
  • September 2005
    Amateur astronomers get better looking... Pay club dues at the General Meeting, or by mail. $30 individual, $40 family Volume 25 Number 9 nightwatch September 2005 President’s Address August General Meeting Summer is nearly over; autumn is almost here. Two visitors joined our meeting, Chris Peterson and In the upcoming months we have planned a public star James, along with a long time member who doesn’t get party at Barnes & Noble Booksellers in Rancho a chance to come to our meetings very often, William Cucamonga. We have had several events in Fritz. We look forward to seeing them all again soon. conjunction with Barnes & Noble and they have all Lee Collins’ What’s Up for the month discussed the been fun. The next one will be on the evening of Summer Triangle and the many nebulae to be seen in Thursday, October 13th. th this area which also contains views of our own Milky On October 29 we will have a joint star party Way when the sky is dark enough. While two of the with the Riverside Astronomical Society at their site near Landers. It will be interesting to see the many Star Party Sites improvements, which have been made to site since the (MBC) Mecca Beach Campground last time we were there. The Riverside group is a great (CS) Cottonwood Springs campground, Joshua Tree Natl. Pk bunch and this will be a lot of fun. (CC) Cow Canyon Saddle, near Mount Baldy Village We will have our Mars observing session with (MS) Mesquite Springs campground, Death Valley National Pk the 60-inch telescope on Mount Wilson Friday, (CWP) Claremont Wilderness Park parking lot November 11th.
    [Show full text]
  • Arxiv:1912.02186V1 [Astro-Ph.GA] 4 Dec 2019 Early in the Formation of an L∗ Galaxy
    Draft version December 6, 2019 Typeset using LATEX twocolumn style in AASTeX63 Elemental Abundances in M31: The Kinematics and Chemical Evolution of Dwarf Spheroidal Satellite Galaxies∗ Evan N. Kirby,1 Karoline M. Gilbert,2, 3 Ivanna Escala,1, 4 Jennifer Wojno,3 Puragra Guhathakurta,5 Steven R. Majewski,6 and Rachael L. Beaton4, 7, y 1California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125, USA 2Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA 3Department of Physics & Astronomy, Bloomberg Center for Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 4Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 5Department of Astronomy & Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA 7The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (Accepted 3 December 2019) Submitted to AJ ABSTRACT We present deep spectroscopy from Keck/DEIMOS of Andromeda I, III, V, VII, and X, all of which are dwarf spheroidal satellites of M31. The sample includes 256 spectroscopic members across all five dSphs. We confirm previous measurements of the velocity dispersions and dynamical masses, and we provide upper limits on bulk rotation. Our measurements confirm that M31 satellites obey the same relation between stellar mass and stellar metallicity as Milky Way (MW) satellites and other dwarf galaxies in the Local Group. The metallicity distributions show similar trends with stellar mass as MW satellites, including evidence in massive satellites for external influence, like pre-enrichment or gas accretion.
    [Show full text]
  • HST-ACS Photometry of the Isolated Dwarf Galaxy VV124=UGC 4879
    A&A 533, A37 (2011) Astronomy DOI: 10.1051/0004-6361/201117275 & c ESO 2011 Astrophysics HST-ACS photometry of the isolated dwarf galaxy VV124=UGC 4879 Detection of the blue horizontal branch and identification of two young star clusters, M. Bellazzini1,S.Perina1, S. Galleti1, and T. Oosterloo2 1 INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands Received 17 May 2011 / Accepted 9 July 2011 ABSTRACT We present deep V and I photometry of the isolated dwarf galaxy VV124=UGC 4879, obtained from archival images taken with the Hubble Space Telescope – Advanced Camera for Surveys. In the color-magnitude diagrams of stars at distances greater than 40 from the center of the galaxy, we clearly identify a well-populated, old horizontal branch (HB) for the first time. We show that the distribution of these stars is more extended than that of red clump stars. This implies that very old and metal-poor populations 4 dominate in the outskirts of VV124. We also identify a massive (M = 1.2 ± 0.2 × 10 M) young (age = 250 ± 50 Myr) star cluster 3 (C1), as well as another of younger age (C2, ∼<30 ± 10 Myr) with a mass similar to classical open clusters (M ≤ 3.3 ± 0.5 × 10 M). Both clusters lie at projected distances less than 100 pc from the center of the galaxy.
    [Show full text]
  • An Observational Limit on the Dwarf Galaxy Population of the Local Group
    An Observational Limit on the Dwarf Galaxy Population of the Local Group Alan B. Whiting1 Cerro Tololo Inter-American Observatory Casilla 603, La Serena, Chile [email protected] George K. T. Hau University of Durham Mike Irwin University of Cambridge Miguel Verdugo Institut f¨ur Astrophysik G¨ottingen, Germany ABSTRACT We present the results of an all-sky, deep optical survey for faint Local Group dwarf galaxies. Candidate objects were selected from the second Palomar survey (POSS-II) and ESO/SRC survey plates and follow-up observations performed to determine whether they were indeed overlooked members of the Local Group. arXiv:astro-ph/0610551v1 18 Oct 2006 Only two galaxies (Antlia and Cetus) were discovered this way out of 206 candi- dates. Based on internal and external comparisons, we estimate that our visual survey is more than 77% complete for objects larger than one arc minute in size and with a surface brightness greater than an extremely faint limit over the 72% of the sky not obstructed by the Milky Way. Our limit of sensitivity cannot be calculated exactly, but is certainly fainter than 25 magnitudes per square arc second in R, probably 25.5 and possibly approaching 26. We conclude that there are at most one or two Local Group dwarf galaxies fitting our observational cri- teria still undiscovered in the clear part of the sky, and roughly a dozen hidden behind the Milky Way. Our work places the “missing satellite problem” on a firm quantitative observational basis. We present detailed data on all our candidates, including surface brightness measurements.
    [Show full text]
  • PDF Presentatie Van Frank
    13” Frank Hol / Skyheerlen Elfje en Vixen R150S Newton in de jaren ’80 en begin ’90 vooral zon, maan, planeten en Messiers. H.T.S. – vriendin – baan – huis kopen & verbouwen trouwen – kinderen waarneemstop. Vanaf 2006 weer actief waarnemen. Focus op objecten uit de Local Group of Galaxies • 2008: Celestron C14. • 2015: 13” aluminium reisdobson. • 2017-2018-2019: 13” aluminium bino-dobson. Rocherath – SQM 21.2-21.7 13” M31 NGC206 Globulars Stofbanden Stervormings- gebieden … 13” M31 M32 NGC206 Globulars Stofbanden Stervormings- gebieden … NGC206 13” NGC205 M32 M32 is de kern van een NGC 221 galaxy die grotendeels Andromeda opgelokt is door M31. M32 is dan ook net zo X helder als de kern van M31 (met 100 miljoen sterren). Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. De helderste dwerg (vanuit onze breedte) aan de hemel: magnitude 8.1. M110 “Een elliptisch stelsel is NGC 205 dood-saai.” Andromeda Neen, kijk eens hoe mooi het stelsel aan de rand in de X donkere achtergrond verdwijnt. Een watje in de lucht! Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. Een grotere telescoop laat de randen mooi verdwijnen in de omgeving. 30’ x 25’ Burnham’s NGC185 and NGC147 “These two miniature elliptical galaxies appear to be distant Celestial companians of the Great Andromeda Galaxy M31. They are Handbook some 7 degrees north of it in the sky, and are approximately the same distance from us, about 2.2 milion light years.” Start van een lange zoektocht (die nog niet voorbij is). 13” NGC147 Twee elliptische stelsels. & NGC147 is een stuk moeilijker dan NGC185.
    [Show full text]
  • Neutral Hydrogen in Local Group Dwarf Galaxies
    Neutral Hydrogen in Local Group Dwarf Galaxies Jana Grcevich Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 c 2013 Jana Grcevich All rights reserved ABSTRACT Neutral Hydrogen in Local Group Dwarfs Jana Grcevich The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement be- tween the number of observed Local Group dwarf galaxies and that predicted by ΛCDM, and the discrepancy between the observed census of baryonic matter in the Milky Way’s environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram- 4 3 pressure arguments are invoked, which suggest halo densities greater than 2-3 10− cm− × out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy’s baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 108 M of HI gas to the Milky Way.
    [Show full text]
  • An Observer's Guide to the (Local Group) Dwarf Galaxies: Predictions for Their Own Dwarf Satellite Populations
    An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Dooley, Gregory A. et al. “An Observer’s Guide to the (Local Group) Dwarf Galaxies: Predictions for Their Own Dwarf Satellite Populations.” Monthly Notices of the Royal Astronomical Society 471, 4 (August 2017): 4894–4909 © 2018 The Author(s) As Published http://dx.doi.org/10.1093/MNRAS/STX1900 Publisher Oxford University Press (OUP) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/121369 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ MNRAS 000,1{21 (2017) Preprint 6 September 2017 Compiled using MNRAS LATEX style file v3.0 An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations Gregory A. Dooley1?, Annika H. G. Peter2;3, Tianyi Yang4, Beth Willman5, Brendan F. Griffen1 and Anna Frebel1, 1Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2CCAPP and Department of Physics, The Ohio State University, Columbus, OH 43210, USA 3Department of Astronomy, The Ohio State University, Columbus OH 43210, USA 4Institute of Optics, University of Rochester, Rochester, New York, 14627, USA 5Steward Observatory and LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA Accepted by MNRAS 2017 July 22. Received 2017 July 22; in original 2016 September 27 ABSTRACT A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has 3 6 inspired the idea of searching for faint satellites, 10 M < M∗ < 10 M , around less massive field galaxies in the Local Group.
    [Show full text]