Pandas'cubs: Discovery of Two New Dwarf Galaxies in the Surroundings

Total Page:16

File Type:pdf, Size:1020Kb

Pandas'cubs: Discovery of Two New Dwarf Galaxies in the Surroundings Draft version October 30, 2018 A Preprint typeset using LTEX style emulateapj v. 08/22/09 PANDAS’ CUBS: DISCOVERY OF TWO NEW DWARF GALAXIES IN THE SURROUNDINGS OF THE ANDROMEDA AND TRIANGULUM GALAXIES.12 Nicolas F. Martin1, Alan W. McConnachie2, Mike Irwin3, Lawrence M. Widrow4, Annette M. N. Ferguson5, Rodrigo A. Ibata6, John Dubinski7, Arif Babul8, Scott Chapman 3, Mark Fardal9, Geraint F. Lewis10, Julio Navarro8 and R. Michael Rich11 Draft version October 30, 2018 ABSTRACT We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam wide-field camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H] = −1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (MV = −9.9 ± 0.6), albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (MV = −6.5 ± 0.8) and lies a lot closer in projection to M33 than it does to M31 (42 vs. 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20. Subject headings: Local Group — galaxies: dwarf 1. INTRODUCTION cluding only 6 dwarf spheroidal galaxies, while 12 new Systematic deep photometric observations of the sur- dwarf galaxies have been discovered to inhabit this re- roundings of the Andromeda galaxy have revolutionized gion of the Local Group sky over the last five years. A dedicated scan of the Sloan Digital Sky Survey (SDSS), our knowledge of its satellite system. Before 2004, 12 ◦ dwarf galaxies were known to be M31 companions, in- targeting a region within 2 of M31’s major axis, unveiled the presence of Andromeda IX and X (Zucker et al. 2004, Electronic address: [email protected] 2007). In parallel, a contiguous mapping of the region 1 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 within ∼ 50 kpc of Andromeda, performed with the Wide Heidelberg, Germany Field Camera on the Isaac Newton Telescope, revealed 2 NRC Herzberg Institute for Astrophysics, 5071 West Saanich Road, Victoria, British Columbia, Canada, V9E 2E7 the picture of a strikingly substructured inner stellar halo 3 Institute of Astronomy, Madingley Road, Cambridge, CB3 (Ferguson et al. 2002), and led to the discovery of An- 0HA, U.K. dromeda XVII (Irwin et al. 2008). 4 Department of Physics, Engineering Physics, and Astronomy, Mapping the outer regions of M31’s halo was the goal Queen’s University, Kingston, ON K7L 3N6, Canada 5 Institute for Astronomy, University of Edinburgh, Royal of an extension to this survey. Performed with the arXiv:0909.0399v3 [astro-ph.CO] 17 Sep 2009 Observatory, Blackford Hill, Edinburgh, EH9 3HJ, U.K. MegaPrime/MegaCam 1 deg2 camera on the Canada- 6 Observatoire de Strasbourg, 11, rue de l’Universit´e, F-67000, France-Hawaii Telescope (CFHT), it mapped a quarter Strasbourg, France 7 Department of Astronomy and Astrophysics, University of of the M31 stellar halo, out to ∼ 150 kpc (Ibata et al. Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada 2007). Confirming the clumpy nature of Andromeda’s 8 Department of Physics and Astronomy, University of Victoria, stellar halo, the survey has also revealed the presence 3800 Finnerty Rd., Victoria, BC V8W 3P6, Canada of numerous other dwarf galaxies: Andromeda XI, XII, 9 Astronomy Department, University of Massachusetts, Amherst, MA 01003, USA XIII, XV, XVI, XVIII, XIX and XX (Martin et al. 2006; 10 Institute of Astronomy, School of Physics, University of Ibata et al. 2007; McConnachie et al. 2008). At about Sydney, NSW 2006, Australia. the same time, Andromeda XIV was discovered serendip- 11 Physics and Astronomy Building, 430 Portola Plaza, Box 951547, Department of Physics and Astronomy, University of itously by Majewski et al. (2007), just outside of the edge California, Los Angeles, CA 90095-1547, USA. of the MegaCam survey. 12 Based on observations obtained with MegaPrime/MegaCam, Our understanding of these systems remains sparse, a joint project of CFHT and CEA/DAPNIA, at the Canada- mainly due to the distance at which they reside, trans- France-Hawaii Telescope (CFHT) which is operated by the Na- lating into difficult photometric observations that can- tional Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche not easily reach much deeper than the horizontal branch Scientifique (CNRS) of France, and the University of Hawaii. at the distance of M31. Spectroscopic observations are 2 N. F. Martin et al. also limited to the handful of bright red giant branch separation only degrades at magnitudes fainter than (RGB) stars that can be targeted in each system. Al- g ∼ 25.0 and i ∼ 24.0. Data were preprocessed (de- though progress is expected along these lines in the com- biased, flat-fielded and fringe corrected) by the Elixir ing years, much can already be said of the generic prop- system at CFHT that also determines the photomet- erties of these new objects from the current survey data ric zero point of the observations, and then processed alone. Their absolute magnitude ranges from a very faint using a version of the Cambridge Astronomical Survey MV = −6.4 for And XII and And XX (Martin et al. Unit (CASU) photometry pipeline (Irwin & Lewis 2001), 2006; McConnachie et al. 2008) to a surprisingly bright adapted to CFHT/MegaCam observations. The pipeline < MV ∼ −9.7 for And XVIII (McConnachie et al. 2008), registers and stacks the images, and also generates cat- patently showing the incompleteness of the M31 satellite alogues with object morphological classification before luminosity function at the faint end, in regions that have creating band-merged g, i products. so far only been surveyed with photographic plates. In the following, dereddened magnitudes (g0 and i0) Given their relative faintness and significant sizes, have been determined from the Schlegel et al. (1998) these new systems are usually assumed to be dwarf E(B − V ) extinction maps, using the following correc- spheroidal galaxies, in other words dwarf galaxies that tion coefficients: g0 = g − 3.793E(B − V ) and i0 = are devoid of any significant amount of gas. This is cur- i − 2.086E(B − V ), listed in their Table 6. rently consistent with the analysis of Hi surveys but the upper limits on their Hi content remains relatively high 3. ANDROMEDA XXI AND ANDROMEDA XXII 5 (2−3×10 M⊙; Grcevich & Putman 2009). Therefore, it cannot be entirely ruled out that some of these galaxies 3.1. Discovery still contain non-negligeable amounts of gas. Two new dwarf galaxies were directly identified on Building upon the previous MegaCam survey, we matched-filter surface density maps of RGB candidate have initiated the Pan-Andromeda Archaeological Sur- stars selected to have colors consistent with the average vey (PAndAS), a Large Program using the CFHT Mega- (generally) metal-poor locus of M31 dwarf spheroidals. Cam imager to map the entire stellar halo of M31 and Satellites in the very sparsely populated outer halo re- M33 out to distances of ∼ 150 and ∼ 50kpc respec- gions correspond to stellar overdensities that are striking tively. Here, we report on the discovery of two new dwarf enough for them to be easily spotted, even down to mag- galaxies in the vicinity of the Andromeda and Triangu- nitudes of MV ∼ −6.5. This was the case for And XII lum galaxies based on the first year of PAndAS data. (Martin et al. 2006) and And XX (McConnachie et al. These systems, dubbed Andromeda XXI and XXII are 2008) and also here with Andromeda XXII. An auto- sparse but unmistakable overdensities of stars that are mated search is certainly warranted to better quantify also aligned along a RGB at the distance of M31. Sec- the detection limits of the survey in uncovering new tion 2 of this paper briefly summarizes the PAndAS data dwarf galaxies. However, it is beyond the scope of this while section 3 presents the new systems and details their initial discovery paper and will be presented elsewhere. properties. Section 4 briefly discusses the new discoveries The locations of the two new satellites are shown on and section 5 concludes the paper. the map of the PAndAS survey (Figure 1). As with many Throughout this paper, the distance moduli of M31 previous detections, these two systems are noticeably and M33 are assumed to be (m−M)0 = 24.47±0.07 and close to the edge of the survey, suggesting that the survey (m − M)0 = 24.54 ± 0.06, or 783 ± 25 and 809 ± 24kpc limit of 150 kpc in projected distance from M31 does not respectively (McConnachie et al.
Recommended publications
  • Wyn Evans Institute of Astronomy, Cambridge
    DARK MATTER SUBSTRUCTURES IN THE NEARBY UNIVERSE Wyn Evans Institute of Astronomy, Cambridge Monday, 16 July 2012 DARK MATTER 1. The dwarf spheroidals 2. The ultra-faints 3. The clouds & streams 4. The unknown Monday, 16 July 2012 DWARF SPHEROIDALS Image (35’ by 35’) of the Sculptor dwarf spheroidal taken with the NOAO CTIO 4 m telescope. Monday, 16 July 2012 DWARF SPHEROIDALS Surrounding the Milky Way are 9 classical dwarf spheroidal galaxies (Scu, For, Leo I, Leo II, UMi, Dra, Car, Sex, Sgr). These contain intermediate age to old stellar populations and no gas. They have velocity dispersions ∼ 8-10 km/s, half-light radius ∼ 200-300 pc, and absolute magnitudes MV brighter than -8. They are all highly dark matter dominated, and are natural targets for indirect detection experiments. What are their dark matter profiles? Are they cusped or cored? Monday, 16 July 2012 DWARF SPHEROIDALS Radial velocity surveys with multi-object spectrographs have now provided datasets of thousands of velocities for the giants stars. Early hopes that the photometry and line of sight velocity dispersion profile could be used to constrain the dark halo give way to pessimism. Most early modelers used the spherical Jeans equations to deduce dark matter properties at the center. Monday, 16 July 2012 JEANS EQUATIONS • The spherical Jeans equation is dangerous! If the light profile is cored (Plummer), then assuming isotropy gives a cored dark matter density. If the light profile is cusped (exponential), then so is the dark halo (An & Evans 2009). • The degeneracies in the Jeans equations are also illustrated by Walker et al.
    [Show full text]
  • The Feeble Giant. Discovery of a Large and Diffuse Milky Way Dwarf Galaxy in the Constellation of Crater
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo MNRAS 459, 2370–2378 (2016) doi:10.1093/mnras/stw733 Advance Access publication 2016 April 13 The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater G. Torrealba,‹ S. E. Koposov, V. Belokurov and M. Irwin Institute of Astronomy, Madingley Rd, Cambridge CB3 0HA, UK Downloaded from https://academic.oup.com/mnras/article-abstract/459/3/2370/2595158 by University of Cambridge user on 24 July 2019 Accepted 2016 March 24. Received 2016 March 24; in original form 2016 January 26 ABSTRACT We announce the discovery of the Crater 2 dwarf galaxy, identified in imaging data of the VLT Survey Telescope ATLAS survey. Given its half-light radius of ∼1100 pc, Crater 2 is the fourth largest satellite of the Milky Way, surpassed only by the Large Magellanic Cloud, Small Magellanic Cloud and the Sgr dwarf. With a total luminosity of MV ≈−8, this galaxy is also one of the lowest surface brightness dwarfs. Falling under the nominal detection boundary of 30 mag arcsec−2, it compares in nebulosity to the recently discovered Tuc 2 and Tuc IV and UMa II. Crater 2 is located ∼120 kpc from the Sun and appears to be aligned in 3D with the enigmatic globular cluster Crater, the pair of ultrafaint dwarfs Leo IV and Leo V and the classical dwarf Leo II. We argue that such arrangement is probably not accidental and, in fact, can be viewed as the evidence for the accretion of the Crater-Leo group.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Newly Discovered Olympian Galaxy Will Provide Fresh Insights Into Galactic Formation 30 May 2007
    Newly Discovered Olympian Galaxy Will Provide Fresh Insights into Galactic Formation 30 May 2007 A newly discovered dwarf galaxy in our local group have likely already been seriously harassed by has been found to have formed in a region of Andromeda and the Milky Way." space far from our own and is falling into our system for the first time in its history. The Olympian Galaxy was first discovered in October 2006 during a wide-field survey taken with The dwarf is formally known as Andromeda XII the Canada-France-Hawaii Telescope's MegaCam because it is the 12th dwarf galaxy associated with instrument. It is the faintest dwarf galaxy ever Andromeda, our nearest galactic neighbor. The discovered near Andromeda (also known as M31), discoverers have nicknamed it the Olympian and may have the lowest mass ever measured. Galaxy after the 12 Olympian gods in the Greek Dwarf galaxies are the smallest stellar systems pantheon. The discovery was made possible with showing evidence for a substantial amount of dark data obtained at the W. M. Keck Observatory atop matter. Mauna Kea, Hawaii. Chapman's observations confirmed that the According to Andrew Blain, an astronomer at the Olympian Galaxy is distinct from all other satellite California Institute of Technology and a member of galaxies in the local group. It is a fast-moving the discovery team, the Olympian Galaxy marks galaxy on a highly eccentric orbit, located at a great the best piece of evidence that at least some small distance-about 115 kiloparsecs (375,000 light- galaxies are just now arriving in our local group, years)-from the center of M31.
    [Show full text]
  • The Feeble Giant. Discovery of a Large and Diffuse Milky Way Dwarf Galaxy in the Constellation of Crater
    Edinburgh Research Explorer The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater Citation for published version: Torrealba, G, Koposov, SE, Belokurov, V & Irwin, M 2016, 'The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater', Monthly Notices of the Royal Astronomical Society . https://doi.org/10.1093/mnras/stw733 Digital Object Identifier (DOI): 10.1093/mnras/stw733 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Monthly Notices of the Royal Astronomical Society General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Mon. Not. R. Astron. Soc. 000, 1–10 (2015) Printed 2 August 2016 (MN LATEX style file v2.2) The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater⋆ G. Torrealba1, S.E. Koposov1, V. Belokurov1 & M. Irwin1 1Institute of Astronomy, Madingley Rd, Cambridge, CB3 0HA 2 August 2016 ABSTRACT We announce the discovery of the Crater 2 dwarf galaxy, identified in imaging data of the VST ATLAS survey.
    [Show full text]
  • Isolated Dwarf Galaxies As Probes of Dark Matter
    Isolated dwarf galaxies as probes of dark matter Michelle Collins University of Surrey Isolated dwarf galaxies as probes of dark matter Michelle Collins University of Surrey Low density dark matter halos 4 M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat ‘Too big to fail’ ‘Cusp-Core’ spherical Jeans equation, Thomas et al. (2011)haveshown that this mass estimator accurately reflects the mass as de- rived from axisymmetric orbit superposition models as well. This result suggests that Eqns. (1)and(2) are also applica- ble in the absence of spherical symmetry, a conclusion that is also supported by an analysis of Via Lactea II subhalos (Rashkov et al. 2012). We focus on the bright MW dSphs – those with LV > 105 L – for several reasons. Primary among them is that these systems have the highest quality kinematic data and the largest samples of spectroscopically confirmed member stars to resolve the dynamics at r1/2.Thecensusofthese bright dwarfs is also likely complete to the virial radius of the Milky Way ( 300 kpc), with the possible exception of ⇠ yet-undiscovered systems in the plane of the Galactic disk; the same can not be said for fainter systems (Koposov et al. 2008; Tollerud et al. 2008). Finally, these systems all have half-light radii that can be accurately resolved with the high- est resolution N-body simulations presently available. The Milky Way contains 10 known dwarf spheroidals 5 satisfying our luminosity cut of LV > 10 L :the9clas- sical (pre-SDSS) dSphs plus Canes Venatici I, which has a V -band luminosity comparable to Draco (though it is sig- Figure 1.
    [Show full text]
  • History of Telescopes
    1 OUR PLACE IN SPACE Earth: Earth is the third planet from the Sun, and the densest and fifth- largest of the eight planets in the Solar System. It is also the largest of the Solar System’s four terrestrial planets. The Solar System : The Solar System consists of the Sun and those celestial objects bound to it by gravity, all of which were formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. Of the many objects that orbit the Sun, most of the mass is contained within eight relatively solitary planets whose orbits are almost circular and lie within a nearly flat disc called the ecliptic plane. The four smaller inner planets, Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal. The four outer planets, the gas giants, are substantially more massive than the terrestrials. They are Jupiter, Saturn, Uranus and Neptune. The Sun: The Sun is the star at the center of the Solar System. It has a diameter of about 1,392,000 kilometers about 109 times that of Earth, and its mass (about 2 × 1030 kilograms, 330,000 times that of Earth) accounts for about 99.86% of the total mass of the Solar System. The Milky way Galaxy: The Milky Way Galaxy is the galaxy in which the Solar System is located. The Milky Way is a barred spiral galaxy that is part of the Local Group of galaxies. It is one of billions of galaxies in the observable universe. The Local Group: The Local Group is the group of galaxies that includes our galaxy, the Milky Way.
    [Show full text]
  • PDF Presentatie Van Frank
    13” Frank Hol / Skyheerlen Elfje en Vixen R150S Newton in de jaren ’80 en begin ’90 vooral zon, maan, planeten en Messiers. H.T.S. – vriendin – baan – huis kopen & verbouwen trouwen – kinderen waarneemstop. Vanaf 2006 weer actief waarnemen. Focus op objecten uit de Local Group of Galaxies • 2008: Celestron C14. • 2015: 13” aluminium reisdobson. • 2017-2018-2019: 13” aluminium bino-dobson. Rocherath – SQM 21.2-21.7 13” M31 NGC206 Globulars Stofbanden Stervormings- gebieden … 13” M31 M32 NGC206 Globulars Stofbanden Stervormings- gebieden … NGC206 13” NGC205 M32 M32 is de kern van een NGC 221 galaxy die grotendeels Andromeda opgelokt is door M31. M32 is dan ook net zo X helder als de kern van M31 (met 100 miljoen sterren). Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. De helderste dwerg (vanuit onze breedte) aan de hemel: magnitude 8.1. M110 “Een elliptisch stelsel is NGC 205 dood-saai.” Andromeda Neen, kijk eens hoe mooi het stelsel aan de rand in de X donkere achtergrond verdwijnt. Een watje in de lucht! Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. Een grotere telescoop laat de randen mooi verdwijnen in de omgeving. 30’ x 25’ Burnham’s NGC185 and NGC147 “These two miniature elliptical galaxies appear to be distant Celestial companians of the Great Andromeda Galaxy M31. They are Handbook some 7 degrees north of it in the sky, and are approximately the same distance from us, about 2.2 milion light years.” Start van een lange zoektocht (die nog niet voorbij is). 13” NGC147 Twee elliptische stelsels. & NGC147 is een stuk moeilijker dan NGC185.
    [Show full text]
  • Neutral Hydrogen in Local Group Dwarf Galaxies
    Neutral Hydrogen in Local Group Dwarf Galaxies Jana Grcevich Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 c 2013 Jana Grcevich All rights reserved ABSTRACT Neutral Hydrogen in Local Group Dwarfs Jana Grcevich The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement be- tween the number of observed Local Group dwarf galaxies and that predicted by ΛCDM, and the discrepancy between the observed census of baryonic matter in the Milky Way’s environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram- 4 3 pressure arguments are invoked, which suggest halo densities greater than 2-3 10− cm− × out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy’s baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 108 M of HI gas to the Milky Way.
    [Show full text]
  • The Hubble Catalog of Variables (HCV)? A
    Astronomy & Astrophysics manuscript no. hcv c ESO 2019 September 25, 2019 The Hubble Catalog of Variables (HCV)? A. Z. Bonanos1, M. Yang1, K. V. Sokolovsky1; 2; 3, P. Gavras4; 1, D. Hatzidimitriou1; 5, I. Bellas-Velidis1, G. Kakaletris6, D. J. Lennon7; 8, A. Nota9, R. L. White9, B. C. Whitmore9, K. A. Anastasiou5, M. Arévalo4, C. Arviset8, D. Baines10, T. Budavari11, V. Charmandaris12; 13; 1, C. Chatzichristodoulou5, E. Dimas5, J. Durán4, I. Georgantopoulos1, A. Karampelas14; 1, N. Laskaris15; 6, S. Lianou1, A. Livanis5, S. Lubow9, G. Manouras5, M. I. Moretti16; 1, E. Paraskeva1; 5, E. Pouliasis1; 5, A. Rest9; 11, J. Salgado10, P. Sonnentrucker9, Z. T. Spetsieri1; 5, P. Taylor9, and K. Tsinganos5; 1 1 IAASARS, National Observatory of Athens, Penteli 15236, Greece e-mail: [email protected] 2 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 3 Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia 4 RHEA Group for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 5 Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 15784, Greece 6 Athena Research and Innovation Center, Marousi 15125, Greece 7 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain 8 ESA, European Space Astronomy Centre, Villanueva de la Canada, 28692 Madrid, Spain 9 Space Telescope Science Institute, Baltimore, MD 21218, USA 10 Quasar Science Resources for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 11 The Johns Hopkins University, Baltimore, MD 21218, USA 12 Institute of Astrophysics, FORTH, Heraklion 71110, Greece 13 Department of Physics, Univ.
    [Show full text]
  • Draft181 182Chapter 10
    Chapter 10 Formation and evolution of the Local Group 480 Myr <t< 13.7 Gyr; 10 >z> 0; 30 K > T > 2.725 K The fact that the [G]alactic system is a member of a group is a very fortunate accident. Edwin Hubble, The Realm of the Nebulae Summary: The Local Group (LG) is the group of galaxies gravitationally associ- ated with the Galaxy and M 31. Galaxies within the LG have overcome the general expansion of the universe. There are approximately 75 galaxies in the LG within a 12 diameter of ∼3 Mpc having a total mass of 2-5 × 10 M⊙. A strong morphology- density relation exists in which gas-poor dwarf spheroidals (dSphs) are preferentially found closer to the Galaxy/M 31 than gas-rich dwarf irregulars (dIrrs). This is often promoted as evidence of environmental processes due to the massive Galaxy and M 31 driving the evolutionary change between dwarf galaxy types. High Veloc- ity Clouds (HVCs) are likely to be either remnant gas left over from the formation of the Galaxy, or associated with other galaxies that have been tidally disturbed by the Galaxy. Our Galaxy halo is about 12 Gyr old. A thin disk with ongoing star formation and older thick disk built by z ≥ 2 minor mergers exist. The Galaxy and M 31 will merge in 5.9 Gyr and ultimately resemble an elliptical galaxy. The LG has −1 vLG = 627 ± 22 km s with respect to the CMB. About 44% of the LG motion is due to the infall into the region of the Great Attractor, and the remaining amount of motion is due to more distant overdensities between 130 and 180 h−1 Mpc, primarily the Shapley supercluster.
    [Show full text]
  • Mirando El Cielo
    1 Mirando el cielo Guillermo Sánchez (http://diarium.usal.es/guillermo) Última actualización: 2013-05-11 1.0. Sobre la elaboración es este artículo. Todos los cálculos realizados para elaborar este artículo están realizados con el programa Mathematica , sin embargo Ud no los verá. A veces observará que algún texto aparece en inglés esto es debido a que se muestra directamente el resultado de la salida del programa. Si está interesado en el uso de este programa en cálculos astrónomicos y otros muchos campos puede visitar: http://diarium.usal.es/guillermo/mathematica/ . 1.1. La época dorada de la astronomía y cosmología La contemplación del cielo una noche estrellada, lejos de la contaminación lumínica, es uno de los espectáculos más sobrecogedores del que se puede disfrutar. No es extraño que durante milenios los seres humanos observasen el cielo y se diesen cuenta de que el Sol y la Luna siguen ciclos regulares. La mayoría de las culturas hicieron interpretaciones mitológicas o religiosas de los astros pero también los utilizaron con un sentido práctico, para el establecimiento de calendarios que sirvieron, entre otras cosas, para planificar las cosechas. Por ejemplo, los egipcios asociaban la aparición de Sirio, la estrella más brillante del hemisferio norte (ahora sabemos es un sistema binario), como preludio de la crecida del Nilo. El advenimiento del telescopio hace poco más de 400 años (1609): el número de astros observables paso de tres o cuatro mil astros, que se observan a simple vista, a miles de millones; la luna lejos de ser una esfera perfecta pues estaba cubierta de montañas y cráteres; las estrellas errantes (los planetas) no eran simples puntos de luz, tenían satélites y alguno hasta estaba rodeado de un anillo.
    [Show full text]