Angular Momentum Content in Gas-Rich Dwarf Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Angular Momentum Content in Gas-Rich Dwarf Galaxies Angular Momentum Content in Gas-rich Dwarf Galaxies Aditya Chowdhury Jayaram N. Chengalur National Centre for Radio Astrophysics February 7, 2017 Origin of Angular Momentum in Galaxies I Tidal torquing in early universe [Hooyle (1949); Peebles 2=3 (1969); Shaya & Tully (1984); etc] : jH = kMH 1=2 jH jEH j 5=3 I λ = 3=2 independent of mass (EH ≈ MH ). Captures GMH details of tidal torquing process via k. 2 aφ I λ ≈ : Measure of rotational support. Collapse of gas ag occurs preserving angular momentum till rotation balances gravitational force. I Dark Matter and Gas mixed up till turnaround when the 0 2=3 galaxy collapses into the halo : jb = jH = k(λ)MH (Oversimplified version:) Evolution of Angular Momentum in Galaxies I From N-body simulations λ follows a log normal distribution independent of mass (as expected!) and environment [Bullock et al. 2001; Macci et al. 2007; Bettet al. 2007] 0 2=3 I At early epochs : jb = jH = k(λ)MH I MH related to baryon mass via : Mb = fbMH I Subsequent evolution of angular momentum via mergers, outflows, etc captured in an angular momentum retention fraction 0 −2=3 2=3 jb = fj jb = fj fb k(λ)Mb The Specific Angular Momentum - Mass Correlation Romanowsky & Fall (2012) Motivation to Study Gas Rich Dwarf Galaxies I Obreschkow & Glazebrook (2014) found a tight correlation between j-M-β for spiral galaxies in the THINGS sample. I They used 3.6 micron, HI, CO maps to measure angular momentum. I Interesting to do similar exercise for dwarfs. I Progenitors to larger galaxies in hierarchical galaxy formation scenario. I Baryonic feedback mechanisms proposed to advert the "angular momentum catastrophe" in N-body simulations. I Feedback more effective in dwarfs with shallower potential wells. I Measurements of gas rich dwarfs more precise because of negligible uncertainty coming from stellar light-to-mass conversion. The Sample Gas rich galaxies in the local group Galaxy Telescope Distance (Mpc) Mgas =M∗ DDO 154 VLA 4.04 ± 0.03 51 DDO 133 VLA 5.11 ± 0.09 23 NGC 3741 WSRT 3.24 ± 0.05 41 UGCA 292 GMRT 3.77 ± 0.06 8 ANDROMEDA IV GMRT 7.18 ± 0.14 14 Distances measurements using fits to the tip of red giant branch (TRGB) from Cosmicflows-2 (Tully et. al. 2013), except DDO 154 which was derived in Jacobs et. al. 2009. Data Analysis I Standard procedures in CASA (Shaw et al. (2007)) : Flagging, calibration, continuum subtraction and clean. I A tilted ring model was fit to each cube using FAT - Fully Automated TiRiFiC, Kamphuis et al. (2015). Rogstad et. al.(1974) Data Analysis I FAT gives as output the variation of rotation velocity, face-on surface brightness profile, inclination and position angle. I It also gives moment 0 map (integrated flux) and moment 1 map (velocity field) generated using SoFiA along with the residual cube (model cube - data cube) Rogstad et. al.(1974) Computation of Angular Momentum Z R J(R) = dr 2πr [Σgas (r) + Σ∗(r)] v(r)cos fδi(r)g r 0 Z R M(R) = dr 2πr [Σgas (r) + Σ∗(r)] 0 J(1) j = M(1) Primary measurements required : I Σgas (r) : Surface mass density of gas I Σ∗(r) : Surface mass density of stars I v(r) : Rotation Velocity I Σgas (r) : Surface mass density of gas I HI mass directly inferred from emission strength I Error on HI mass from error in surface brightness profile q Pr+∆r 2 I σΣgas (r) = cos i(r) r (Σmodel − Σdata) I Helium abundance (Izotov et. al. 2014) : (MHI + MHe )=MHI = 1:342 ± 0:004 I Negligible molecular gas in dwarfs (Taylor et al. 1998; Cormier et al. 2014) I Σ∗(r) : Surface mass density of stars I Exponential disk fits taken from literature, error in parameters ignored. I Error in distance contributes to error in r. Computation of Angular Momentum and Error Budget I v(r) : Rotation Velocity q Pr+∆r 2 I σv (r) = r (vmodel − vdata) = sin i(r) I Σ∗(r) : Surface mass density of stars I Exponential disk fits taken from literature, error in parameters ignored. I Error in distance contributes to error in r. Computation of Angular Momentum and Error Budget I v(r) : Rotation Velocity q Pr+∆r 2 I σv (r) = r (vmodel − vdata) = sin i(r) I Σgas (r) : Surface mass density of gas I HI mass directly inferred from emission strength I Error on HI mass from error in surface brightness profile q Pr+∆r 2 I σΣgas (r) = cos i(r) r (Σmodel − Σdata) I Helium abundance (Izotov et. al. 2014) : (MHI + MHe )=MHI = 1:342 ± 0:004 I Negligible molecular gas in dwarfs (Taylor et al. 1998; Cormier et al. 2014) I Error in distance contributes to error in r. Computation of Angular Momentum and Error Budget I v(r) : Rotation Velocity q Pr+∆r 2 I σv (r) = r (vmodel − vdata) = sin i(r) I Σgas (r) : Surface mass density of gas I HI mass directly inferred from emission strength I Error on HI mass from error in surface brightness profile q Pr+∆r 2 I σΣgas (r) = cos i(r) r (Σmodel − Σdata) I Helium abundance (Izotov et. al. 2014) : (MHI + MHe )=MHI = 1:342 ± 0:004 I Negligible molecular gas in dwarfs (Taylor et al. 1998; Cormier et al. 2014) I Σ∗(r) : Surface mass density of stars I Exponential disk fits taken from literature, error in parameters ignored. Computation of Angular Momentum and Error Budget I v(r) : Rotation Velocity q Pr+∆r 2 I σv (r) = r (vmodel − vdata) = sin i(r) I Σgas (r) : Surface mass density of gas I HI mass directly inferred from emission strength I Error on HI mass from error in surface brightness profile q Pr+∆r 2 I σΣgas (r) = cos i(r) r (Σmodel − Σdata) I Helium abundance (Izotov et. al. 2014) : (MHI + MHe )=MHI = 1:342 ± 0:004 I Negligible molecular gas in dwarfs (Taylor et al. 1998; Cormier et al. 2014) I Σ∗(r) : Surface mass density of stars I Exponential disk fits taken from literature, error in parameters ignored. I Error in distance contributes to error in r. Example Galaxy - ANDROMEDA IV (a) Moment 0 (Total Intensity) (b) Moment 1 (Velocity Field) (e) Total Angular Momentum within Radius r 0.7 gas 200 " 200 " star 0.6 100 " 100 " 0.5 0.4 0 " 0 " km/s pc) ⊙ M 0.3 14 10 -100 " -100 " J ( 0.2 0.1 -200 " -200 " 0.0 -200 " -100 " 0 " 100 " 200 " -200 " -100 " 0 " 100 " 200 " 0 1000 2000 3000 4000 5000 6000 7000 8000 r (pc) (c) Surface Mass Density (d) Rotation Curve (f) Total Mass Within Radius r gas observed velocity gas 50 40 7 star star ) 2 − 35 6 pc 40 ⊙ ) ⊙ 30 M 5 M 7 30 10 25 4 20 3 20 Velocity (km/s) Velocity 15 Total Mass ( 2 10 10 Surface Mass Density ( 1 5 0 0 0 0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000 r (pc) r (pc) r (pc) The systematic velocity of the galaxy centre is 256.8 km/s. Moment 1 contours are 10km/s apart. j-M-β Correlation for Spirals h i h i Mb jb β = k1 lg 1010M◦ + k2 lg 103 kpc km s−1 + k3 Obreschkow & Glazebrook (2014) Error in the j-M-β Correlation for Spirals I No errors available on specific angular momentum for spirals 7 I Bootstrap resampling (10 ) to estimate confidence bands. THINGS spirals from Obrescchkow & Glazebrook (2014) Gas rich dwarfs 95% confidence surfaces 1.0 0.8 0.6 0.4 β 0.2 0.0 −0.2 −0.4 3.5 3.0 7.5 2.5 8.0 8.5 j 9.0 2.0lg 9.5 pcKm/s M 10.0 1.5 lg 10.5 M◦ 11.0 11.51.0 A. Chowdhury & J.N. Chengalur (MNRAS, accepted) Gas rich dwarfs have higher specific angular momentum ! A. Chowdhury & J.N. Chengalur (MNRAS, accepted) 5 best fit Obreschow beta<0.05 95% confidence band 4 Gas Rich Dwarfs 3 j kpc km/s lg 2 1 0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 lg M M ⊙ lg jb = c1 lg Mb + c2β + c3 Gas rich dwarfs have higher specific angular momentum ! A. Chowdhury & J.N. Chengalur (MNRAS, accepted) 5 best fit Obreschow beta<0.05 95% confidence band 4 Gas Rich Dwarfs 3 j kpc km/s lg 2 1 0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 lg M M ⊙ −6 Psame < 10 Interpretation - Lower Baryon Mass Fraction and Supernovae Feedback −2=3 2=3 jb = fj fb k(λ)Mb I A decrease in fb that does not affect fj I Escape of baryons from the shallow dwarf potential wells during reheating and reionisation [Gnedin 2000; Crain et al. 2007] I Supernovae feedback biased towards removing low angular momentum material [Governato et al. 2010; Guedes et al. 2011] I Dwarf galaxies have shallow potential wells leading to increased efficiency of feedback. I van den Bosch et al. (2001) found a small fraction of material having low specific angular momentum in dwarf galaxies. (observational evidence!) Interpretation - Cold Mode Accretion −2=3 2=3 jb = fj fb k(λ)Mb I Enhanced fj I Keres et al. (2005) showed that two kinds of accretion operate in the galaxy formation epoch - (i) Hot mode (ii) Cold mode I "Cold mode" anisotropic as compared to "Hot mode" - may lead to an increase in angular momentum [e.g Stewart et al.
Recommended publications
  • Science in the Urantia Papers
    Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate".
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • PDF Presentatie Van Frank
    13” Frank Hol / Skyheerlen Elfje en Vixen R150S Newton in de jaren ’80 en begin ’90 vooral zon, maan, planeten en Messiers. H.T.S. – vriendin – baan – huis kopen & verbouwen trouwen – kinderen waarneemstop. Vanaf 2006 weer actief waarnemen. Focus op objecten uit de Local Group of Galaxies • 2008: Celestron C14. • 2015: 13” aluminium reisdobson. • 2017-2018-2019: 13” aluminium bino-dobson. Rocherath – SQM 21.2-21.7 13” M31 NGC206 Globulars Stofbanden Stervormings- gebieden … 13” M31 M32 NGC206 Globulars Stofbanden Stervormings- gebieden … NGC206 13” NGC205 M32 M32 is de kern van een NGC 221 galaxy die grotendeels Andromeda opgelokt is door M31. M32 is dan ook net zo X helder als de kern van M31 (met 100 miljoen sterren). Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. De helderste dwerg (vanuit onze breedte) aan de hemel: magnitude 8.1. M110 “Een elliptisch stelsel is NGC 205 dood-saai.” Andromeda Neen, kijk eens hoe mooi het stelsel aan de rand in de X donkere achtergrond verdwijnt. Een watje in de lucht! Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. Een grotere telescoop laat de randen mooi verdwijnen in de omgeving. 30’ x 25’ Burnham’s NGC185 and NGC147 “These two miniature elliptical galaxies appear to be distant Celestial companians of the Great Andromeda Galaxy M31. They are Handbook some 7 degrees north of it in the sky, and are approximately the same distance from us, about 2.2 milion light years.” Start van een lange zoektocht (die nog niet voorbij is). 13” NGC147 Twee elliptische stelsels. & NGC147 is een stuk moeilijker dan NGC185.
    [Show full text]
  • Neutral Hydrogen in Local Group Dwarf Galaxies
    Neutral Hydrogen in Local Group Dwarf Galaxies Jana Grcevich Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 c 2013 Jana Grcevich All rights reserved ABSTRACT Neutral Hydrogen in Local Group Dwarfs Jana Grcevich The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement be- tween the number of observed Local Group dwarf galaxies and that predicted by ΛCDM, and the discrepancy between the observed census of baryonic matter in the Milky Way’s environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram- 4 3 pressure arguments are invoked, which suggest halo densities greater than 2-3 10− cm− × out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy’s baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 108 M of HI gas to the Milky Way.
    [Show full text]
  • The Phenomenological Scaling Relations of Disk Galaxies
    The Phenomenological Scaling Relations of Disk Galaxies Jeffrey M. La Fortune 1081 N. Lake St., Neenah, WI USA 54956 [email protected] 16 December 2019 Abstract A conservative scaling model based on Newton’s law of circular motion and the virial theorem is proposed. Employing dimensionless scaling relations, a physical solution to the Baryonic Tully-Fisher Relation (BTFR) is obtained and the origin of the Radial Acceleration Relation (RAR) is provided. A simple model of the Milky Way’s dynamics reveals excellent agreement with recent Gaia DR2 kinematical results. Introduction Scaling-homology is a principle that infers physical self-similarity in a particular class of objects. In the ‘extreme’ interpretation these objects are considered “exact scaled copies” of one another. As a result, galactic physical properties respect strict relations between scale and proportionality between them (Novak 2012). These homological scaling relations (power laws) have been known for over a decade and have been extensively explored (Zaritsky 2008). This proposal extends the concept of scaling-homology using the latest astrometric data available. We employ the Milky Way (MW) as the scaling exemplar and extend its scaling relations to a wider class of rotationally supported galaxies inhabiting the local universe. This scaling investigation imposes two well established physical constraints. The first is that disks obey 1/2 5/2 the spin parameter equation λ = JE /GMDyn with dynamic mass (MDyn), angular momentum (J) and total energy (E) (Peebles 1971). The dimensionless spin parameter (λ) is treated as a constant in agreement to the empirically determined value 0.423 (±0.014) (Marr 2015b).
    [Show full text]
  • Target Selection for the SDSS-IV APOGEE-2 Survey
    The Astronomical Journal, 154:198 (18pp), 2017 November https://doi.org/10.3847/1538-3881/aa8df9 © 2017. The American Astronomical Society. All rights reserved. Target Selection for the SDSS-IV APOGEE-2 Survey G. Zasowski1,2, R. E. Cohen2, S. D. Chojnowski3 , F. Santana4 , R. J. Oelkers5 , B. Andrews6 , R. L. Beaton7 , C. Bender8, J. C. Bird5, J. Bovy9 , J. K. Carlberg2 , K. Covey10 , K. Cunha8,11, F. Dell’Agli12, Scott W. Fleming2 , P. M. Frinchaboy13 , D. A. García-Hernández12, P. Harding14 , J. Holtzman3 , J. A. Johnson15, J. A. Kollmeier7 , S. R. Majewski16 , Sz. Mészáros17,27, J. Munn18 , R. R. Muñoz4, M. K. Ness19, D. L. Nidever20 , R. Poleski15,21, C. Román-Zúñiga22 , M. Shetrone23 , J. D. Simon7, V. V. Smith20, J. S. Sobeck24, G. S. Stringfellow25 , L. Szigetiáros17, J. Tayar15 , and N. Troup16,26 1 Department of Physics & Astronomy, University of Utah, Salt Lake City, UT 84112, USA; [email protected] 2 Space Telescope Science Institute, Baltimore, MD 21218, USA 3 Department of Astronomy, New Mexico State University, Las Cruces, NM 88001, USA 4 Departamento de Astronomía, Universidad de Chile, Santiago, Chile 5 Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235, USA 6 PITT PACC, Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA 7 The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101, USA 8 Steward Observatory, The University of Arizona, Tucson, AZ 85719, USA 9 Department of Astronomy and Astrophysics & Dunlap Institute for Astronomy and
    [Show full text]
  • Watkins Laura.Pdf (PDF, 5Mb)
    Tracer Populations in the Local Group This dissertation is submitted for the degree of Doctor of Philosophy by Laura Louise Watkins Institute of Astronomy & Gonville and Caius College University of Cambridge 31st January 2011 For Mum and Dad, who gave me wings so I could fly and a nest to come home to Contents Declaration ix Acknowledgments xi Summary xiii 1 Introduction 1 1.1 Structure formation..................................................3 1.1.1 Dark matter...................................................3 1.1.2 Overview of current structure formation theory.........................4 1.1.3 Overmerging and the missing satellite problem.........................6 1.1.4 Dominance and survivability of structure.............................7 1.2 The Milky Way......................................................8 1.2.1 The bulge....................................................8 1.2.2 The thin disk..................................................9 1.2.3 The thick disk................................................. 10 1.2.4 The halo..................................................... 11 1.3 The Andromeda galaxy................................................ 18 1.4 Dwarf spheroidal galaxies.............................................. 22 1.4.1 Milky Way dwarfs............................................... 22 1.4.2 M31 dwarfs................................................... 23 1.4.3 Comparison with star clusters...................................... 24 1.4.4 Dwarf properties............................................... 26 1.5
    [Show full text]
  • Architecture of the Andromeda Galaxy: a Quantitative Analysis of Clustering in the Inner Stellar Halo
    MNRAS 464, 4858–4865 (2017) doi:10.1093/mnras/stw2732 Advance Access publication 2016 October 23 Architecture of the Andromeda galaxy: a quantitative analysis of clustering in the inner stellar halo P. R. Kafle, 1‹ S. Sharma,2 A. S. G. Robotham,1 G. F. Lewis2 and S. P. Driver1 1ICRAR, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 2Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia Accepted 2016 October 20. Received 2016 October 19; in original form 2016 June 21 ABSTRACT We present a quantitative measurement of the amount of clustering present in the inner ∼30 kpc of the stellar halo of the Andromeda galaxy (M31). For this we analyse the angular positions and radial velocities of the carefully selected planetary nebulae in the M31 stellar halo. We study the cumulative distribution of pairwise distances in angular position and line-of-sight velocity space, and find that the M31 stellar halo contains substantially more stars in the form of close pairs as compared to that of a featureless smooth halo. In comparison to a smoothed/scrambled distribution, we estimate that the clustering excess in the M31 inner halo is roughly 40 per cent at maximum and on average ∼20 per cent. Importantly, comparing against the 11 stellar halo models of Bullock & Johnston, which were simulated within the context of the CDM ( cold dark matter) cosmological paradigm, we find that the amount of substructures in the M31 stellar halo closely resembles that of a typical CDM halo. Key words: methods: statistical – stars: individual: planetary nebulae – galaxies: individual: M31.
    [Show full text]
  • Bayesian Distances from the Tip of the Red Giant Branch Anthony Rhys Conn
    Structure of the M31 satellite system : bayesian distances from the tip of the red giant branch Anthony Rhys Conn To cite this version: Anthony Rhys Conn. Structure of the M31 satellite system : bayesian distances from the tip of the red giant branch. Other. Université de Strasbourg; Macquarie university (Sydney, Australie), 2013. English. NNT : 2013STRAH002. tel-01012081 HAL Id: tel-01012081 https://tel.archives-ouvertes.fr/tel-01012081 Submitted on 25 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG A thesis presented to Observatoire astronomique de Strasbourg by: Anthony Rhys CONN defended on : 7 February 2013 for the degree of : Docteur de l’université de Strasbourg Discipline: Astrophysics Structure of the M31 Satellite System: Bayesian Distances from the Tip of the Red Giant Branch Thesis Supervisors : Dr. Rodrigo A. Ibata Université de Strasbourg Prof. Quentin A. Parker Macquarie University Prof. Geraint F. Lewis University of Sydney A/Prof. Daniel B. Zucker Macquarie University Members of the Jury : Prof. Christian M. Boily Université de Strasbourg Dr. Michele Bellazzini INAF—Osservatorio Astronomico di Bologna Dr. Annie C. Robin Observatoire de Besançon External Examiner : Dr.
    [Show full text]
  • A TRIO of NEW LOCAL GROUP GALAXIES with EXTREME PROPERTIES Alan W
    The Astrophysical Journal, 688:1009Y1020, 2008 December 1 A # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. A TRIO OF NEW LOCAL GROUP GALAXIES WITH EXTREME PROPERTIES Alan W. McConnachie,1 Avon Huxor,2 Nicolas F. Martin,3 Mike J. Irwin,4 Scott C. Chapman,4 Gregory Fahlman,5 Annette M. N. Ferguson,2 Rodrigo A. Ibata,6 Geraint F. Lewis,7 Harvey Richer,8 and Nial R. Tanvir9 Received 2008 May 10; accepted 2008 June 24 ABSTRACT We report on the discovery of three new dwarf galaxies in the Local Group. These galaxies are found in new CFHT/MegaPrime g; i imaging of the southwestern quadrant of M31, extending our extant survey area to include the majority of the southern hemisphere of M31’s halo out to 150 kpc. All these galaxies have stellar populations which appear typical of dwarf spheroidal (dSph) systems. The first of these galaxies, Andromeda XVIII, is the most distant Local Group dwarf discovered in recent years, at 1.4 Mpc from the Milky Way (600 kpc from M31). The second galaxy, Andromeda XIX, a satellite of M31, is the most extended dwarf galaxy known in the Local Group, with a half-light radius of rh 1:7 kpc. This is approximately an order of magnitude larger than the typical half-light radius of many Milky Way dSphs, and reinforces the difference in scale sizes seen between the Milky Way and M31 dSphs (such that the M31 dwarfs are generally more extended than their Milky Way counterparts). The third galaxy, Andromeda XX, is one of the faintest galaxies so far discovered in the vicinity of M31, with an absolute magnitude of order MV À6:3.
    [Show full text]
  • Ananda Bosman & Aton Vase Da®
    432 THOUSAND MAN-LIKE SPECIES; 432,000 HUMANOID RACES IN THE RG VEDIC MULTIVERSE copyright © 2008, by Ananda Bosman & Aton Vase Da® OVERVIEW The proto-Vedic and Vedic cultures that trace 11,000 years into antiquity (Mrghra) proclaimed to be a society based on ETI and Ultraterrestrial contact (Devas, Manu Saptarsi). Over 400,000 humanoid races and their various planetary worlds and societies are described in the Vedic texts that are procured and even scribed by such contacts. In this chapter we show that the Rg Veda’s genetic code, and Vedic Puranas neuroanatomical code, hyper-indexes earth mans genome and neuro-cybernetics intricately with the Rg Veda’s 432,000 Man- like species of our local universe. INTRODUCTORY NOTE “...As the Earth moves fully into a 4th dimensional frequency [hadronic horizon configuration] in consciousness, in the consciousness time zone of 2000 years (which is not as you count time, but is a level of consciousness) —it begins to merge with the other planetary systems and the consciousnesses [ETI, UTI, HTI etc.] that are exploring the other planetary systems. They begin to collapse into a harmonic resonance, where they indeed meet the future, and meet the past: the past and the future converge into the present…” —EMMANUEL (ultraterrestrial), April 6th 1990, Contact by Lake Geneva. PLEASE NOTE that our writing style is a kind of poetic semantic art, that is interdisciplinary, and does not represent any sectarian dogma, we encourage every one to conduct their own research, use their own creative cognition, and creative art, before arriving at any definite conclusions.
    [Show full text]
  • Institut Für Weltraumforschung (IWF) Österreichische Akademie Der Wissenschaften (ÖAW) Schmiedlstraße 6, 8042 Graz, Austria Twitter: @IWF Oeaw
    WWW.OEAW.AC.AT ANNUAL REPORT 2020 IWF INSTITUT FÜR WELTRAUMFORSCHUNG WWW.OEAW.AC.AT/IWF COVER IMAGE Artist's impression of ESA's Solar Orbiter mission, which will face the Sun from within the orbit of Mercury at its closest approach (© ESA/ATG medialab). TABLE OF CONTENTS INTRODUCTION 5 NEAR-EARTH SPACE 7 SOLAR SYSTEM 15 SUN & SOLAR WIND 15 MERCURY 18 VENUS AND MARS 21 JUPITER AND SATURN 23 COMETS AND DUST 25 EXOPLANETARY SYSTEMS 27 SATELLITE LASER RANGING 35 TECHNOLOGIES 37 NEW DEVELOPMENTS 37 INFRASTRUCTURE 40 LAST BUT NOT LEAST 41 PUBLICATIONS 43 PERSONNEL 55 IMPRESSUM INTRODUCTION INTRODUCTION The Space Research Institute (Institut für Weltraum- The Cluster mission celebrated its 20th anniversary forschung, IWF) in Graz focuses on the physics of in 2020 and still provides unique data to better our solar system and exoplanets. With about 100 staff understand space plasma. members from 20 nations it is one of the largest institutes For already five years, the four MMS spacecraft of the Austrian Academy of Sciences (Österreichische explore the acceleration processes that govern the Akademie der Wissenschaften, ÖAW). dynamics of the Earth's magnetosphere. IWF develops and builds space-qualified instruments and The first China Seismo-Electromagnetic Satellite analyzes and interprets the data returned by them. Its core (CSES-1) has studied the Earth's ionosphere since engineering expertise is in building magnetometers and 2018. CSES-2 will follow in 2022. on-board computers, as well as in satellite laser ranging, which is performed at a station operated by IWF at the On its way to Mercury, BepiColombo, had gravity Lustbühel Observatory.
    [Show full text]