A Kinematic Study of the Andromeda Dwarf Spheroidal System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies. -
Chemo-Kinematics of the Milky Way from the SDSS-III MARVELS Survey
MNRAS 000,1–22 (2018) Preprint 6 October 2020 Compiled using MNRAS LATEX style file v3.0 Chemo-kinematics of the Milky Way from the SDSS-III MARVELS Survey Nolan Grieves,1¢ Jian Ge,1 Neil Thomas,2 Kevin Willis,1 Bo Ma,1 Diego Lorenzo-Oliveira,3,4 A. B. A. Queiroz,5,4 Luan Ghezzi,6 Cristina Chiappini,7,4 Friedrich Anders,7,4 Letícia Dutra-Ferreira,5,4 Gustavo F. Porto de Mello,8,4 Basílio X. Santiago,5,4 Luiz N. da Costa,6,4 Ricardo L. C. Ogando,6,4 E. F. del Peloso,4 Jonathan C. Tan,9,1 Donald P. Schneider,10,11 Joshua Pepper,12 Keivan G. Stassun,13 Bo Zhao,1 Dmitry Bizyaev,14,15 and Kaike Pan14 1Department of Astronomy, University of Florida, Gainesville, FL 32611, USA 2Department of Astronautical Engineering, United States Air Force Academy, CO 80840, USA 3Universidade de São Paulo, Departamento de Astronomia IAG/USP, Rua do Matão 1226, Cidade Universitária, São Paulo, SP 05508-900, Brazil 4Laboratório Interinstitucional de e-Astronomia-LIneA, Rua Gereral José Cristino 77, São Cristóvão, Rio de Janeiro, RJ 20921-400, Brazil 5Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,Porto Alegre, RS - 91501-970, Brazil 6Observatório Nacional, Rua General José Cristino 77, São Cristóvão, Rio de Janeiro, RJ 20921-400, Brazil 7Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany 8Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio 43, Rio de Janeiro, RJ 20080-090, Brazil 9Department of Astronomy, University of Virginia, Charlottesville, VA 22904 10Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 11Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 12Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA, 18015, USA 13Vanderbilt University, Physics & Astronomy Department, 6301 Stevenson Center Ln., Nashville, TN 37235 14Apache Point Observatory and New Mexico State University, P.O. -
The Feeble Giant. Discovery of a Large and Diffuse Milky Way Dwarf Galaxy in the Constellation of Crater
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo MNRAS 459, 2370–2378 (2016) doi:10.1093/mnras/stw733 Advance Access publication 2016 April 13 The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater G. Torrealba,‹ S. E. Koposov, V. Belokurov and M. Irwin Institute of Astronomy, Madingley Rd, Cambridge CB3 0HA, UK Downloaded from https://academic.oup.com/mnras/article-abstract/459/3/2370/2595158 by University of Cambridge user on 24 July 2019 Accepted 2016 March 24. Received 2016 March 24; in original form 2016 January 26 ABSTRACT We announce the discovery of the Crater 2 dwarf galaxy, identified in imaging data of the VLT Survey Telescope ATLAS survey. Given its half-light radius of ∼1100 pc, Crater 2 is the fourth largest satellite of the Milky Way, surpassed only by the Large Magellanic Cloud, Small Magellanic Cloud and the Sgr dwarf. With a total luminosity of MV ≈−8, this galaxy is also one of the lowest surface brightness dwarfs. Falling under the nominal detection boundary of 30 mag arcsec−2, it compares in nebulosity to the recently discovered Tuc 2 and Tuc IV and UMa II. Crater 2 is located ∼120 kpc from the Sun and appears to be aligned in 3D with the enigmatic globular cluster Crater, the pair of ultrafaint dwarfs Leo IV and Leo V and the classical dwarf Leo II. We argue that such arrangement is probably not accidental and, in fact, can be viewed as the evidence for the accretion of the Crater-Leo group. -
Formation of Disc Galaxies from Cosmological Simulations: Galactic Outflows and Chemical Evolution
Scuola Internazionale Superiore di Studi Avanzati - Trieste Formation of disc galaxies from cosmological simulations: galactic outflows and chemical evolution Author: Milena Valentini Supervisors: Prof. Stefano Borgani, Prof. Alessandro Bressan, Dr. Giuseppe Murante International School for Advanced Studies SISSA/ISAS A thesis submitted in fulfilment of the requirements for the degree of Doctor Philosophiae in ASTROPHYSICS and COSMOLOGY October 2018 SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY To Nicola Abstract In this Thesis, I study the formation of late-type galaxies and the role that feedback from stars and supermassive black holes (SMBHs) plays in galaxy evolution across cosmic time. By carrying out cosmological hydrodynamical simulations, I investigate how different processes, such as the cosmological gas accretion from the large scale environment, star formation and chemical enrichment, stellar and AGN (Active Galactic Nucleus) feedback, affect the early stages of forming galaxies and contribute to determine their present-day properties. Driven by the challenging task of simulating late-type galaxies with a limited bulge and a dominant disc in a cosmological context, I study the impact of galactic outflow modelling on the formation and evolution of a disc galaxy. I find that galactic outflows regulate the timing of gas accretion and determine the star formation history of the forming galaxy. Also, I quantify the strong interplay between the adopted hydrodynamical scheme and the sub-resolution model describing star formation and stellar feedback. Throughout this Thesis, I devote particular emphasis to connect chemical evolution and gas dynamics, in order to interpret observations of metal abundance in the interstellar medium (ISM) and circumgalactic medium (CGM). -
The Search for Exomoons and the Characterization of Exoplanet Atmospheres
Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler. -
Newly Discovered Olympian Galaxy Will Provide Fresh Insights Into Galactic Formation 30 May 2007
Newly Discovered Olympian Galaxy Will Provide Fresh Insights into Galactic Formation 30 May 2007 A newly discovered dwarf galaxy in our local group have likely already been seriously harassed by has been found to have formed in a region of Andromeda and the Milky Way." space far from our own and is falling into our system for the first time in its history. The Olympian Galaxy was first discovered in October 2006 during a wide-field survey taken with The dwarf is formally known as Andromeda XII the Canada-France-Hawaii Telescope's MegaCam because it is the 12th dwarf galaxy associated with instrument. It is the faintest dwarf galaxy ever Andromeda, our nearest galactic neighbor. The discovered near Andromeda (also known as M31), discoverers have nicknamed it the Olympian and may have the lowest mass ever measured. Galaxy after the 12 Olympian gods in the Greek Dwarf galaxies are the smallest stellar systems pantheon. The discovery was made possible with showing evidence for a substantial amount of dark data obtained at the W. M. Keck Observatory atop matter. Mauna Kea, Hawaii. Chapman's observations confirmed that the According to Andrew Blain, an astronomer at the Olympian Galaxy is distinct from all other satellite California Institute of Technology and a member of galaxies in the local group. It is a fast-moving the discovery team, the Olympian Galaxy marks galaxy on a highly eccentric orbit, located at a great the best piece of evidence that at least some small distance-about 115 kiloparsecs (375,000 light- galaxies are just now arriving in our local group, years)-from the center of M31. -
The Feeble Giant. Discovery of a Large and Diffuse Milky Way Dwarf Galaxy in the Constellation of Crater
Edinburgh Research Explorer The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater Citation for published version: Torrealba, G, Koposov, SE, Belokurov, V & Irwin, M 2016, 'The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater', Monthly Notices of the Royal Astronomical Society . https://doi.org/10.1093/mnras/stw733 Digital Object Identifier (DOI): 10.1093/mnras/stw733 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Monthly Notices of the Royal Astronomical Society General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Mon. Not. R. Astron. Soc. 000, 1–10 (2015) Printed 2 August 2016 (MN LATEX style file v2.2) The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater⋆ G. Torrealba1, S.E. Koposov1, V. Belokurov1 & M. Irwin1 1Institute of Astronomy, Madingley Rd, Cambridge, CB3 0HA 2 August 2016 ABSTRACT We announce the discovery of the Crater 2 dwarf galaxy, identified in imaging data of the VST ATLAS survey. -
Isolated Dwarf Galaxies As Probes of Dark Matter
Isolated dwarf galaxies as probes of dark matter Michelle Collins University of Surrey Isolated dwarf galaxies as probes of dark matter Michelle Collins University of Surrey Low density dark matter halos 4 M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat ‘Too big to fail’ ‘Cusp-Core’ spherical Jeans equation, Thomas et al. (2011)haveshown that this mass estimator accurately reflects the mass as de- rived from axisymmetric orbit superposition models as well. This result suggests that Eqns. (1)and(2) are also applica- ble in the absence of spherical symmetry, a conclusion that is also supported by an analysis of Via Lactea II subhalos (Rashkov et al. 2012). We focus on the bright MW dSphs – those with LV > 105 L – for several reasons. Primary among them is that these systems have the highest quality kinematic data and the largest samples of spectroscopically confirmed member stars to resolve the dynamics at r1/2.Thecensusofthese bright dwarfs is also likely complete to the virial radius of the Milky Way ( 300 kpc), with the possible exception of ⇠ yet-undiscovered systems in the plane of the Galactic disk; the same can not be said for fainter systems (Koposov et al. 2008; Tollerud et al. 2008). Finally, these systems all have half-light radii that can be accurately resolved with the high- est resolution N-body simulations presently available. The Milky Way contains 10 known dwarf spheroidals 5 satisfying our luminosity cut of LV > 10 L :the9clas- sical (pre-SDSS) dSphs plus Canes Venatici I, which has a V -band luminosity comparable to Draco (though it is sig- Figure 1. -
Arxiv:1912.02186V1 [Astro-Ph.GA] 4 Dec 2019 Early in the Formation of an L∗ Galaxy
Draft version December 6, 2019 Typeset using LATEX twocolumn style in AASTeX63 Elemental Abundances in M31: The Kinematics and Chemical Evolution of Dwarf Spheroidal Satellite Galaxies∗ Evan N. Kirby,1 Karoline M. Gilbert,2, 3 Ivanna Escala,1, 4 Jennifer Wojno,3 Puragra Guhathakurta,5 Steven R. Majewski,6 and Rachael L. Beaton4, 7, y 1California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125, USA 2Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA 3Department of Physics & Astronomy, Bloomberg Center for Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 4Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 5Department of Astronomy & Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA 7The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (Accepted 3 December 2019) Submitted to AJ ABSTRACT We present deep spectroscopy from Keck/DEIMOS of Andromeda I, III, V, VII, and X, all of which are dwarf spheroidal satellites of M31. The sample includes 256 spectroscopic members across all five dSphs. We confirm previous measurements of the velocity dispersions and dynamical masses, and we provide upper limits on bulk rotation. Our measurements confirm that M31 satellites obey the same relation between stellar mass and stellar metallicity as Milky Way (MW) satellites and other dwarf galaxies in the Local Group. The metallicity distributions show similar trends with stellar mass as MW satellites, including evidence in massive satellites for external influence, like pre-enrichment or gas accretion. -
An Observational Limit on the Dwarf Galaxy Population of the Local Group
An Observational Limit on the Dwarf Galaxy Population of the Local Group Alan B. Whiting1 Cerro Tololo Inter-American Observatory Casilla 603, La Serena, Chile [email protected] George K. T. Hau University of Durham Mike Irwin University of Cambridge Miguel Verdugo Institut f¨ur Astrophysik G¨ottingen, Germany ABSTRACT We present the results of an all-sky, deep optical survey for faint Local Group dwarf galaxies. Candidate objects were selected from the second Palomar survey (POSS-II) and ESO/SRC survey plates and follow-up observations performed to determine whether they were indeed overlooked members of the Local Group. arXiv:astro-ph/0610551v1 18 Oct 2006 Only two galaxies (Antlia and Cetus) were discovered this way out of 206 candi- dates. Based on internal and external comparisons, we estimate that our visual survey is more than 77% complete for objects larger than one arc minute in size and with a surface brightness greater than an extremely faint limit over the 72% of the sky not obstructed by the Milky Way. Our limit of sensitivity cannot be calculated exactly, but is certainly fainter than 25 magnitudes per square arc second in R, probably 25.5 and possibly approaching 26. We conclude that there are at most one or two Local Group dwarf galaxies fitting our observational cri- teria still undiscovered in the clear part of the sky, and roughly a dozen hidden behind the Milky Way. Our work places the “missing satellite problem” on a firm quantitative observational basis. We present detailed data on all our candidates, including surface brightness measurements. -
PDF Presentatie Van Frank
13” Frank Hol / Skyheerlen Elfje en Vixen R150S Newton in de jaren ’80 en begin ’90 vooral zon, maan, planeten en Messiers. H.T.S. – vriendin – baan – huis kopen & verbouwen trouwen – kinderen waarneemstop. Vanaf 2006 weer actief waarnemen. Focus op objecten uit de Local Group of Galaxies • 2008: Celestron C14. • 2015: 13” aluminium reisdobson. • 2017-2018-2019: 13” aluminium bino-dobson. Rocherath – SQM 21.2-21.7 13” M31 NGC206 Globulars Stofbanden Stervormings- gebieden … 13” M31 M32 NGC206 Globulars Stofbanden Stervormings- gebieden … NGC206 13” NGC205 M32 M32 is de kern van een NGC 221 galaxy die grotendeels Andromeda opgelokt is door M31. M32 is dan ook net zo X helder als de kern van M31 (met 100 miljoen sterren). Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. De helderste dwerg (vanuit onze breedte) aan de hemel: magnitude 8.1. M110 “Een elliptisch stelsel is NGC 205 dood-saai.” Andromeda Neen, kijk eens hoe mooi het stelsel aan de rand in de X donkere achtergrond verdwijnt. Een watje in de lucht! Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. Een grotere telescoop laat de randen mooi verdwijnen in de omgeving. 30’ x 25’ Burnham’s NGC185 and NGC147 “These two miniature elliptical galaxies appear to be distant Celestial companians of the Great Andromeda Galaxy M31. They are Handbook some 7 degrees north of it in the sky, and are approximately the same distance from us, about 2.2 milion light years.” Start van een lange zoektocht (die nog niet voorbij is). 13” NGC147 Twee elliptische stelsels. & NGC147 is een stuk moeilijker dan NGC185. -
Neutral Hydrogen in Local Group Dwarf Galaxies
Neutral Hydrogen in Local Group Dwarf Galaxies Jana Grcevich Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 c 2013 Jana Grcevich All rights reserved ABSTRACT Neutral Hydrogen in Local Group Dwarfs Jana Grcevich The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement be- tween the number of observed Local Group dwarf galaxies and that predicted by ΛCDM, and the discrepancy between the observed census of baryonic matter in the Milky Way’s environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram- 4 3 pressure arguments are invoked, which suggest halo densities greater than 2-3 10− cm− × out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy’s baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 108 M of HI gas to the Milky Way.