Bayesian Distances from the Tip of the Red Giant Branch Anthony Rhys Conn

Total Page:16

File Type:pdf, Size:1020Kb

Bayesian Distances from the Tip of the Red Giant Branch Anthony Rhys Conn Structure of the M31 satellite system : bayesian distances from the tip of the red giant branch Anthony Rhys Conn To cite this version: Anthony Rhys Conn. Structure of the M31 satellite system : bayesian distances from the tip of the red giant branch. Other. Université de Strasbourg; Macquarie university (Sydney, Australie), 2013. English. NNT : 2013STRAH002. tel-01012081 HAL Id: tel-01012081 https://tel.archives-ouvertes.fr/tel-01012081 Submitted on 25 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG A thesis presented to Observatoire astronomique de Strasbourg by: Anthony Rhys CONN defended on : 7 February 2013 for the degree of : Docteur de l’université de Strasbourg Discipline: Astrophysics Structure of the M31 Satellite System: Bayesian Distances from the Tip of the Red Giant Branch Thesis Supervisors : Dr. Rodrigo A. Ibata Université de Strasbourg Prof. Quentin A. Parker Macquarie University Prof. Geraint F. Lewis University of Sydney A/Prof. Daniel B. Zucker Macquarie University Members of the Jury : Prof. Christian M. Boily Université de Strasbourg Dr. Michele Bellazzini INAF—Osservatorio Astronomico di Bologna Dr. Annie C. Robin Observatoire de Besançon External Examiner : Dr. Andreas Koch University of Heidelberg Completed under a cotutelle agreement with Macquarie University in Sydney Australia ii !c Anthony Rhys Conn, 2013. Typeset in LATEX 2ε. iii Except where acknowledged in the customary manner, the material presented in this thesis is, to the best of my knowl- edge, original and has not been submitted in whole or part for a degree in any university. Anthony Rhys Conn iv Acknowledgements I have been very fortunate throughout my PhD candidature to work with some very dedicated and talented astronomers and astrophysicists who have had a huge impact on the course my research has taken. I have worked most closely with my supervisors Dr Rodrigo Ibata (Universite´ de Strasbourg) and Prof. Geraint Lewis (University of Sydney) who I would like to thank for the large amount of their time and resources they have invested in my project. Rodrigo is a renowned figure in the field of Galactic Archaeology and I have greatly benefited from his expertise. He has also been a great host on my many visits to Strasbourg and always available to discuss the problem at hand. Likewise Geraint has had a prolific impact on the field and is a veritable source of programming knowhow. He devotes an enormous amount of energy to the various projects of his many students and his input has been invaluable to my research. In addition, I would also like to thank my supervisors Prof. Quentin Parker and A/Prof. Dan Zucker (both from Macquarie University) for their constant support and encouragement. In particular I am indebted to Quentin for the great lengths he went to in securing a funded position for me at Macquarie and for his efforts in establishing and maintaining the cotutelle agreement with the Universite´ de Strasbourg. Whilst my PhD project was somewhat external to the fields of expertise of both Quentin and Dan, they have always made themselves available to discuss my work at length and advise on all matters of administration. In addition to the contributions of my 4 supervisors, there are a number of other people who have played an important role in my progress toward completion. I would especially v vi Acknowledgements like to thank all the members of the Pan Andromeda Archaeological Survey (PAndAS) col- laboration for providing a wonderful repository of data to work with and particularly those members included as coauthors on my papers for their detailed reviews of my drafts. I would also like to add that I had many meetings with Dr Nicolas Martin (Universite´ de Strasbourg) whilst in Strasbourg which had a large impact on the work presented in Paper II. In addition I must thank Neil Ibata for his French translation of my thesis summary (Resum´ e´ de These).` I also received much support from my fellow PhD student Dr Anjali Varghese on my many trips to Strasbourg and relied on her superior French more than once. There are also a number of institutions that I must acknowledge for the support they have provided. Firstly, I would like to thank Macquarie University for their financial support via the Macquarie University Research Excellence Scholarship (MQRES) and also for paying all my airfares and providing assistance with other expenses incurred during my candidature. I would also like to thank the Observatoire Astronomique of the Universite´ de Strasbourg for providing me with accommodation on each visit to Strasbourg and I would like to thank both the aforementioned universities as well as the University of Sydney for use of computational and all other facilities. Finally I would like to thank all of my family for their ceaseless support and encour- agement. Without my family it is inconceivable that I could ever have made it this far. I would therefore like to dedicate this work to all of them: Mum, Dad, Nanna, Pa, Mardi, Pop, Andrew, Crysta, Sophie, Kristin, Remo, Alex, Chris, Matthew, Trixie and all my extended family. A Note on Paper Co-Author Contributions As a thesis by publication, much of the work contained in the main body of this thesis has been (or will be) published in the form of three separate papers submitted to the Astrophys- ical Journal. Each of these publications acknowledges contributions from a relatively large group of co-authors. This is an inevitable consequence of the use of data that is the property of a large collaboration (i.e. the Pan-Andromeda Archaeological Survey - PAndAS), and it has in no way diminished the amount of work that I have put into each of these papers. In fact, rather the opposite is true, due to the enormous amount of code adjustments and paper editing that has had to take place to accommodate the suggestions of a large group of people. The work contained in these papers has been carried out principally with the direction of the second and third co-authors, my supervisors Prof. Geraint Lewis and Dr Rodrigo Ibata, with all other contributions being in the form of written critiques of the paper drafts. This does not detract from the aid I have received from my other two supervisors Prof. Quentin Parker and A/Prof. Dan Zucker, who as well as providing similar critiques of my drafts, have been a great help with all administrational matters that I have contended with during the course of my PhD candidature. I should also note that I had many in-person discussions with Dr Nico- las Martin whilst in Strasbourg, which further influenced the way I carried out the analysis contained in the second paper. All of this said, all three papers have been written entirely by me, and all figures they contain have been generated by me using the PGPLOT plotting package (Pearson, 2011), with the sole exception of the pole-density plots in Paper III; Ch. 5 (Figs. 2, 4, 8, 10 (right-hand column of plots), 11 and 14), which were produced using a Gaussian-smoothing vii viii ANote on Paper Co-Author Contributions program by Geraint Lewis from the pole count analysis data that I sent him. All of the analysis contained in the papers has been undertaken using Fortran code that I have written from scratch, with examples of most of the principal versions of the code provided in the appendix. These programs do make occasional use of subroutines written by others, as now stated: I The “PolyS elect” subroutine is built around code written by Rodrigo Ibata, which uses the functions “in poly” and “ f imag” written by him. Given a series of points defin- ing the corners of a polygon, it determines whether or not a given point is inside this polygon. I use this routine to make colour-cuts on the Colour-Magnitude Diagram (see calls of this subroutine in MF TRGB. f 95; Appendix C for example) and also to re- ject random satellites drawn outside of the PAndAS survey area in my “RandomPoints” subroutine, used in the analysis of Paper III. II Part of the SVDFitter subroutine called in MF TRGB. f 95 (and earlier versions of this program) has been modified by Geraint Lewis. III The “ f unc i” function called in MF TRGB. f 95 (and earlier versions of this program) gives the photometric error as a function of magnitude in CFHT i-band for the PAndAS data and was provided by Rodrigo Ibata. IV The “k verse alpha” subroutine called in S atDensity S ampCont. f 95 (Appendix C) makes use of data generated by Geraint Lewis (k vs alpha.dat), which accounts for the volume of space covered by the PAndAS survey area as a function of distance from M31. V Several subroutines from Numerical Recipes (Press et al., 1992) have been used to per- form standard functions by various programs I have written, in particular MF TRGB. f 95. In the programs listed in the appendices, use of these algorithms are generally noted at the end of the program with commented double lines and the words ‘Libpress Algo- rithms’ embedded. The Numerical Recipes subroutines themselves are not shown for the sake of brevity, but any subroutine or function that is called from the code as printed ix in the appendices and yet is apparently absent from this printed code can be assumed to be from Numerical Recipes.
Recommended publications
  • Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
    RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies.
    [Show full text]
  • 195 9Mnras.119. .255E Stellar Groups, Iv. the Groombridge
    STELLAR GROUPS, IV. THE GROOMBRIDGE 1830 GROUP OF .255E HIGH VELOCITY STARS AND ITS RELATION TO THE GLOBULAR CLUSTERS 9MNRAS.119. Olm J. Eggen and Allan R. Sondage 195 (Communicated by the Astronomer Royal) (Received 1959 March 4) Summary The available proper motions and radial velocity data have been used to establish the existence of a moving group of subdwarfs (Groombridge 1830 ¿roup) which includes RR Lyrae. On the basis of the relationship between the observed ultra-violet excess and displacement below the normal main sequence, the subdwarfs in the Groombridge 1830 group are identified with main sequence stars in the globular clusters. This identification gives a modulus of m — M= i4m-2 for the globular cluster M13 with the result that ikTp-~ + om*5 for the z RR Lyrae variables and My= — 2m*3 for the brightest stars in the cluster. RR Lyrae itself, for which we derive ikfp~ + om*8 from the moving cluster parallax, is shown to obey the period-amplitude relation for the variables in M3 and to be reddened by om*o5 with respect to those variables. By equating the luminosity of RR Lyrae to the mean of the variables in M3 we obtain a modulus of m — M= i5m-o for the cluster. We have not derived this modulus in the logical way of fitting the M3 main sequence to the main sequence of the Groombridge 1830 group because the colour observations of the M3 main sequence stars may contain a systematic error. Because the presence of RR Lyrae variables in stellar groups may provide the only accurate calibration of the luminosities of these stars, it is important to make a systematic search for such groups.
    [Show full text]
  • Dark Matter: the Evidence from Astronomy, Astrophysics and Cosmology Matts Roos University of Helsinki [email protected]
    Dark Matter: The evidence from astronomy, astrophysics and cosmology Matts Roos University of Helsinki [email protected] Dark matter has been introduced to explain many independent gravitational effects at different astronomical scales, even at cosmological scales. This review describes more than ten such effects. It is intended for an audience with little or no knowledge of astrophysics or cosmology. ContentsContents I. Stars near the Galactic disk II. Virially bound systems III. Rotation curves of spiral galaxies IV. Small galaxy groups emitting X-rays V. Mass to luminosity ratios VI. Mass autocorrelation functions VII. Strong and weak lensing VIII. Cosmic Microwave Background IX. Baryonic acoustic oscillations X. Galaxy formation in purely baryonic matter XI. Large Scale Structures simulated XII. Dark matter from overall fits XIII. Merging galaxy clusters XIV. Conclusions II StarsStars nearnear thethe GalacticGalactic diskdisk ? J. H. Oort in 1932 analyzed vertical motions of stars near the Galactic disk and calculated the vertical acceleration of matter. ? Their density and velocity dispersion define the temperature of a ”star atmosphere” bound by a gravitational potential. ? This contradicted grossly the expectations: the density due to known stars was not sufficient: the Galaxy should rapidly be losing stars. ? This was the first indication for the possible existence of dark matter in the Galaxy. ? He determined the mass of the Milky Way: 1011 solar masses, today understood to be mainly in the halo, not in the disk. ? But dark
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2006 Permalink https://escholarship.org/uc/item/5760h9v8 Journal Space Science Reviews, 132(1) ISSN 0038-6308 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2007-09-01 DOI 10.1007/s11214-007-9224-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Space Sci Rev (2007) 132: 1–182 DOI 10.1007/s11214-007-9224-0 Astrophysics in 2006 Virginia Trimble · Markus J. Aschwanden · Carl J. Hansen Received: 11 May 2007 / Accepted: 24 May 2007 / Published online: 23 October 2007 © Springer Science+Business Media B.V. 2007 Abstract The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords Cosmology: general · Galaxies: general · ISM: general · Stars: general · Sun: general · Planets and satellites: general · Astrobiology · Star clusters · Binary stars · Clusters of galaxies · Gamma-ray bursts · Milky Way · Earth · Active galaxies · Supernovae 1 Introduction Astrophysics in 2006 modifies a long tradition by moving to a new journal, which you hold in your (real or virtual) hands. The fifteen previous articles in the series are referenced oc- casionally as Ap91 to Ap05 below and appeared in volumes 104–118 of Publications of V.
    [Show full text]
  • Science in the Urantia Papers
    Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate".
    [Show full text]
  • Abstract a Search for Extrasolar Planets Using Echoes Produced in Flare Events
    ABSTRACT A SEARCH FOR EXTRASOLAR PLANETS USING ECHOES PRODUCED IN FLARE EVENTS A detection technique for searching for extrasolar planets using stellar flare events is explored, including a discussion of potential benefits, potential problems, and limitations of the method. The detection technique analyzes the observed time versus intensity profile of a star’s energetic flare to determine possible existence of a nearby planet. When measuring the pulse of light produced by a flare, the detection of an echo may indicate the presence of a nearby reflective surface. The flare, acting much like the pulse in a radar system, would give information about the location and relative size of the planet. This method of detection has the potential to give science a new tool with which to further humankind’s understanding of planetary systems. Randal Eugene Clark May 2009 A SEARCH FOR EXTRASOLAR PLANETS USING ECHOES PRODUCED IN FLARE EVENTS by Randal Eugene Clark A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics in the College of Science and Mathematics California State University, Fresno May 2009 © 2009 Randal Eugene Clark APPROVED For the Department of Physics: We, the undersigned, certify that the thesis of the following student meets the required standards of scholarship, format, and style of the university and the student's graduate degree program for the awarding of the master's degree. Randal Eugene Clark Thesis Author Fred Ringwald (Chair) Physics Karl Runde Physics Ray Hall Physics For the University Graduate Committee: Dean, Division of Graduate Studies AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS X I grant permission for the reproduction of this thesis in part or in its entirety without further authorization from me, on the condition that the person or agency requesting reproduction absorbs the cost and provides proper acknowledgment of authorship.
    [Show full text]
  • The Search for Exomoons and the Characterization of Exoplanet Atmospheres
    Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Newly Discovered Olympian Galaxy Will Provide Fresh Insights Into Galactic Formation 30 May 2007
    Newly Discovered Olympian Galaxy Will Provide Fresh Insights into Galactic Formation 30 May 2007 A newly discovered dwarf galaxy in our local group have likely already been seriously harassed by has been found to have formed in a region of Andromeda and the Milky Way." space far from our own and is falling into our system for the first time in its history. The Olympian Galaxy was first discovered in October 2006 during a wide-field survey taken with The dwarf is formally known as Andromeda XII the Canada-France-Hawaii Telescope's MegaCam because it is the 12th dwarf galaxy associated with instrument. It is the faintest dwarf galaxy ever Andromeda, our nearest galactic neighbor. The discovered near Andromeda (also known as M31), discoverers have nicknamed it the Olympian and may have the lowest mass ever measured. Galaxy after the 12 Olympian gods in the Greek Dwarf galaxies are the smallest stellar systems pantheon. The discovery was made possible with showing evidence for a substantial amount of dark data obtained at the W. M. Keck Observatory atop matter. Mauna Kea, Hawaii. Chapman's observations confirmed that the According to Andrew Blain, an astronomer at the Olympian Galaxy is distinct from all other satellite California Institute of Technology and a member of galaxies in the local group. It is a fast-moving the discovery team, the Olympian Galaxy marks galaxy on a highly eccentric orbit, located at a great the best piece of evidence that at least some small distance-about 115 kiloparsecs (375,000 light- galaxies are just now arriving in our local group, years)-from the center of M31.
    [Show full text]
  • Meeting Program
    A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ.
    [Show full text]
  • Superflares and Giant Planets
    Superflares and Giant Planets From time to time, a few sunlike stars produce gargantuan outbursts. Large planets in tight orbits might account for these eruptions Eric P. Rubenstein nvision a pale blue planet, not un- bushes to burst into flames. Nor will the lar flares, which typically last a fraction Elike the Earth, orbiting a yellow star surface of the planet feel the blast of ul- of an hour and release their energy in a in some distant corner of the Galaxy. traviolet light and x rays, which will be combination of charged particles, ul- This exercise need not challenge the absorbed high in the atmosphere. But traviolet light and x rays. Thankfully, imagination. After all, astronomers the more energetic component of these this radiation does not reach danger- have now uncovered some 50 “extra- x rays and the charged particles that fol- ous levels at the surface of the Earth: solar” planets (albeit giant ones). Now low them are going to create havoc The terrestrial magnetic field easily de- suppose for a moment something less when they strike air molecules and trig- flects the charged particles, the upper likely: that this planet teems with life ger the production of nitrogen oxides, atmosphere screens out the x rays, and and is, perhaps, populated by intelli- which rapidly destroy ozone. the stratospheric ozone layer absorbs gent beings, ones who enjoy looking So in the space of a few days the pro- most of the ultraviolet light. So solar up at the sky from time to time. tective blanket of ozone around this flares, even the largest ones, normally During the day, these creatures planet will largely disintegrate, allow- pass uneventfully.
    [Show full text]