Dynamic Behaviour of Ceramic Armour Systems
Total Page:16
File Type:pdf, Size:1020Kb
FFI-rapport 2015/01485 Dynamic behaviour of ceramic armour systems Dennis B. Rahbek and Bernt B. Johnsen Forsvarets forskningsinstitutt FFINorwegian Defence Research Establishment FFI-rapport 2015/01485 Dynamic behaviour of ceramic armour systems Dennis B. Rahbek and Bernt B. Johnsen Norwegian Defence Research Establishment (FFI) 10 November 2015 FFI-rapport 2015/01485 1301 P: ISBN 978-82-464-2608-2 E: ISBN 978-82-464-2609-9 Keywords Ballistikk Beskyttelse Keramikk Materialteknologi Mekanismer Approved by Rune Lausund Research Manager Svein Rollvik Director of Research Jon E. Skjervold Director 2 FFI-rapport 2015/01485 English summary Protection against high-velocity impact from objects such as projectiles is of major concern for bothmilitary and civilian purposes. Lightweight body armour systems for ballistic protection of personnel can be designed by combining different materials with different properties. These hybrid systems typically have a hard ceramic strike face that blunts, fractures and erodes the projectile, and a soft backing, made from ballistic fibres, that absorbs the residual energy. FFI has for many years been involved in the development of, and research on, body armour for protection of military personnel. In the period from 2004 to 2007, the technology behind an armour plate was developed in cooperation with industry. For future developments, however, it is necessary to have knowledge about the mechanisms that are acting under ballistic impact. Today, this topic is studied in several projects at FFI, and this report was written as a part of that work. The most common ceramics for armour purposes are - in order of improved performance - aluminium oxide, silicon carbide and boron carbide. The ceramics generally have relatively low density and high hardness. These, and other properties, make them useful in armour applications. The mechanisms by which a ceramic armour fails is quite complex, and involve failure mechanisms such as radial cracking, cone cracking and comminution due to micro-cracking. To what extent they appear and the relative timing of these mechanisms, depends on factors such as the impact velocity, the ceramic and projectile properties, and the dimensions of the ceramic and projectile. To improve the ballistic performance of the ceramic armour system, it is desirable to delay the failure of the ceramic for as long as possible. This allows more time for deformation and erosion of the projectile. It has been shown in the literature, and by work conducted at FFI, that the ballistic performance, both in terms of single-hit and multi-hit capacity, can be improved by radially confining the ceramic tile, by covering it with a sheet of another material, and/or by tuning the interfacial strength between the cover and the ceramic. The main aim of this report is to give an overview of the mechanisms that are involved in ballistic, or dynamic, failure of ceramics and ceramic-based hybrid armour. The failure mechanisms, the factors that govern the failure mechanisms, and what can be done to delay the failure of the ceramic, are discussed on the basis of some of the available literature on the topics. FFI-rapport 2015/01485 3 Sammendrag Beskyttelse mot anslag fra blant annet prosjektiler ved høy hastighet er et viktig tema innen både militære og sivile anvendelser. Lettvektsløsninger for ballistisk beskyttelse av personell kan designes ved å kombinere ulike materialer med ulike egenskaper. Disse hybridsystemene har typisk en hard plate av keramikk som avrunder, bryter opp og eroderer prosjektilet, samt en myk ’backing’ laget av ballistiske fibre som absorberer den gjenværende energien. FFI har i mange år vært involvert i utvikling av og forskning på ballistisk beskyttelse for militært personell. I perioden 2004 til 2007 ble teknologien bak en beskyttelsesplate for soldater utviklet i samarbeid med norsk industri. For videre utvikling av teknologien er det imidlertid nødvendig med en bedre forståelse av hvilke mekanismer som finner sted ved ballistiske anslag. Dette er et tema som for tiden studeres i flere prosjekter ved FFI, og denne rapporten ble skrevet som en del av dette arbeidet. Keramikk har generelt lav tetthet og høy hardhet. Disse, og andre, egenskaper gjør materialet anvendbart for ballistisk beskyttelse. De vanligste keramikktypene som er benyttet i beskyttelsesløsninger er – i stigende rekkefølge med tanke på økt ytelse - aluminiumoksid, silisiumkarbid og borkarbid. Mekanismene som keramikk bryter sammen med ved høyhastighets anslag er relativt komplekse. De involverer feilmekanismer som for eksempel dannelse av radielle sprekker, dannelse av en kjegle gjennom keramikkplaten og fragmentdannelse som følge av mikrosprekker under anslagspunktet. Hvor mye hver enkelt mekanisme bidrar, og i hvilken rekkefølge de opptrer, avhenger av faktorer som anslagshastigheten, egenskapene til keramikken og prosjektilet, samt dimensjonene til keramikken og prosjektilet. For å bedre ytelsen til et ballistisk beskyttelsessystem basert på keramikk, er det ønskelig å forsinke nedbrytningen av keramikken så lenge som mulig. Dette gir lenger tid til deformasjon og erosjon av prosjektilet. Det har blitt rapportert i litteraturen, og erfart gjennom arbeid utført ved FFI, at ulike metoder kan benyttes for å bedre den ballistiske ytelsen. Egenskapene ved ett eller flere anslag kan bedres ved å legge et annet materiale (for eksempel et fiberkompositt) rundt kanten av keramikken, ved å dekke keramikken med et lag av et annet materiale, og/eller ved å endre heften i grenseflaten mellom dette laget og keramikken. Hovedmålet med denne rapporten er å gi en oversikt over mekanismene som er involvert i nedbrytning av keramikk, og beskyttelsesløsninger basert på keramikk, ved ballistiske anslag (det vil si ved dynamiske påvirkninger). Feilmekanismene, hvilke faktorer som kontrollerer feilmekanismene, og hva som kan gjøres for å forsinke nedbrytningen av keramikken, blir gjennomgått med grunnlag i utvalgt litteratur om disse temaene. 4 FFI-rapport 2015/01485 Contents List of abbreviations6 1 Introduction7 2 Armour ceramics9 2.1 Material parameters 9 2.2 Ceramic microstructure 10 2.3 Commonly used armour ceramics 11 3 Methods for ballistic testing 14 3.1 Complete armour systems 14 3.2 Armour components 15 4 Failure mechanisms of ceramics 19 4.1 Dynamic failure 19 4.2 Quasi-static failure 22 4.3 Damage evolution 22 5 Confinement and covering of ceramics 25 5.1 Covering of the ceramic 25 5.2 Long rod penetration in thick ceramic discs 26 5.3 Impact with regular projectiles 28 5.4 Covering with fibre-composites 30 6 Effect of adhesive and interfacial bonding 36 6.1 Adhesion and bondline thickness 36 6.2 Multi-hit 37 6.3 Surface treatment 38 6.4 Interlayer 38 7 Conclusion 39 Bibliography 41 FFI-rapport 2015/01485 5 List of abbreviations Al2O3 aluminium oxide. AP armour piercing. B4C boron carbide. BEV ballistic efficiency value. DOP depth of penetration. FEM finite element method. FFI Forsvarets forskningsinstitutt. FOI Totalforsvarets¨ forskningsinstitut. HP hot pressed. HV Vickers hardness. PC polycarbonate. PU polyurethane. RB reaction bonded. SAPI small arms protective insert. SiC silicon carbide. SPS spark plasma sintering. TNO the Netherlands Organisation for Applied Scientific Research. UD uni-directional. UHMWPE ultra-high molecular weight polyethylene. WC tungsten carbide. 6 FFI-rapport 2015/01485 1 Introduction Protection against high-velocity impact from objects such as projectiles is a major issue in many military and also civilian applications. In many cases, hybrid armour systems consisting of a hard ceramic strike face and a comparatively soft metal or composite backing are used for ballistic protection in both vehicles and body armour. The role of the ceramic is to erode and blunt the hard tip of the projectile, while the role of the backing material is to absorb the residual energy of the eroded projectile and the fragments of the fractured ceramic. One of the advantages of employing ceramics in hybrid armour, compared to materials such as steel and aluminium, is that more lightweight systems can be designed. The load on the vehicle or the soldier is reduced and the mobility is thereby improved. Forsvarets forskningsinstitutt (FFI) has for many years been involved in the development of, and research on, lightweight body armour for ballistic protection of military personnel. In the period from 2004 to 2007, the technology for a SAPI plate was developed in a cooperation between FFI and industry. This technology is now used in armour systems that are employed by armed forces both nationally and internationally. For future developments of body armour, it is necessary to have knowledge about the mechanisms that are acting under ballistic impact of the armour. Knowledge about how the ceramics functions as stand-alone materials, and also how ceramic-based armour systems function, is important. Today, this topic is studied in several projects at FFI, and this report is written as a part of that work. The main aim of this report is to give an overview of the mechanisms that are involved in ballistic (dynamic) failure of ceramics and ceramic-based hybrid armour. Hence, the report is not intended to give a complete overview of the literature in the field of ballistic failure of protection materials, but it discusses some important topics with respect to the dynamic behaviour of ceramic armour on the basis of the available literature. Ballistic protection systems Depending on scenario, the soldiers role and the mission, protection can be provided by several means among which a ballistic protection system can be a key part. Modern systems for ballistic protection of personnel is most often modular since different parts of the body need different levels of protection, and since not all missions require the same level of protection. For protection against fragments and projectiles, the main focus is on protecting the torso and the head, as an injury to these regions are generally more acute than injuries to other parts of the body. The protection against different types of threats that one might encounter is divided into protection levels in ballistic test standards.