Food Habits of Imperiled Plains Topminnow and Diet Overlap With

Total Page:16

File Type:pdf, Size:1020Kb

Food Habits of Imperiled Plains Topminnow and Diet Overlap With University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Transactions of the Nebraska Academy of Sciences Nebraska Academy of Sciences and Affiliated Societies Winter 3-1-2018 Food habits of imperiled Plains Topminnow and diet overlap with invasive Western Mosquitofish in the Central Great Plains Joseph Thiessen University of Nebraska at Kearney, [email protected] Keith D. Koupal Nebraska Game and Parks Commission, [email protected] Casey W. Schoenebeck University of Nebraska at Kearney, [email protected] Julie J. Shaffer University of Nebraska, Kearney Follow this and additional works at: https://digitalcommons.unl.edu/tnas Part of the Population Biology Commons, and the Terrestrial and Aquatic Ecology Commons Thiessen, Joseph; Koupal, Keith D.; Schoenebeck, Casey W.; and Shaffer, Julie J., "Food habits of imperiled Plains Topminnow and diet overlap with invasive Western Mosquitofish in the Central Great Plains" (2018). Transactions of the Nebraska Academy of Sciences and Affiliated Societies. 513. https://digitalcommons.unl.edu/tnas/513 This Article is brought to you for free and open access by the Nebraska Academy of Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Transactions of the Nebraska Academy of Sciences and Affiliated Societies by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Food habits of imperiled Plains Topminnow and diet overlap with invasive Western Mosquitofish in the Central Great Plains Joseph D. Thiessen,1,4 Keith D. Koupal,2 Casey W. Schoenebeck,1,3 and Julie J. Shaffer 1 1 Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849 2 Nebraska Game and Parks Commission, Kearney Field Office, Kearney, NE 68847 3 Present address: Minnesota Department of Natural Resources, 23070 North Lakeshore Drive, Glenwood, MN 56334 4 Present address: Idaho Department of Fish and Game, 1414 E. Locust Lane, Nampa, ID 83686 Corresponding author: Joseph Thiessen ([email protected]) This work was supported by the Nebraska Natural Legacy Project under Grant T-88-1; University of Nebraska at Kearney, Biology Department under Grant 56-0510-0119-001. Abstract: Plains Topminnow (Fundulus sciadicus) populations have experienced large declines throughout the Central Great Plains, with Western Mosquitofish (Gambusia affinis) introductions suggested as a contributing factor. There are limited studies identifying the food habits of Plains Topminnow and the trophic interactions with Western Mosquitofish. This study sought to determine if a diet overlap exists between the Plains Topminnow and the introduced Western Mosquitofish by identifying the feeding habits of both species. We analyzed diets from lentic and lotic populations of Plains Topminnow captured in August and found lentic top- minnows employed a generalist diet while lotic topminnow selected for gastropods. Additionally, Western Mosquitofish diets from regionally proximate lotic and lentic populations also displayed a generalist diet consisting of benthic, littoral and terrestrial mac- roinvertebrates. The two species did not show overlapping diets based on Schoener’s Index. Therefore we suggest the introduced Western Mosquitofish do not likely impact Plains Topminnow populations through food resource competition. Keywords: diet overlap, Great Plains, imperiled, invasive species, mosquitofish, topminnow. doi: 10.13014/K2319T31 Introduction competition, predation, habitat loss, stream fragmenta- Plains Topminnow (Fundulus sciadicus) is endemic to tion, climate change, water quality, and stream dewater- the Central Great Plains and has experienced a decrease ing (Fischer and Paukert 2008; Pasbrig et al. 2012). Over in historic range and local abundance (Schumann et al. the last century, much of the Central Plains landscape has 2016). As a habitat specialist with the capability to move been converted from grasslands to agriculture (Samson great distances the Plains Topminnow was once common and Knopf 1994), causing reductions in stream habitat throughout the Great Plains (Schumann 2015a; Schumann and biologic diversity (Pringle 1988; Jenkins et al. 2003). et al. 2016). Recent studies report a 72 percent decline in Habitat alterations and fish stockings across the Plains distribution throughout the Plains Topminnow’s native have increased interactions with non-native competitors range, which includes both a northern and a southern and predators. Additionally, large-scale landscape alter- spatially separated disjunct populations (Pasbrig et al. ations have favored non-native generalist species, which 2012). Nebraska represents 67 percent of historical oc- decreased native fish populations, presumably from de- currence sites and is thought to be the central stronghold creased habitat diversity (Smith et al. 2014). Western Mos- of Plains Topminnow distribution; however, a 66 percent quitofish (Gambusia affinis) are among the generalist spe- decline in occurrence was reported (Pasbrig et al. 2012). cies encountered by Plains Topminnow populations and Nebraska currently list Plains Topminnow as a Tier 1 spe- are commonly found to dominate local fish assemblages cies of special concern with populations considered at risk in disturbed streams (Chapman and Warburton 2006). (NatureServe 2016). Western Mosquitofish are the most widely distrib- The decline in Plains Topminnow presence is likely uted fish in the World and are the subject of increased re- linked to a multitude of reasons. Factors hypothesized search for their impacts on native fishes. These fish were to limit Plains Topminnow persistence vary from species introduced in Nebraska for mosquito control starting in 2018 Transactions of the Nebraska Academy of Sciences 38, 1–9 1 Plains Topminnow Food Habits 1972 (Kaufmann and Lynch 1991). Western Mosquitofish Ideally, wild populations of Plains Topminnow would have been implicated in the reduction of other topmin- be used for this assessment, but the protected status of now species due to direct predation of larval fish, with Plains Topminnow precludes the sacrifice of wild speci- little supporting evidence for resource partitioning im- mens and therefore Plains Topminnow specimens from pacts (Minckley 1973; Meffe 1984; Goldsworthy and Bet- two Nebraska Game and Parks Commission broodstock toli 2006; Laha and Mattingly 2006; Sutton et al. 2012). locations were used. Additionally, cohabitated popula- In mesocosm experiments, Plains Topminnow experi- tions of Plains Topminnow and Western Mosquitofish enced 70% mortality in co-existence with Western Mos- would best identify resource partitioning but mingled quitofish, but other Fundulidae species survived (Haas populations are rare as mosquitofish have been sug- 2005, Schumann et al. 2015b). However, distinguishing gested to rapidly displace topminnow (Thiessen 2016). the impacts between cohabited wild Plains Topminnow Introducing Western Mosquitofish to Plains Topminnow and Western Mosquitofish populations is complicated by broodstock populations in an effort to create a cohabi- both the conservation status of Plains Topminnow and tated population were not considered in the interest of short temporal scale of co-habitation. maintaining a viable broodstock population. Therefore, Food selection and diet overlap between Plains Top- Western Mosquitofish were collected from similar aquatic minnow and cohabitate species have not been docu- systems within regional proximity of Plains Topminnow mented. Western Mosquitofish have a generalist diet broodstock populations. (Mansfield and Mcardle 1998) preventing them from be- A total of 30 Western Mosquitofish were collected ing an effective biological control agent of mosquito pop- from Blue Hole WMA (lentic) and 30 from Sandy Chan- ulations (Kumar and Hwang 2006). However, knowl- nel State Recreation Area (lotic) using DC pulsed back- edge of Plains Topminnow food habits remains limited pack electrofishing techniques from August to Septem- and represents a gap in ecological understanding (Best- ber 2015 (Schumann et al. 2015b). A total of 30 Plains gen 2014). Previous studies deduced from morphological Topminnow from Sac-Wilcox WMA (lentic) and 30 from characteristics, associated habitat use, and observed feed- Rock Creek Fish Hatchery (lotic) were collected using a ing behavior that Plains Topminnow are surface feeders 381mm tall, 3 paneled cloverleaf trap; with 6mm mesh that primarily feed on Ostracods, chironomidae, and occa- galvanized wire and 12mm openings August to Septem- sionally feed on Gastropods from the Genus Physa (Strib- ber 2015. Study specimens ranged in length from 58mm ley and Stasiak 1982; Rahel and Thel 2004; Haas 2005; to 73mm. All study specimens were preserved in 4:1 Bestgen 2014). Historic evidence from actual diet analysis ethanol:water solution immediately after capture. The of 12 specimens supported this hypothesized feeding be- entire digestive tract was removed from each fish and havior of surface insects (Ellis 1914), while a recent effort prey items were identified to order and quantified as fre- from the southern range of distribution found a more di- quency of occurrence. verse diet including greater utilization of benthic organ- Prey collection: Prey availability at Plains Topmin- isms (Thompson 2014). However, the diet contents from now collection sites was determined using samples of Missouri were from lentic specimens only and may be the both benthic and littoral macroinvertebrates. Preliminary
Recommended publications
  • Research Funding (Total $2,552,481) $15,000 2019
    CURRICULUM VITAE TENNESSEE AQUARIUM CONSERVATION INSTITUTE 175 BAYLOR SCHOOL RD CHATTANOOGA, TN 37405 RESEARCH FUNDING (TOTAL $2,552,481) $15,000 2019. Global Wildlife Conservation. Rediscovering the critically endangered Syr-Darya Shovelnose Sturgeon. $10,000 2019. Tennessee Wildlife Resources Agency. Propagation of the Common Logperch as a host for endangered mussel larvae. $8,420 2019. Tennessee Wildlife Resources Agency. Monitoring for the Laurel Dace. $4,417 2019. Tennessee Wildlife Resources Agency. Examining interactions between Laurel Dace (Chrosomus saylori) and sunfish $12,670 2019. Trout Unlimited. Southern Appalachian Brook Trout propagation for reintroduction to Shell Creek. $106,851 2019. Private Donation. Microplastic accumulation in fishes of the southeast. $1,471. 2019. AZFA-Clark Waldram Conservation Grant. Mayfly propagation for captive propagation programs. $20,000. 2019. Tennessee Valley Authority. Assessment of genetic diversity within Blotchside Logperch. $25,000. 2019. Riverview Foundation. Launching Hidden Rivers in the Southeast. $11,170. 2018. Trout Unlimited. Propagation of Southern Appalachian Brook Trout for Supplemental Reintroduction. $1,471. 2018. AZFA Clark Waldram Conservation Grant. Climate Change Impacts on Headwater Stream Vertebrates in Southeastern United States $1,000. 2018. Hamilton County Health Department. Step 1 Teaching Garden Grants for Sequoyah School Garden. $41,000. 2018. Riverview Foundation. River Teachers: Workshops for Educators. $1,000. 2018. Tennessee Valley Authority. Youth Freshwater Summit $20,000. 2017. Tennessee Valley Authority. Lake Sturgeon Propagation. $7,500 2017. Trout Unlimited. Brook Trout Propagation. $24,783. 2017. Tennessee Wildlife Resource Agency. Assessment of Percina macrocephala and Etheostoma cinereum populations within the Duck River Basin. $35,000. 2017. U.S. Fish and Wildlife Service. Status surveys for conservation status of Ashy (Etheostoma cinereum) and Redlips (Etheostoma maydeni) Darters.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • Endangered Species Listing Deadline Complaint
    Case 1:16-cv-00503 Document 1 Filed 03/16/16 Page 1 of 25 UNITED STATES DISTRICT COURT FOR THE DISTRICT OF COLUMBIA CENTER FOR BIOLOGICAL DIVERSITY, ) 378 North Main Avenue ) Tucson, AZ 85701, ) Civil No: 16-00503 ) Plaintiff, ) COMPLAINT FOR DECLARATORY ) AND INJUNCTIVE RELIEF v. ) ) SALLY M.R. JEWELL, Secretary of the ) Interior, U.S. Department of the Interior ) 1849 C Street NW ) Washington, DC 20240, ) ) and ) ) U.S. FISH AND WILDLIFE SERVICE, ) 1849 C Street NW ) Washington, DC 20240, ) ) Defendants. ) ______________________________________ ) INTRODUCTION 1. Plaintiff Center for Biological Diversity (“Center”) brings this action under the Endangered Species Act, 16 U.S.C. §§ 1531-1544 (“ESA”), to challenge the Secretary of the Interior’s (“Secretary”) and the U.S. Fish and Wildlife Service’s (“FWS”) (collectively, “Defendants” or “FWS”) failure to make mandatory findings on whether nine highly-imperiled species should be listed as threatened or endangered under the ESA. 16 U.S.C. § 1533(b)(3)(B). These species are: alligator snapping turtle (Macrochelys temminckii), Barrens topminnow (Fundulus julisia), beaverpond marstonia (Marstonia castor), California spotted owl (Strix occidentalis occidentalis), Canoe Creek pigtoe (Pleurobema athearni), foothill yellow-legged frog (Rana boylii), Northern Rockies fisher (Martes pennanti), Virgin River spinedace Case 1:16-cv-00503 Document 1 Filed 03/16/16 Page 2 of 25 (Lepidomeda mollispinis mollispinis), and wood turtle (Macrochelys temminckii). Each of these species is experiencing steep population declines and ongoing threats to its existence. 2. To obtain federal safeguards and habitat protections, the Center and/or other conservation groups submitted to FWS petitions to list each of these nine species as “endangered” or “threatened” pursuant to the ESA.
    [Show full text]
  • Genetic Diversity and Population Structure in the Barrens Topminnow
    Conserv Genet DOI 10.1007/s10592-017-0984-0 RESEARCH ARTICLE Genetic diversity and population structure in the Barrens Topminnow (Fundulus julisia): implications for conservation and management of a critically endangered species Carla Hurt1 · Bernard Kuhajda2 · Alexis Harman1 · Natalie Ellis1 · Mary Nalan1 Received: 5 January 2017 / Accepted: 22 May 2017 © Springer Science+Business Media Dordrecht 2017 Abstract The Barrens Topminnow (Fundulus julisia) with drainage boundaries. Results from AMOVA analysis has undergone a rapid and dramatic decline. In the 1980s, also suggest low levels of genetic connectivity between at least twenty localities with Barrens Topminnows were isolated populations within the same drainage. Here we known to exist in the Barrens Plateau region of middle Ten- propose two distinct evolutionary significant units (ESUs) nessee; currently only three areas with natural (not stocked) and two management units that reflect this population sub- populations remain. The long-term survival of the Barrens structure and warrant consideration in future management Topminnow will depend entirely on effective management efforts. and conservation efforts. Captive propagation and stocking of captive-reared juveniles to suitable habitats have suc- Keywords Conservation genetics · Microsatellites · cessfully established a handful of self-sustaining popula- Mitochondrial DNA · Endangered species · Fundulus tions. However, very little is known about the genetic com- julisia position of source and introduced populations including levels of genetic diversity and structuring of genetic vari- ation. Here we use both mitochondrial sequence data and Introduction genotypes from 14 microsatellite loci to examine patterns of genetic variation among ten sites, including all sites The Barrens Topminnow (Fundulus julisia) is one of with natural populations and a subset of sites with intro- the most critically endangered fish species in the east- duced (stocked) populations of this species.
    [Show full text]
  • The Fate of Stocked Barrens Topminnows Fundulus Julisia (Fundulidae) and Status of Wild Populations
    The Fate of Stocked Barrens Topminnows Fundulus julisia (Fundulidae) and Status of Wild Populations A Final Report Submitted To Mr. Richard Kirk Tennessee Wildlife Resources Agency Nashville, Tennessee By Cory Goldsworthy, M.S. Tennessee Cooperative Fishery Research Unit Phillip W. Bettoli, Ph.D. U.S. Geological Survey Tennessee Cooperative Fishery Research Unit Tennessee Technological University Cookeville, Tennessee August 2005 Executive Summary 1. Barrens topminnow Fundulus julisia populations have declined precipitously since the species was described in 1982. Propagation and reintroductions have been the primary means of recovery since 2001, but the reintroductions have been generally unsuccessful in creating self-sustaining populations. 2. Biotic and abiotic factors affecting 17 stocked Barrens topminnow populations were examined from 2003 to 2005 and the status of wild populations was described. Populations of stocked and wild topminnows and introduced-exotic Western mosquitofish Gambusia affinis were estimated using the Zippin removal-depletion technique. Lighted larval traps were deployed at eight reintroduction sites and the type locale to determine whether topminnows could reproduce in the presence of mosquitofish. The thermal environment and aquatic flora were also described at reintroduction sites. 3. The density of mosquitofish at reintroduction sites ranged from zero to 66 fish per m2. Annual mortality of stocked Barrens topminnows ranged from 45 to 100%. Annual mortality of stocked topminnows was not related to mosquitofish density, nor the minimum, maximum, or average temperatures recorded at each site. 4. The adjusted mean weights (i.e., robustness) of Barrens topminnows did not differ in the presence or absence of mosquitofish, suggesting interspecific competition for food was not occurring.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Gila Topminnow Revised Recovery Plan December 1998
    GILA TOPMINNOW, Poeciliopsis occidentalis occidentalis, REVISED RECOVERY PLAN (Original Approval: March 15, 1984) Prepared by David A. Weedman Arizona Game and Fish Department Phoenix, Arizona for Region 2 U.S. Fish and Wildlife Service Albuquerque, New Mexico December 1998 Approved: Regional Director, U.S. Fish and Wildlife Service Date: Gila Topminnow Revised Recovery Plan December 1998 DISCLAIMER Recovery plans delineate reasonable actions required to recover and protect the species. The U.S. Fish and Wildlife Service (Service) prepares the plans, sometimes with the assistance of recovery teams, contractors, State and Federal Agencies, and others. Objectives are attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Time and costs provided for individual tasks are estimates only, and not to be taken as actual or budgeted expenditures. Recovery plans do not necessarily represent the views nor official positions or approval of any persons or agencies involved in the plan formulation, other than the Service. They represent the official position of the Service only after they have been signed by the Regional Director or Director as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. ii Gila Topminnow Revised Recovery Plan December 1998 ACKNOWLEDGMENTS Original preparation of the revised Gila topminnow Recovery Plan (1994) was done by Francisco J. Abarca 1, Brian E. Bagley, Dean A. Hendrickson 1 and Jeffrey R. Simms 1. That document was modified to this current version and the work conducted by those individuals is greatly appreciated and now acknowledged.
    [Show full text]
  • Fisheries Full Issue PDF Volume 40, Issue 3
    This article was downloaded by: [Department Of Fisheries] On: 19 July 2015, At: 23:50 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London, SW1P 1WG Fisheries Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ufsh20 Full Issue PDF Volume 40, Issue 3 Published online: 25 Mar 2015. Click for updates To cite this article: (2015) Full Issue PDF Volume 40, Issue 3, Fisheries, 40:3, 93-140, DOI: 10.1080/03632415.2015.1029803 To link to this article: http://dx.doi.org/10.1080/03632415.2015.1029803 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes.
    [Show full text]
  • Fishtraits: a Database on Ecological and Life-History Traits of Freshwater
    FishTraits database Traits References Allen, D. M., W. S. Johnson, and V. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of saltmarsh creeks by zooplanktivorous fishes. Environmental Biology of Fishes 42(1)37-50. [multiple species] Anderson, K. A., P. M. Rosenblum, and B. G. Whiteside. 1998. Controlled spawning of Longnose darters. The Progressive Fish-Culturist 60:137-145. [678] Barber, W. E., D. C. Williams, and W. L. Minckley. 1970. Biology of the Gila Spikedace, Meda fulgida, in Arizona. Copeia 1970(1):9-18. [485] Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, WI. Belk, M. C., J. B. Johnson, K. W. Wilson, M. E. Smith, and D. D. Houston. 2005. Variation in intrinsic individual growth rate among populations of leatherside chub (Snyderichthys copei Jordan & Gilbert): adaptation to temperature or length of growing season? Ecology of Freshwater Fish 14:177-184. [349] Bonner, T. H., J. M. Watson, and C. S. Williams. 2006. Threatened fishes of the world: Cyprinella proserpina Girard, 1857 (Cyprinidae). Environmental Biology of Fishes. In Press. [133] Bonnevier, K., K. Lindstrom, and C. St. Mary. 2003. Parental care and mate attraction in the Florida flagfish, Jordanella floridae. Behavorial Ecology and Sociobiology 53:358-363. [410] Bortone, S. A. 1989. Notropis melanostomus, a new speices of Cyprinid fish from the Blackwater-Yellow River drainage of northwest Florida. Copeia 1989(3):737-741. [575] Boschung, H.T., and R. L. Mayden. 2004. Fishes of Alabama. Smithsonian Books, Washington. [multiple species] 1 FishTraits database Breder, C. M., and D. E. Rosen. 1966. Modes of reproduction in fishes.
    [Show full text]
  • Draft Genome Assembly and Annotation of the Gila Topminnow Poeciliopsis Occidentalis
    DATA REPORT published: 24 October 2019 doi: 10.3389/fevo.2019.00404 Draft Genome Assembly and Annotation of the Gila Topminnow Poeciliopsis occidentalis Mariana Mateos 1*, Du Kang 2, Christophe Klopp 3, Hugues Parrinello 4, Mateo García-Olazábal 2,5, Molly Schumer 6, Nathaniel K. Jue 7, Yann Guiguen 8 and Manfred Schartl 2,5,9,10* 1 Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States, 2 Physiological Chemistry, Biocenter, University of Wuerzburg, Würzburg, Germany, 3 Mathématiques et Informatique Appliquées de Toulouse (MIAT) and Système d’information du projet d’analyse des génomes des animaux d’élevage (SIGENAE), INRA, Toulouse, France, 4 MGX, Bio Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France, 5 Department of Biology, Texas A&M University, College Station, TX, United States, 6 Howard Hughes Medical Institute (HHMI) and Department of Biology, Stanford University, Stanford, CA, United States, 7 Department of Biology and Chemistry, California State University Monterey Bay, Seaside, CA, United States, 8 INRA, UR1037 Fish Physiology and Genomics, Rennes, France, Edited by: 9 Developmental Biochemistry, Biocenter, University of Wuerzburg, Würzburg, Germany, 10 Hagler Institute for Advanced Guillermo Orti, Studies, Texas A&M University, College Station, TX, United States George Washington University, United States Keywords: genome assembly, genome annotation, transposable elements, topminnow, mitochondrial genome Reviewed by: Federico Guillermo Hoffmann, Mississippi State University, INTRODUCTION United States Klaus-Peter Koepfli, The freshwater livebearing fish genus Poeciliopsis (Poeciliidae) constitutes a valuable research Smithsonian Conservation Biology system for questions within the field of evolutionary ecology, including life history evolution Institute (SI), United States (e.g., multiple origins of placentas), intergenomic conflict, evolution of sex (with the existence of *Correspondence: several asexual hybrid biotypes), and biogeography (reviewed in Mateos et al., 2019).
    [Show full text]
  • Threatened and Endangered Species List
    Effective April 15, 2009 - List is subject to revision For a complete list of Tennessee's Rare and Endangered Species, visit the Natural Areas website at http://tennessee.gov/environment/na/ Aquatic and Semi-aquatic Plants and Aquatic Animals with Protected Status State Federal Type Class Order Scientific Name Common Name Status Status Habit Amphibian Amphibia Anura Gyrinophilus gulolineatus Berry Cave Salamander T Amphibian Amphibia Anura Gyrinophilus palleucus Tennessee Cave Salamander T Crustacean Malacostraca Decapoda Cambarus bouchardi Big South Fork Crayfish E Crustacean Malacostraca Decapoda Cambarus cymatilis A Crayfish E Crustacean Malacostraca Decapoda Cambarus deweesae Valley Flame Crayfish E Crustacean Malacostraca Decapoda Cambarus extraneus Chickamauga Crayfish T Crustacean Malacostraca Decapoda Cambarus obeyensis Obey Crayfish T Crustacean Malacostraca Decapoda Cambarus pristinus A Crayfish E Crustacean Malacostraca Decapoda Cambarus williami "Brawley's Fork Crayfish" E Crustacean Malacostraca Decapoda Fallicambarus hortoni Hatchie Burrowing Crayfish E Crustacean Malocostraca Decapoda Orconectes incomptus Tennessee Cave Crayfish E Crustacean Malocostraca Decapoda Orconectes shoupi Nashville Crayfish E LE Crustacean Malocostraca Decapoda Orconectes wrighti A Crayfish E Fern and Fern Ally Filicopsida Polypodiales Dryopteris carthusiana Spinulose Shield Fern T Bogs Fern and Fern Ally Filicopsida Polypodiales Dryopteris cristata Crested Shield-Fern T FACW, OBL, Bogs Fern and Fern Ally Filicopsida Polypodiales Trichomanes boschianum
    [Show full text]
  • Social Learning and Its Effect on Conservation Efforts in the Barrens
    SOCIAL LEARNING AND ITS EFFECT ON CONSERVATION EFFORTS IN THE BARRENS TOPMINNOW: AN EVALUATION OF CONDITIONING AND SOCIAL LEARNING AS A VIABLE LONGTERM SOLUTION TO EVOLUTIONARY TRAPS By Elijah Reyes Hope Klug David Aborn UC Foundation Associate Professor Associate Professor (Chair) (Committee Member) Bernard Kuhajda Sarah Farnsley TNACI Science Program Manager Lecturer (Committee Member) (Committee Member) SOCIAL LEARNING AND ITS EFFECT ON CONSERVATION EFFORTS IN THE BARRENS TOPMINNOW: AN EVALUATION OF CONDITIONING AND SOCIAL LEARNING AS A VIABLE LONGTERM SOLUTION TO EVOLUTIONARY TRAPS By Elijah Reyes A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of the Master of Science: Environmental Science The University of Tennessee at Chattanooga Chattanooga, Tennessee August 2017 ii ABSTRACT The invasive Western Mosquitofish (WMF), Gambusia affinis, has facilitated the extinction and endangerment of multiple freshwater fish species, including the Barrens Topminnow (BTM), Fundulus julisia. In my study, I investigated if BTMs are capable of socially learning conditioned predator recognition, and I hypothesized that BTMs are capable of social learning and that such learning might improve survival of BTMs. To explore the role of conditioning and subsequent learning in the conservation of BTMs, I conducted a series of experiments in which I 1) attempted to condition BTMs to exhibit antipredator behavior when faced with WMF, and 2) created a situation in which naive BTMs could potentially learn from conditioned individuals. I found no evidence of conditioning or of social learning, and there were no significant differences in behavior, body condition, or survival among my treatment groups.
    [Show full text]