Dynamic Behaviour of Ceramic Armour Systems

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Behaviour of Ceramic Armour Systems FFI-rapport 2015/01485 Dynamic behaviour of ceramic armour systems Dennis B. Rahbek and Bernt B. Johnsen Forsvarets forskningsinstitutt FFINorwegian Defence Research Establishment FFI-rapport 2015/01485 Dynamic behaviour of ceramic armour systems Dennis B. Rahbek and Bernt B. Johnsen Norwegian Defence Research Establishment (FFI) 10 November 2015 FFI-rapport 2015/01485 1301 P: ISBN 978-82-464-2608-2 E: ISBN 978-82-464-2609-9 Keywords Ballistikk Beskyttelse Keramikk Materialteknologi Mekanismer Approved by Rune Lausund Research Manager Svein Rollvik Director of Research Jon E. Skjervold Director 2 FFI-rapport 2015/01485 English summary Protection against high-velocity impact from objects such as projectiles is of major concern for bothmilitary and civilian purposes. Lightweight body armour systems for ballistic protection of personnel can be designed by combining different materials with different properties. These hybrid systems typically have a hard ceramic strike face that blunts, fractures and erodes the projectile, and a soft backing, made from ballistic fibres, that absorbs the residual energy. FFI has for many years been involved in the development of, and research on, body armour for protection of military personnel. In the period from 2004 to 2007, the technology behind an armour plate was developed in cooperation with industry. For future developments, however, it is necessary to have knowledge about the mechanisms that are acting under ballistic impact. Today, this topic is studied in several projects at FFI, and this report was written as a part of that work. The most common ceramics for armour purposes are - in order of improved performance - aluminium oxide, silicon carbide and boron carbide. The ceramics generally have relatively low density and high hardness. These, and other properties, make them useful in armour applications. The mechanisms by which a ceramic armour fails is quite complex, and involve failure mechanisms such as radial cracking, cone cracking and comminution due to micro-cracking. To what extent they appear and the relative timing of these mechanisms, depends on factors such as the impact velocity, the ceramic and projectile properties, and the dimensions of the ceramic and projectile. To improve the ballistic performance of the ceramic armour system, it is desirable to delay the failure of the ceramic for as long as possible. This allows more time for deformation and erosion of the projectile. It has been shown in the literature, and by work conducted at FFI, that the ballistic performance, both in terms of single-hit and multi-hit capacity, can be improved by radially confining the ceramic tile, by covering it with a sheet of another material, and/or by tuning the interfacial strength between the cover and the ceramic. The main aim of this report is to give an overview of the mechanisms that are involved in ballistic, or dynamic, failure of ceramics and ceramic-based hybrid armour. The failure mechanisms, the factors that govern the failure mechanisms, and what can be done to delay the failure of the ceramic, are discussed on the basis of some of the available literature on the topics. FFI-rapport 2015/01485 3 Sammendrag Beskyttelse mot anslag fra blant annet prosjektiler ved høy hastighet er et viktig tema innen både militære og sivile anvendelser. Lettvektsløsninger for ballistisk beskyttelse av personell kan designes ved å kombinere ulike materialer med ulike egenskaper. Disse hybridsystemene har typisk en hard plate av keramikk som avrunder, bryter opp og eroderer prosjektilet, samt en myk ’backing’ laget av ballistiske fibre som absorberer den gjenværende energien. FFI har i mange år vært involvert i utvikling av og forskning på ballistisk beskyttelse for militært personell. I perioden 2004 til 2007 ble teknologien bak en beskyttelsesplate for soldater utviklet i samarbeid med norsk industri. For videre utvikling av teknologien er det imidlertid nødvendig med en bedre forståelse av hvilke mekanismer som finner sted ved ballistiske anslag. Dette er et tema som for tiden studeres i flere prosjekter ved FFI, og denne rapporten ble skrevet som en del av dette arbeidet. Keramikk har generelt lav tetthet og høy hardhet. Disse, og andre, egenskaper gjør materialet anvendbart for ballistisk beskyttelse. De vanligste keramikktypene som er benyttet i beskyttelsesløsninger er – i stigende rekkefølge med tanke på økt ytelse - aluminiumoksid, silisiumkarbid og borkarbid. Mekanismene som keramikk bryter sammen med ved høyhastighets anslag er relativt komplekse. De involverer feilmekanismer som for eksempel dannelse av radielle sprekker, dannelse av en kjegle gjennom keramikkplaten og fragmentdannelse som følge av mikrosprekker under anslagspunktet. Hvor mye hver enkelt mekanisme bidrar, og i hvilken rekkefølge de opptrer, avhenger av faktorer som anslagshastigheten, egenskapene til keramikken og prosjektilet, samt dimensjonene til keramikken og prosjektilet. For å bedre ytelsen til et ballistisk beskyttelsessystem basert på keramikk, er det ønskelig å forsinke nedbrytningen av keramikken så lenge som mulig. Dette gir lenger tid til deformasjon og erosjon av prosjektilet. Det har blitt rapportert i litteraturen, og erfart gjennom arbeid utført ved FFI, at ulike metoder kan benyttes for å bedre den ballistiske ytelsen. Egenskapene ved ett eller flere anslag kan bedres ved å legge et annet materiale (for eksempel et fiberkompositt) rundt kanten av keramikken, ved å dekke keramikken med et lag av et annet materiale, og/eller ved å endre heften i grenseflaten mellom dette laget og keramikken. Hovedmålet med denne rapporten er å gi en oversikt over mekanismene som er involvert i nedbrytning av keramikk, og beskyttelsesløsninger basert på keramikk, ved ballistiske anslag (det vil si ved dynamiske påvirkninger). Feilmekanismene, hvilke faktorer som kontrollerer feilmekanismene, og hva som kan gjøres for å forsinke nedbrytningen av keramikken, blir gjennomgått med grunnlag i utvalgt litteratur om disse temaene. 4 FFI-rapport 2015/01485 Contents List of abbreviations6 1 Introduction7 2 Armour ceramics9 2.1 Material parameters 9 2.2 Ceramic microstructure 10 2.3 Commonly used armour ceramics 11 3 Methods for ballistic testing 14 3.1 Complete armour systems 14 3.2 Armour components 15 4 Failure mechanisms of ceramics 19 4.1 Dynamic failure 19 4.2 Quasi-static failure 22 4.3 Damage evolution 22 5 Confinement and covering of ceramics 25 5.1 Covering of the ceramic 25 5.2 Long rod penetration in thick ceramic discs 26 5.3 Impact with regular projectiles 28 5.4 Covering with fibre-composites 30 6 Effect of adhesive and interfacial bonding 36 6.1 Adhesion and bondline thickness 36 6.2 Multi-hit 37 6.3 Surface treatment 38 6.4 Interlayer 38 7 Conclusion 39 Bibliography 41 FFI-rapport 2015/01485 5 List of abbreviations Al2O3 aluminium oxide. AP armour piercing. B4C boron carbide. BEV ballistic efficiency value. DOP depth of penetration. FEM finite element method. FFI Forsvarets forskningsinstitutt. FOI Totalforsvarets¨ forskningsinstitut. HP hot pressed. HV Vickers hardness. PC polycarbonate. PU polyurethane. RB reaction bonded. SAPI small arms protective insert. SiC silicon carbide. SPS spark plasma sintering. TNO the Netherlands Organisation for Applied Scientific Research. UD uni-directional. UHMWPE ultra-high molecular weight polyethylene. WC tungsten carbide. 6 FFI-rapport 2015/01485 1 Introduction Protection against high-velocity impact from objects such as projectiles is a major issue in many military and also civilian applications. In many cases, hybrid armour systems consisting of a hard ceramic strike face and a comparatively soft metal or composite backing are used for ballistic protection in both vehicles and body armour. The role of the ceramic is to erode and blunt the hard tip of the projectile, while the role of the backing material is to absorb the residual energy of the eroded projectile and the fragments of the fractured ceramic. One of the advantages of employing ceramics in hybrid armour, compared to materials such as steel and aluminium, is that more lightweight systems can be designed. The load on the vehicle or the soldier is reduced and the mobility is thereby improved. Forsvarets forskningsinstitutt (FFI) has for many years been involved in the development of, and research on, lightweight body armour for ballistic protection of military personnel. In the period from 2004 to 2007, the technology for a SAPI plate was developed in a cooperation between FFI and industry. This technology is now used in armour systems that are employed by armed forces both nationally and internationally. For future developments of body armour, it is necessary to have knowledge about the mechanisms that are acting under ballistic impact of the armour. Knowledge about how the ceramics functions as stand-alone materials, and also how ceramic-based armour systems function, is important. Today, this topic is studied in several projects at FFI, and this report is written as a part of that work. The main aim of this report is to give an overview of the mechanisms that are involved in ballistic (dynamic) failure of ceramics and ceramic-based hybrid armour. Hence, the report is not intended to give a complete overview of the literature in the field of ballistic failure of protection materials, but it discusses some important topics with respect to the dynamic behaviour of ceramic armour on the basis of the available literature. Ballistic protection systems Depending on scenario, the soldiers role and the mission, protection can be provided by several means among which a ballistic protection system can be a key part. Modern systems for ballistic protection of personnel is most often modular since different parts of the body need different levels of protection, and since not all missions require the same level of protection. For protection against fragments and projectiles, the main focus is on protecting the torso and the head, as an injury to these regions are generally more acute than injuries to other parts of the body. The protection against different types of threats that one might encounter is divided into protection levels in ballistic test standards.
Recommended publications
  • HONEYCOMB in HYBRID COMPOSITE ARMOR RESISTING DYNAMIC IMPACT by ADVAIT BHAT Bachelor of Science in Mechanical Engineering Un
    HONEYCOMB IN HYBRID COMPOSITE ARMOR RESISTING DYNAMIC IMPACT By ADVAIT BHAT Bachelor of Science in Mechanical Engineering University of Mumbai Mumbai, Maharashtra, India 2007 Master of Science in Mechanical and Aerospace Engineering Oklahoma State University Stillwater, Oklahoma 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY JULY 2015 HONEYCOMB IN HYBRID COMPOSITE ARMOR RESISTING DYNAMIC IMPACT Dissertation approved: Dr. Jay C. Hanan Dissertation Adviser Dr. Sandip P. Harimkar Dr. Raman P. Singh Dr. Semra Peksoz Outside Committee Member ii ACKNOWLEDGEMENTS I thank financial support for this work by MetCel LLC and the Helmerich Research Center through grants to the Oklahoma State University Foundation. Funding from the Oklahoma Center for Advancement and Technology - Oklahoma Applied Research Support (OCAST-OARS Award Nos. AR12.-041, AR 131-037) and the National Science Foundation (NSF Award No: 1214985) was critical for the project success. I thank my adviser Dr. Jay Hanan for his guidance and supervision during the entire span of this project. I express my deepest gratitude for his continuous motivation and patience during my academic endeavor at Oklahoma State University. I thank my outside committee member Dr. Semra Peksoz for being my mentor on body armor and familiarizing me with their design principles and prevalent test procedures. I gratefully thank Dr. Raman Singh and Dr. Sandip Harimkar for being on my dissertation committee. I extended my appreciation to the personnel from DSM Dyneema, The Safariland group, US Shooting Academy, and Leading Technology Composites for their assistance on ballistic tests.
    [Show full text]
  • (Xzxx/ Xx X X^X. X7 Xx X7 Xzx 24
    USOO786.6248B2 (12) United States Patent (10) Patent No.: US 7.866,248 B2 Moore, III et al. (45) Date of Patent: Jan. 11, 2011 (54) ENCAPSULATED CERAMIC COMPOSITE 3.684,631 A 8, 1972 Dunbar ........................ 428/46 ARMOR 3,765.299 A 10/1973 Pagano et al. 3,804,017 A 4, 1974 Venable et al. (75) Inventors: Dan T. Moore, III, Cleveland Heights, 3,815,312 A 6, 1974 Lench OH (US); Ajit Sane, Medina, OH (US); 3,826,172 A 7, 1974 Dawson Jeff Lennartz, Cleveland, OH (US); 3,834,948 A 9, 1974 Brickner et al. : . s 3,916,060 A * 10/1975 Fish et al. ................ 428,2994 Bruce O. Budinger, Chagrin Falls, OH 4,111,097 A 9, 1978 Lasker (US); James L. Eucker, North 4,125,053 A 1 1/1978 Lasker Ridgeville, OH (US); Charles M. 4,179,979 A 12/1979 Cook et al. Milliren, Chesterland, OH (US) 4,316,404 A 2f1982 Medlin 4,320,204 A 3, 1982 Weaver (73) Assignee: Intellectual Property Holdings, LLC, 4,352,316 A 10/1982 Medlin Cleveland, OH (US) 4,368,660 A 1, 1983 Held 4.404,889 A 9/1983 Miguel (*) Notice: Subject to any disclaimer, the term of this 4,446,190 A 5/1984 Pernici patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 552 days. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 11/656,603 EP 287918 A1 10, 1988 (22) Filed: Jan. 23, 2007 (Continued) (65) Prior Publication Data OTHER PUBLICATIONS US 2009/O114083 A1 May 7, 2009 M.L.
    [Show full text]
  • Ceramic Armor Materials by Design Kindle
    CERAMIC ARMOR MATERIALS BY DESIGN PDF, EPUB, EBOOK A. Crowson | 652 pages | 01 Feb 2003 | American Ceramic Society | 9781574981483 | English | Ohio, United States Ceramic Armor Materials by Design PDF Book Those fragments can be deadly. Body Armor Materials How To. It is possible to cast and fire curved ceramic armor and other high precision ceramics. It would be slightly heavier than steel armor, but only by about 4 percent. Neuheiten A Companion to Contemporary British This gave me a panel that was 0. Steel armor plates are widely available and used but do not necessarily make the most effective choice. The most common of these is the 9mm, although different levels specify different muzzle velocities. It may be they will stop a. Compare 0 materials. If the bottle were filled with soda it would explode upon the round penetrating one wall. There was an attempted bank robbery years ago in Southern California. I did not try a penetration test with. The specifications for ballistic body armor levels come from the National Institute of Justice and provide specific rounds that are to be fired at the body armor in testing for each level. Stopping the bullet does little good if your rib breaks and pierces your lung or heart. I decided I needed to test this one out. Fill the buckets with sand… then add water. Bridgerton by Julia Quinn. Dragon Skin body armor is one these systems, although it has failed numerous tests performed by the US Army, and has been rejected. R Dandekar and E. There is a lot of space between sand grains….
    [Show full text]
  • Protective Armor Engineering Design
    PROTECTIVE ARMOR ENGINEERING DESIGN PROTECTIVE ARMOR ENGINEERING DESIGN Magdi El Messiry Apple Academic Press Inc. Apple Academic Press Inc. 3333 Mistwell Crescent 1265 Goldenrod Circle NE Oakville, ON L6L 0A2 Palm Bay, Florida 32905 Canada USA USA © 2020 by Apple Academic Press, Inc. Exclusive worldwide distribution by CRC Press, a member of Taylor & Francis Group No claim to original U.S. Government works International Standard Book Number-13: 978-1-77188-787-8 (Hardcover) International Standard Book Number-13: 978-0-42905-723-6 (eBook) All rights reserved. No part of this work may be reprinted or reproduced or utilized in any form or by any electric, mechanical or other means, now known or hereafter invented, including photocopying and re- cording, or in any information storage or retrieval system, without permission in writing from the publish- er or its distributor, except in the case of brief excerpts or quotations for use in reviews or critical articles. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. Copyright for individual articles remains with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
    [Show full text]
  • Aluminum Oxynitride Armor Production and Modeling of Next Generation Transparent Armor for the Global War on Terror
    Aluminum Oxynitride Armor Production and Modeling of Next Generation Transparent Armor for the Global War on Terror Austin Parker December 2011 © Austin Parker 2011 All Rights Reserved ABSTRACT The use of novel materials in conventional armor solutions has been difficult due to extant processing methods and expensive methods. This is especially apparent in the use of aluminum oxynitride (AlON), currently being researched for its application in transparent ceramic armors. Development of a reaction sintering process utilizing unique additives in the direct sintering of alumina and aluminum nitride powders can reduce costs and provide a more practical manufacturing process for the delivery of next generation armor to the military in a timely fashion. Using a liquid sintering process and aluminum phosphate as an additive it is possible to sinter AlON directly while decomposing phosphate and alumina from the sample. It was found that this approach formed the requisite γ-AlON phase and the densities of samples could approach 3.63 g/cc. Based on the these results, and subsequent ballistic testing of larger scale samples, it was concluded that AlPO4 is a viable additive in a reaction sintering process to improve density and transparency of AlON. 1. INTRODUCTION In the spring of 2005 the Department of Defense and Department of Energy began a joint research project to study the effects of the increasingly sophisticated Improvised Explosive Devices (IEDs) being fielded in Iraq and Afghanistan. In addition to modeling the explosives and their interactions with current military armors, the study also funded a small offshoot group to research novel armor solutions that could replace existing systems with lightweight, modular designs capable of defeating both ballistic, and shockwave related threats.
    [Show full text]
  • Improved Processing of Armor Ceramics for Reduced Emissions of VOC's and Greenhouse Gases
    DACA72-02-C-0005 Improved Processing of Armor Ceramics for Reduced Emissions of VOC’s and Greenhouse Gases Daniel Ashkin Cercom, Inc. 991 Park Center Drive Vista, CA 92081 January 2004 Final Report for March 2002 to January 2004 1.0 - Project Background The use of armor ceramics by U.S. military forces is increasing. The manufacture of armor ceramics requires extensive use of energy, raw materials, capital equipment and consumables. The environmental impact of processing these materials is considerable in terms of produced green house gases, the release of volatile organic compounds (VOC’s), and the consumption of natural resources. The industry needs to identify which steps in the processing route can be modified to prevent pollution without affecting the function of the materials. Common armor ceramics materials are Boron Carbide (B4C), Silicon Carbide (SiC), Tungsten Carbide (WC), Aluminum Nitride (AlN), and Aluminum Oxide (Al2O3). Of these materials B4C and SiC are of the most immediate interest in the industry due to their low densities and high hardness. B4C is used as the hard face for SAPI (Small Arms Protective Inserts) bulletproof vests (6 lbs each) for the Marine Corps’ and Army’s Interceptor Body Armor Systems and in the protection system of all USA rotor wing aircraft, while SiC is being tested for armor systems in future land vehicles. It is projected that each vehicle will use 2 – 3 tons of ceramic armor. Cercom is a leading manufacturer of armor ceramics and makes a broad range of armor ceramics by hot pressing. This process produces the necessary fine grain microstructure, full density, and good mechanical properties in covalently bonded carbides and nitrides required for armor ceramics.
    [Show full text]
  • Design and Analysis of an Innovative Semi-Flexible Hybrid Personal-Body-Armor System
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2011 Design and Analysis of an Innovative Semi-Flexible Hybrid Personal-Body-Armor System Daniel Jeffrey Miller University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons, Art Practice Commons, and the Mechanical Engineering Commons Scholar Commons Citation Miller, Daniel Jeffrey, "Design and Analysis of an Innovative Semi-Flexible Hybrid Personal-Body-Armor System" (2011). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/3247 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Design and Analysis of an Innovative Semi-Flexible Hybrid Personal-Body-Armor System by Daniel Jeffrey Miller A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department of Mechanical Engineering College of Engineering University of South Florida Major Professor: Autar Kaw, Ph.D. Glen Besterfield, Ph.D. Craig Lusk, Ph.D. Date of Approval: March 22, 2011 Keywords: Woven Composites, Textiles, Impact, ANSYS, AUTODYN, Mechanical Energy Transfer Copyright © 2011, Daniel Jeffrey Miller 1 DEDICATION This thesis dedicated to my wonderful and beautiful wife, Summer. Without her love, support, and encouragement this project wouldn’t even have started. 2 ACKNOWLEDGEMENTS I would like to acknowledge the generous support of my wife, parents, family, friends, co-workers and professors.
    [Show full text]
  • Lightening Body Armor
    CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that helps improve policy and EDUCATION AND THE ARTS decisionmaking through research and analysis. ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE This electronic document was made available from www.rand.org as a public service INFRASTRUCTURE AND of the RAND Corporation. TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS Skip all front matter: Jump to Page 16 NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY Support RAND SCIENCE AND TECHNOLOGY Purchase this document TERRORISM AND Browse Reports & Bookstore HOMELAND SECURITY Make a charitable contribution For More Information Visit RAND at www.rand.org Explore the RAND Arroyo Center View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. This product is part of the RAND Corporation technical report series. Reports may include research findings on a specific topic that is limited in scope; present discussions of the methodology employed in research; provide literature reviews, survey instru- ments, modeling exercises, guidelines for practitioners and research professionals, and supporting documentation; or deliver preliminary findings. All RAND reports un- dergo rigorous peer review to ensure that they meet high standards for research quality and objectivity.
    [Show full text]
  • Plano De Trabalho Para Mestrado
    INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO ESTUDO DA INFLUÊNCIA DO TEOR DE TiB2, OBTIDO PELA REAÇÃO IN SITU DE B4C E TiC, NAS PROPRIEDADES MECÂNICAS DE CERÂMICAS A BASE DE B4C MARCELO LUIS RAMOS COELHO Dissertação apresentada com parte dos requisitos para obtenção do Grau de Mestre em Tecnologia Nuclear - Materiais Orientador: Prof. Dr. JOSÉ CARLOS BRESSIANI SÃO PAULO 2012 i AGRADECIMENTOS Agradeço a Deus, por propiciar-me a vida e o favorecimento do conhecimento para atingir novas conquistas. Aos meus pais Ilacy e Thereza, pela minha criação e a formação de meus princípios. A minha esposa Ana Paula e o meu filho Felipe, pelo amor, dedicação e incentivo nas horas difíceis. Ao Prof. Dr. José Carlos Bressiani, por sua orientação, na realização deste estudo. A Marinha do Brasil, em especial o Centro Tecnológico da Marinha em São Paulo (CTMSP) ao seu Diretor o Vice-Almirante (EN) Carlos Passos Bezerril. Ao Instituto de Pesquisas Energéticas e Nucleares (IPEN) pela oportunidade na realização deste mestrado. Ao Contra-Almirante (EN) Luciano Pagano Junior pelo apoio, e a viabilização do estudo. Ao Capitão-de-Mar-e-Guerra (EN) Ferreira Marques pelo voto de confiança. Ao Capitão-de-Corveta (EN) Rodney pelo acompanhamento e orientação. Ao Capitão-de-Corveta (EN) Farina e funcionários da OFCOM pelo grande apoio na confecção de matrizes e demais dispositivos utilizados. Ao Capitão-de-Corveta (EN) Grosso pelo grande apoio na revisão desta Dissertação. ii Ao Centro de Ciência e Tecnologia de Materiais (CCTM) do IPEN, em especial ao Prof. Dr. Luis Antonio Genova pela atenção e colaboração na realização dos ensaios.
    [Show full text]
  • The Ballistic Performance of Laminated Sic Ceramics for Body Armor and the Effect of Layer Structure on It
    applied sciences Article The Ballistic Performance of Laminated SiC Ceramics for Body Armor and the Effect of Layer Structure on It Yuzhe Hong 1,2,*, Fangmin Xie 2, Lijun Xiong 2, Mingliang Yu 2, Xiangqian Cheng 2, Mingjie Qi 2, Zhiwei Shen 3, Guoping Wu 2, Tian Ma 3 and Nan Jiang 1 1 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; [email protected] 2 Ningbo FLK Co., Ltd., Ningbo 314000, China; [email protected] (F.X.); [email protected] (L.X.); [email protected] (M.Y.); [email protected] (X.C.); [email protected] (M.Q.); [email protected] (G.W.) 3 Institute of Quartermaster Engineering Technology, PLA Academy of Military Science, Beijing 100010, China; [email protected] (Z.S.); [email protected] (T.M.) * Correspondence: [email protected] Abstract: Laminated ceramics with weak interface layers have been proven to be effective in tough- ening ceramics. The energy absorption ability of laminated ceramics may also benefit their ballistic performance. However, the effect of the layer structure on the ballistic performance of laminated ceramics has not been studied. Focusing on the application for body armor, this paper studied the effect of the different layer structures on the ballistic performance of laminated SiC ceramics. The laminated SiC ceramics with different layered structures were designed and prepared by tape-casting and hot-pressing. When used for the ‘in conjunction with’ armor system, the laminated SiC ceramics with a gradual-layered structure had the backface signature depth of 30% less than the laminated Citation: Hong, Y.; Xie, F.; Xiong, L.; Yu, M.; Cheng, X.; Qi, M.; Shen, Z.; SiC with no interface structure and 50% less than the commercial solid-state sintered SiC.
    [Show full text]
  • Proquest Dissertations
    EVALUATION OF LIGHT CERAMICS FOR BALLISTIC PROTECTION EVALUATION DES CERAMIQUES LEGERES POUR PROTECTION BALISTIQUE A Thesis Submitted To the Faculty of the Royal Military College of Canada by Cezar Constantin Craciun In Partial Fulfillment of the Requirements for the Degree of Master of Applied Science in Mechanical Engineering May, 2009 © This thesis may be used within the Department of National Defence, but copyright for open publication remains the property of the author Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-66042-3 Our file Notre reference ISBN: 978-0-494-66042-3 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Design and Optimization of Hybrid Ballistic Protection Systems with Novel Configurations and Materials
    Design and Optimization of Hybrid Ballistic Protection Systems by Yu-Yun M. Shiue Department of Mechanical Engineering McGill University, Montreal Aug 2014 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy © Yu-Yun M. Shiue, 2014 Abstract The optimization of armour systems for maximal protection against ballistic threats is an active area of research, currently explored by many research groups. While multilayered designs and fabric-based systems prevail, systematic explorations of other possible configurations for armour materials remain scarce. New metal-ceramic hybrids offer the potential for improving existing armour systems, as they combine various attractive mechanical properties, such as light weight, high toughness, and ductility, which cannot be offered by either material alone. In this thesis, a systematic exploration of designs for ballistic materials is carried out using numerical simulations of ballistic impacts. The smoothed particle hydrodynamics (SPH) method is adopted as an accurate and stable numerical method. The SPH method is first validated by simulating the classic Taylor impact test and comparing with theoretical results. The distribution and structure of combinations of hard and soft materials within the ballistic targets is systematically studied to maximize the ballistic performance. Overall, the addition of hard inclusions enhances the ballistic performance of the hybrid targets. The simulations confirm that a two-layer design with a hard ceramic front layer and a ductile metal backing layer is found to be the best armour configuration within the design space of multilayered materials. Sufficient backing material is critical for exceptional ballistic performance. Actual ballistic impact tests were performed on chromium-chromium sulfide (Cr- CrS) cermets, which have high toughness and excellent adhesion between the alumina ii inclusions and the cermet matrix.
    [Show full text]