WO 2014/113638 Al 24 July 2014 (24.07.2014) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2014/113638 Al 24 July 2014 (24.07.2014) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2014/113638 Al 24 July 2014 (24.07.2014) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 47/48 (2006.01) A61K 31/135 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 47/30 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, PCT/US20 14/0 11991 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 17 January 2014 (17.01 .2014) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/753,743 17 January 2013 (17.01.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: AER DEVICES, INC. [US/US]; 2400 W. TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Coast Hwy., Suite 11-302, Newport Beach, CA 92663 EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (72) Inventors: MILLIGAN, Joseph; 121 41st St., Newport KM, ML, MR, NE, SN, TD, TG). Beach, CA 92663 (US). SHAEFFER, Jason; 25 10 Glen- neyre St., Laguna Beach, CA 9265 1 (US). PHAM, David, Published: N.; 16772 Baruna Lane, Huntington Beach, CA 92649 — with international search report (Art. 21(3)) (US). — before the expiration of the time limit for amending the (74) Agents: FESSENMAIER, Martin et al; Fish & Associ claims and to be republished in the event of receipt of ates, PC, 2603 Main Street, Suite 1000, Irvine, CA 92614 amendments (Rule 48.2(h)) (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (54) Title: MULTI-USE ALBUTEROL MAINTENANCE THERAPY FORMULATIONS AND DEVICES THEREFOR Aer Devices versus Conventional Therapy FIG. 3 (57) Abstract: Contemplated devices, formulations, and methods allow for significant reduction of albuterol using an on-demand thermal vaporizer while maintaining bioequivalent functional response to currently known modes of administration. In particularly preferred aspects, the total administered dose is less than 4% of an administered dose of an aqueous solution given via a known nebulizer, and less than 15% of an administered dose of an aqueous/ethanolic solution given via a known metered dose inhaler. MULTI-USE ALBUTEROL MAINTENANCE THERAPY FORMULATIONS AND DEVICES THEREFOR [0001] This application claims the benefit of US Provisional Application Serial Number 61/753743, which was filed January 17, 2013, and which is incorporated by reference herein. Field of The Invention [0002] The field of the invention is devices and methods for pulmonary delivery of drugs, and especially devices and methods for multi-use pulmonary delivery of bronchodilatory drugs for maintenance treatment of a patient. Background of the Invention [0003] Chronic obstructive pulmonary disease (COPD) is a fairly common pulmonary disease in which air flow to and from the lungs is compromised. Likewise, allergen- and exercise-induced asthma are fairly common disorders that are generally characterized by airflow obstruction and bronchospasm. Among other options for treatment of COPD and asthma, albuterol (salbutamol, (RS)-4-[2-(tert-butylamino)-l-hydroxyethyl]-2-(hydroxymeth- yl)phenol) is fairly effective in treatment of symptoms associated with COPD and asthma. [0004] For example, COPD patients are often on a maintenance treatment with inhaled albuterol in which a mechanical (e.g., ultrasonic or impact) nebulizer generates a mist that carries the albuterol to the lungs. While such nebulizer maintenance treatment is conceptually very simple, patients will typically be restricted to home treatment as the nebulizer is relatively bulky and often dependent on line voltage. Alternatively, albuterol can also be administered as a highly concentrated spray from a hand-held metered dose inhaler (MDI). However, use of an MDI for delivery is typically limited to use as a rescue inhaler due to the high drug concentration and so not suitable for maintenance therapy. [0005] In addition, and particularly where an ultrasonic or impact nebulizer is used, the albuterol containing liquid that is placed into the vaporization chamber must be completely used or the remaining liquid must be discarded. Moreover, due to the constant concentration of albuterol in the mist from a nebulizer, the patient can typically not modify the amount of albuterol taken per inhalation. Similarly, MDI delivery is limited to a constant dose of albuterol taken per inhalation. Moreover, and regardless of the mode of administration (i.e., nebulizer or MDI), pediatric use is often difficult as children tend to have difficulty with the operation of a nebulizer mask or MDI. In addition, the recently revised guidelines for asthma treatment by the National Institutes of Health recommended that pediatric patients use the lowest beta-agonist doses needed to control symptoms. However, lowest beta-agonist doses are typically achieved by dilution of the treatment solution, which is potentially dangerous due to calculation errors and/or contamination of residual medication. [0006] Regardless of the above difficulties, side effects of albuterol are fairly common and include tachycardia, uncontrollable shaking of a part of the body, nervousness, headache, nausea, vomiting, cough, throat irritation, muscle, bone, or back pain, and in severe cases chest pain, difficulties breathing, difficulty swallowing, and swelling of the face, throat, tongue, lips, eyes, hands, feet, ankles, or lower legs, all of which tend to increase in frequency and/or severity with increasing administered dosage. Therefore, it would be highly desirable to have compositions and methods that would allow administration of a reduced dosage of albuterol (and other beta receptor agonists) while having bioequivalent functional response/therapeutic effect as it is thought that such reduced dosages will significantly reduce side effects. Viewed from a different angle, it would be also highly advantageous to have compositions and methods that increase potency of albuterol and other beta receptor agonists when administered via pulmonary route. [0007] Thus, even though various uses, devices, and methods for pulmonary administration of albuterol and other beta2-receptor agonist bronchodilators are known, there is still a need to provide improved compositions, methods and devices, especially where administration is for maintenance therapy. Summary of The Invention [0008] The present invention is directed to various compositions, methods, uses, devices and formulations for pulmonary administration of a therapeutically effective amount of a drug, and especially a beta2-receptor agonist bronchodilator and/or corticosteroid to a patient in need thereof. Among other advantages, the compositions, methods, and uses according to the inventive subject matter unexpectedly allow for substantial reduction of total administered dose of the drug using an on-demand thermal vaporizer while maintaining a bioequivalent functional response to currently known modes of administration. Viewed from a different perspective, using inventive compositions and methods significantly increases potency of the beta2-receptor agonist bronchodilator and/or corticosteroid, and thus allows for a substantial reduction in the required administered dose, which in turn will reduce the incidence and/or severity of side effects associated with the drugs. [0009] In one aspect of the inventive subject matter, the inventors contemplate compositions, methods, and use of a low-molecular weight polyol as thermo-nebulizable carrier for a beta2- receptor agonist bronchodilator (and/or corticosteroid) to reduce the administered dosage of the beta2-receptor agonist bronchodilator formulation while maintaining a desired functional response for the beta2-receptor agonist bronchodilator. [0010] In particularly preferred compositions, methods, and uses, the thermo-nebulizable carrier is or comprises a low-molecular weight polyol, most preferably in an amount of between 80-92 vol% of the formulation. For example, suitable thermo-nebulizable carrier are or comprise propylene glycol, glycerol, and/or PEG400 (polyethylene glycol) in a total amount of between 80-92 vol% of the formulation. Where the beta2-receptor agonist bronchodilator is a short-acting agonist, especially contemplated agonists include albuterol, albuterol sulfate, levalbuterol, terbutaline, pirbuterol, procaterol, clenbuterol, metaproterenol, fenoterol, bitolterol mesylate, ritodrine, and isoprenaline, and where the beta2-receptor agonist bronchodilator is a long-acting agonist, preferred agonists include salmeterol, formoterol, bambuterol, clenbuterol, olodaterol, and indacaterol. Especially preferred beta2- receptor agonist bronchodilator include albuterol, and albuterol sulfate or other short-acting antimuscarinic agonist such as ipratropium bromide.
Recommended publications
  • Dosing Time Matters
    bioRxiv preprint doi: https://doi.org/10.1101/570119; this version posted March 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Dosing Time Matters 1 2,3 4,5,6 1* Marc D. Ruben ,​ David F. Smith ,​ Garret A. FitzGerald ,​ and John B. Hogenesch ​ ​ ​ ​ 1 Division​ of Human Genetics, Center for Chronobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH, 45229 2 Divisions​ of Pediatric Otolaryngology and Pulmonary and Sleep Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229 3 Department​ of Otolaryngology-Head and Neck Surgery, University of Cincinnati School of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267 4 Department​ of Systems Pharmacology and Translational Therapeutics, at the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA 5 Department​ of Medicine, at the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA 6 ​ Institute for Translational Medicine and Therapeutics (ITMAT), at the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA *Corresponding Author. Email: [email protected] Abstract Trainees in medicine are taught to diagnose and administer treatment as needed; time-of-day is rarely considered. Yet accumulating evidence shows that ~half of human genes and physiologic functions follow daily rhythms. Circadian medicine aims to incorporate knowledge of these rhythms to enhance diagnosis and treatment.
    [Show full text]
  • COVID-19 Evidence Bulletin 8
    COVID-19 Evidence Bulletin 8 Public Health England PHE International Epidemiology Daily Evidence Digest – 22nd April 2020 – 21st April 2020 – 20th April 2020 NICE COVID-19 rapid guideline: acute myocardial injury [NG171] Published 23rd April The purpose of this guideline is to help healthcare professionals who are not cardiology specialists identify and treat acute myocardial injury and its cardiac complications in adults with known or suspected COVID-19 but without known pre-existing cardiovascular disease. COVID-19 rapid guideline: gastrointestinal and liver conditions treated with drugs affecting the immune response [NG172] Published 23rd April The purpose of this guideline is to maximise the safety of children and adults who have gastrointestinal or liver conditions treated with drugs affecting the immune response during the COVID 19 pandemic. It also aims to protect staff from infection and enable services to make the best use of NHS resources. COVID-19 rapid guideline: managing symptoms (including at the end of life) in the community Published 3rd April, Last updated 22nd April NHS England Specialty Guides: Clinical guide for acute kidney injury in hospitalised patients with COVID-19 outside the intensive care unit during the coronavirus pandemic (22nd April - updated) Management of palliative care in hospital during the coronavirus pandemic (22nd April – updated) Department of Health and Social Care Medicines that cannot be parallel exported from the UK (22nd April) 33 medicines have been added to the parallel export list and the
    [Show full text]
  • Β2 Adrenergic Agonist Suppresses Eosinophil-Induced Epithelial-To- Mesenchymal Transition of Bronchial Epithelial Cells Keigo Kainuma1,2, Tetsu Kobayashi3, Corina N
    Kainuma et al. Respiratory Research (2017) 18:79 DOI 10.1186/s12931-017-0563-4 RESEARCH Open Access β2 adrenergic agonist suppresses eosinophil-induced epithelial-to- mesenchymal transition of bronchial epithelial cells Keigo Kainuma1,2, Tetsu Kobayashi3, Corina N. D’Alessandro-Gabazza2, Masaaki Toda2, Taro Yasuma2, Kota Nishihama2, Hajime Fujimoto3, Yu Kuwabara1,2, Koa Hosoki1,2, Mizuho Nagao1, Takao Fujisawa1 and Esteban C. Gabazza2* Abstract Background: Epithelial-mesenchymal transition is currently recognized as an important mechanism for the increased number of myofibroblasts in cancer and fibrotic diseases. We have already reported that epithelial- mesenchymal transition is involved in airway remodeling induced by eosinophils. Procaterol is a selective and full β2 adrenergic agonist that is used as a rescue of asthmatic attack inhaler form and orally as a controller. In this study, we evaluated whether procaterol can suppress epithelial-mesenchymal transition of airway epithelial cells induced by eosinophils. Methods: Epithelial-mesenchymal transition was assessed using a co-culture system of human bronchial epithelial cells and primary human eosinophils or an eosinophilic leukemia cell line. Results: Procaterol significantly inhibited co-culture associated morphological changes of bronchial epithelial cells, decreased the expression of vimentin, and increased the expression of E-cadherin compared to control. Butoxamine, a specific β2-adrenergic antagonist, significantly blocked changes induced by procaterol. In addition, procaterol inhibited the expression of adhesion molecules induced during the interaction between eosinophils and bronchial epithelial cells, suggesting the involvement of adhesion molecules in the process of epithelial-mesenchymal transition. Forskolin, a cyclic adenosine monophosphate-promoting agent, exhibits similar inhibitory activity of procaterol. Conclusions: Overall, these observations support the beneficial effect of procaterol on airway remodeling frequently associated with chronic obstructive pulmonary diseases.
    [Show full text]
  • Ep 2626065 A1
    (19) TZZ Z_T (11) EP 2 626 065 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: A61K 31/137 (2006.01) A61K 31/135 (2006.01) 14.08.2013 Bulletin 2013/33 A61K 31/4704 (2006.01) A61K 31/58 (2006.01) A61K 31/56 (2006.01) A61K 9/12 (2006.01) (2006.01) (2006.01) (21) Application number: 11827927.2 A61K 9/14 A61P 11/06 (86) International application number: Date of filing: 01.02.2011 (22) PCT/CN2011/070883 (87) International publication number: WO 2012/041031 (05.04.2012 Gazette 2012/14) (84) Designated Contracting States: (72) Inventor: WU, Wei-hsiu AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Taipei GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Taiwan (TW) PL PT RO RS SE SI SK SM TR (74) Representative: Patentanwaltskanzlei WILHELM (30) Priority: 28.09.2010 CN 201010502339 & BECK Prinzenstrasse 13 (71) Applicant: Intech Biopharm Ltd. 80639 München (DE) Taipei (TW) (54) COMPOUND COMPOSITION FOR INHALATION USED FOR TREATING ASTHMA (57) An inhaled pharmaceutical composition con- tric way as a controller. The eccentric way control therapy tains primary active ingredients of beta2- agonist and cor- could create a low blood concentration period during the ticosteroids.The pharmaceuticalcompositions disclosed day and minimize the acute tolerance phenomenon (or in the present invention are to be inhaled by a patient so called tachyphylaxis) for bronchodilator - beta2-ago- when needed as a reliever, or administrated in an eccen- nists in treating asthma or other obstructive respiratory disorders.
    [Show full text]
  • Clenbuterol Elisa Kit Instructions Product #101219 & 101216 Forensic Use Only
    Neogen Corporation 944 Nandino Blvd., Lexington KY 40511 USA 800/477-8201 USA/Canada | 859/254-1221 Fax: 859/255-5532 | E-mail: [email protected] | Web: www.neogen.com/Toxicology CLENBUTEROL ELISA KIT INSTRUCTIONS PRODUCT #101219 & 101216 FORENSIC USE ONLY INTENDED USE: For the determination of trace quantities of Clenbuterol and/or other metabolites in human urine, blood, oral fluid. DESCRIPTION Neogen Corporation’s Clenbuterol ELISA (Enzyme-Linked ImmunoSorbent Assay) test kit is a qualitative one-step kit designed for use as a screening device for the detection of drugs and/or their metabolites. The kit was designed for screening purposes and is intended for forensic use only. It is recommended that all suspect samples be confirmed by a quantitative method such as gas chromatography/mass spectrometry (GC/MS). ASSAY PRINCIPLES Neogen Corporation’s test kit operates on the basis of competition between the drug or its metabolite in the sample and the drug- enzyme conjugate for a limited number of antibody binding sites. First, the sample or control is added to the microplate. Next, the diluted drug-enzyme conjugate is added and the mixture is incubated at room temperature. During this incubation, the drug in the sample or the drug-enzyme conjugate binds to antibody immobilized in the microplate wells. After incubation, the plate is washed 3 times to remove any unbound sample or drug-enzyme conjugate. The presence of bound drug-enzyme conjugate is recognized by the addition of K-Blue® Substrate (TMB). After a 30 minute substrate incubation, the reaction is halted with the addition of Red Stop Solution.
    [Show full text]
  • Diagnosis and Management of Asthma in Older Adults Sanjay Haresh Chotirmall, MD, Michael Watts, MD, Peter Branagan, MD, Ciaran F
    PROGRESS IN GERIATRICS Diagnosis and Management of Asthma in Older Adults Sanjay Haresh Chotirmall, MD, Michael Watts, MD, Peter Branagan, MD, Ciaran F. Donegan, MD, Allan Moore, MD, and Noel Gerard McElvaney, MD Despite comprehensive guidelines established by the Euro- from 6.5% to 17.0%.5 Death rates associated with asthma pean Global Initiative for Asthma and the U.S. National depend on patient age; in a group of patients aged 55 to 59, Asthma Education and Prevention Program on the diagno- the death rate was 2.8 per 100,000 people, whereas in sis and management of asthma, its mortality in older adults people aged 60 to 64, it was 4.2 per 100, 000.6 Diagnostic continues to rise. Diagnostic and therapeutic problems and therapeutic problems contribute to many patients being contribute to older patients being inadequately treated. The inadequately treated. Despite its importance in older pa- diagnosis of asthma rests on the history and characteristic tients, asthma is particularly difficult to diagnose in this age pulmonary function testing (PFT) with the demonstration group. Symptoms typical of asthma such as intermittent of reversible airway obstruction, but there are unique prob- wheezing, breathlessness, and cough can also indicate other lems in performing this test in older patients and in its in- respiratory problems in older patients, particularly chronic terpretation. This review aims to address the difficulties in obstructive pulmonary disease (COPD). Similarly, other performing and interpreting PFT in older patients because symptoms of asthma such as chest pain or tightness may of the effects of age-related changes in lung function on be due to nonpulmonary disease such as ischemic heart respiratory physiology.
    [Show full text]
  • Emea/666243/2009
    European Medicines Agency London, 29 October 2009 EMEA/666243/2009 ISSUE NUMBER: 0910 MONTHLY REPORT PHARMACOVIGILANCE WORKING PARTY (PHVWP) OCTOBER 2009 PLENARY MEETING The CHMP Pharmacovigilance Working Party (PhVWP) held its October 2009 plenary meeting on 19-21 October 2009. PhVWP DISCUSSIONS ON SAFETY CONCERNS Below is a summary of the discussions regarding non-centrally authorised medicinal products in accordance with the PhVWP publication policy (see under http://www.emea.europa.eu/htms/human/phv/reports.htm). Positions agreed by the PhVWP for non- centrally authorised products are recommendations to Member States. For safety updates concerning centrally authorised products and products subject to ongoing CHMP procedures, readers are referred to the CHMP Monthly Report (see under http://www.emea.europa.eu/pressoffice/presshome.htm). The PhVWP provides advice on these products to the Committee of Medicinal Products for Human Use (CHMP) upon its request. Antipsychotics - risk of venous thromboembolism (VTE) Identify risk factors for VTE for preventive action before and during treatment with antipsychotics The PhVWP completed their review on the risk of VTE of antipsychotics1. The review was triggered by and based on data from the UK spontaneous adverse drug reactions reporting system and the published literature. The PhVWP carefully considered the data, including the limitations of both information sources, such as the lack of randomised controlled trial data, the heterogeneity of published studies and the potential confounding factors such as sedation and weight gain, commonly present in antipsychotic users. The PhVWP concluded that an association between VTE and antipsychotics cannot be excluded. Distinguishing different risk levels between the various active substances was not possible.
    [Show full text]
  • Lamas for COPD Systematic Review
    Comparative safety and effectiveness of inhaled long -acting agents (corticosteroids, beta agonists, anticholinergics) for chronic obstructive pulmonary disease Comprehensive Research Plan: Systematic Review Unit April 4th, 2014 Andrea C. Tricco, PhD1 and Sharon E. Straus, MD, MSc1,2 30 Bond Street, Toronto ON, M5B 1W8 www.odprn.ca [email protected] Background Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation in the lungs [1]. COPD is commonly assessed by clinical examination and spirometry. Important indicators considered in the diagnosis of COPD include age over 40 years and any of the following: 1) progressive and persistent dyspnea that worsens with exercise, 2) chronic cough, 3) chronic sputum production, 4) history of exposure to smoke from tobacco or cooking, occupational dusts and chemicals, and 5) family history of COPD [1]. COPD causes significant burden of illness, reduced quality of life, and premature death [2]. Symptoms include chronic cough, sputum production, and dyspnea [3]. The global prevalence of COPD has been estimated at 7.6% using data from a systematic review including 28 countries [4]. However, this is likely a conservative estimate, due to under-reporting and under-diagnosis. The prevalence and burden of COPD is rising due the greater proportion of elderly people in the population [1]. It is estimated that COPD will be the third-leading cause of death by 2020 [5]. The treatment of COPD usually involves reducing exposure (e.g., smoking cessation, occupation modifications), increasing exercise, and implementing appropriate pharmacologic therapy [1]. The most common drug classes are beta2-agonists, anticholinergics, and methylxanthines. Inhaled corticosteroids (ICS) and systemic corticosteroids are often useful for acute exacerbations.
    [Show full text]
  • 100 Storage Condition=50 C/Ambrh
    USOO595.5058A United States Patent (19) 11 Patent Number: S.9SS,0589 9 Jager et al. (45) Date of Patent: Sep. 21,9 1999 54). STABILIZED MEDICINAL AEROSOL 56) References Cited SOLUTION FORMULATIONS CONTAINING U.S. PATENT DOCUMENTS IPRATROPIUM BROMIDE a 5,118,494 6/1992 Schultz et al. ............................ 424/45 75 Inventors: Paul Donald Jager, Waterbury; Mark 5,190,029 3/1993 Byron et al. ... ... 128/200.14 James Kontny, New Milford, both of 5,225,183 7/1993 Purewal et al. ........................... 424/45 Conn.; Jurgen Hubert Nagel 5.439,670 8/1995 Purewal et al. ... 424/45 Ingelheim/Rhein, Germany s 5,605,674 2/1997 Purewal et al. ........................... 424/45 FOREIGN PATENT DOCUMENTS 73 Assignee: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, 0372 777 6/1990 European Pat. Off.. Conn. Primary Examiner Raj Bawa Attorney, Agent, or Firm Morgan & Finnegan, LLP 21 Appl.pp No.: 08/843,180 57 ABSTRACT 22 Filed: Apr. 14, 1997 Stabilized medicinal aeroSol Solution formulations compris O O ing medicaments that degrade or decompose by interaction Related U.S. Application Data with solvents or water, an HFC propellant, a cosolvent and an acid are described. Further, Specific medicinal aeroSol 63 Staggypt.NE "A iGs Solution formulations comprising ipratropium bromide or No. 08/153.549, Nov. 22, 1993, abandoned E. is a fenoterol, ethyl alcohol, 1,1,1,2-tetrafluoroethane or 1,1,1, continuation-in-part of application No. 07/987,852, Dec. 9, 2,3,3,3-heptafluoropropane, and either an inorganic acid or 1992, abandoned. an organic acid are described. The acids are present in 51 Int.
    [Show full text]
  • Pharmacology and Therapeutics of Bronchodilators
    1521-0081/12/6403-450–504$25.00 PHARMACOLOGICAL REVIEWS Vol. 64, No. 3 Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics 4580/3762238 Pharmacol Rev 64:450–504, 2012 ASSOCIATE EDITOR: DAVID R. SIBLEY Pharmacology and Therapeutics of Bronchodilators Mario Cazzola, Clive P. Page, Luigino Calzetta, and M. Gabriella Matera Department of Internal Medicine, Unit of Respiratory Clinical Pharmacology, University of Rome ‘Tor Vergata,’ Rome, Italy (M.C., L.C.); Department of Pulmonary Rehabilitation, San Raffaele Pisana Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy (M.C., L.C.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK (C.P.P., L.C.); and Department of Experimental Medicine, Unit of Pharmacology, Second University of Naples, Naples, Italy (M.G.M.) Abstract............................................................................... 451 I. Introduction: the physiological rationale for using bronchodilators .......................... 452 II. ␤-Adrenergic receptor agonists .......................................................... 455 A. A history of the development of ␤-adrenergic receptor agonists: from nonselective ␤ Downloaded from adrenergic receptor agonists to 2-adrenergic receptor-selective drugs.................... 455 ␤ B. Short-acting 2-adrenergic receptor agonists........................................... 457 1. Albuterol........................................................................ 457
    [Show full text]
  • Data Reproducibility and Effectiveness of Bronchodilators for Improving Physical Activity in COPD Patients
    Journal of Clinical Medicine Review Data Reproducibility and Effectiveness of Bronchodilators for Improving Physical Activity in COPD Patients Yoshiaki Minakata * and Seigo Sasaki Department of Respiratory Medicine, National Hospital Organization Wakayama Hospital, Wakayama 644-0044, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-738-22-3256 Received: 7 September 2020; Accepted: 27 October 2020; Published: 29 October 2020 Abstract: Increasing physical activity (PA) in patients with chronic obstructive pulmonary disease (COPD) is an important issue, however, the effect of bronchodilators on PA is still controversial. The indicators of PA, as measured by an accelerometer, can easily fluctuate based on several factors, which might cause inconsistent results. In this review, we listed the indicators of PA and the factors influencing the reproducibility of indicators of PA, and reviewed reports in which the effects of bronchodilators on PA were evaluated by an accelerometer. Then, we investigated the association between the processing of influencing factors and the effectiveness of bronchodilators for improving the PA of COPD patients. Fifteen reports were extracted using the PubMed database. In all seven reports in which adjustment was performed for at least two of four influencing factors (non-wear time, data from days with special behavior, environmental factors, and number of valid days required to obtain reproducible data), bronchodilators showed beneficial effects on PA. No adjustment was made for any of these factors in any of the four bronchodilator-ineffective reports. This suggests that the processing of influencing factors to secure reproducibility might affect the results regarding the effectiveness of bronchodilators for improving PA in COPD patients.
    [Show full text]
  • Bnf Chapter 3: Respiratory
    BNF CHAPTER 3: RESPIRATORY Information resources: ● If an inhaler device is changed then patients must be assessed to ensure inhaler technique is adequate Respiratory Futures Consider issuing a Steroid warning card to patients prescribed high dose inhaled steroids Asthma guidelines NICE guideline [NG80] Asthma: diagnosis, monitoring and chronic asthma management NICE guidance TA 138 Asthma - inhaled corticosteroids for the treatment of chronic asthma in adults and children aged 12 years and over. https://www.sign.ac.uk/assets/sign153.pdf SIGN 153: British guideline on the management of asthma Global Initiative for Asthma 2018. GINA Report, Global Strategy for Asthma Management and Prevention. West Cheshire local guidelines COPD guidelines: NICE [NG115] COPD in over 16s diagnosis and management. NICE guideline Dec 18 [NG115] GOLD : Global strategy for the diagnosis, management, and prevention of Chronic Obstructive Pulmonary Disease 2018 Report West Cheshire local guidelines Abbreviations used: MDI: metered dose inhaler DPI: dry powder inhaler SABA: short acting beta agonist LABA: long acting beta agonist SAMA: short acting muscarinic antagonist LAMA: long acting muscarinic antagonist ICS: inhaled corticosteroid LTRA: leukotriene receptor antagonist PDE4: phosphodiesterase-4 enzyme inhibitor Joint Formulary – Respiratory Approved by Area Prescribing Committee: n/a Review by: July 2021 3.1 BRONCHODILATORS 3.1.1.1 SELECTIVE BETA2-AGONISTS Short acting Beta2 Agonist (SABA) Salbutamol 100 micrograms/metered inhalation MDI 100/200
    [Show full text]