Design and Optimization of Hybrid Ballistic Protection Systems with Novel Configurations and Materials
Total Page:16
File Type:pdf, Size:1020Kb
Design and Optimization of Hybrid Ballistic Protection Systems by Yu-Yun M. Shiue Department of Mechanical Engineering McGill University, Montreal Aug 2014 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy © Yu-Yun M. Shiue, 2014 Abstract The optimization of armour systems for maximal protection against ballistic threats is an active area of research, currently explored by many research groups. While multilayered designs and fabric-based systems prevail, systematic explorations of other possible configurations for armour materials remain scarce. New metal-ceramic hybrids offer the potential for improving existing armour systems, as they combine various attractive mechanical properties, such as light weight, high toughness, and ductility, which cannot be offered by either material alone. In this thesis, a systematic exploration of designs for ballistic materials is carried out using numerical simulations of ballistic impacts. The smoothed particle hydrodynamics (SPH) method is adopted as an accurate and stable numerical method. The SPH method is first validated by simulating the classic Taylor impact test and comparing with theoretical results. The distribution and structure of combinations of hard and soft materials within the ballistic targets is systematically studied to maximize the ballistic performance. Overall, the addition of hard inclusions enhances the ballistic performance of the hybrid targets. The simulations confirm that a two-layer design with a hard ceramic front layer and a ductile metal backing layer is found to be the best armour configuration within the design space of multilayered materials. Sufficient backing material is critical for exceptional ballistic performance. Actual ballistic impact tests were performed on chromium-chromium sulfide (Cr- CrS) cermets, which have high toughness and excellent adhesion between the alumina ii inclusions and the cermet matrix. The samples are synthesized with the self-propagating high-temperature synthesis (SHS) method, which allows production of net-shape samples, with a metal content that can be systematically varied. The results of the experimental tests demonstrate that the high density Cr-CrS cermets have higher resistance compared with an alumina-steel two-layer design with a similar areal density. The performance of the Cr-CrS cermets demonstrates that it is an attractive material for the design of novel ballistic protection systems. In summary, the computational and experimental studies in this research were integrated. The ballistic defeating structures and mechanisms explored in this research can be used as guidelines to optimize the design of high performance ballistic protection systems. iii Résumé L’optimisation des systèmes de blindage pour une protection maximale contre les menaces balistiques est un domaine de recherche actuellement exploré par de nombreux groupes de recherche. Bien que la conception multicouches et des systèmes à base de tissu prévalent, les explorations systématiques d’autres configurations d’armure possibles restent rares. De nouveaux hybrides métal-céramique ouvrent des possibilités d’améliorer les systèmes d’armure existants. En effet, ils combinent plusieurs propriétés mécaniques attrayantes, telles que la légèreté, la ductilité et une haute dureté, qui ne peuvent être offertes par aucun de ces matériaux pris séparément. Dans cette thèse, une exploration systématique de modèles pour matériaux balistiques est effectuée à l’aide de simulations numériques d’impacts balistiques. La méthode smoothed particle hydrodynamics (SPH) est adoptée en tant que méthode numérique exacte et stable. La méthode SPH est premièrement validée en simulant le test d’impact classique de Taylor et en comparant avec les résultats théoriques. La distribution et la structure des combinaisons de matériaux durs et mous dans les cibles balistiques sont systématiquement étudiées pour maximiser les performances balistiques. En général, l’ajout des matériaux durs améliore les performances balistiques des cibles hybrides. La simulation confirme qu’une conception à deux couches, composée d’une couche de parement en céramique dure et d’une couche de support en métal ductile se révèle être la meilleure configuration d’armure à l’intérieur de l’espace de conception de matériaux multicouches. Des matériaux de support suffisants sont essentiels pour atteindre une performance balistique exceptionnelle. iv Les tests d’impact balistique ont été réalisés sur les cermets Cr-Crs, qui possèdent une dureté élevée et une excellente adhésion entre les inclusions d’alumine et la matrice de cermet. Les échantillons sont synthétisés avec la méthode self-propagating high- temperature synthesis (SHS), laquelle permet la production d’échantillon de forme finie, avec un contenu en métal pouvant être varié systématiquement. Le résultat des tests expérimentaux démontre que les cermets de haute densité en Cr-Crs offrent une résistance plus élevée qu’une conception à deux couches en acier aluminé avec une densité surfacique similaire. La performance des cermets en Cr-Crs démontre qu’il s’agit un matériau attrayant pour la conception de systèmes de blindage novateurs. En résumé, les études computationnelles et expérimentales dans cette recherche sont intégrées. Les structures balistiques défoncées et les mécanismes découverts dans cette recherche peuvent être utilisés comme lignes directrices pour optimiser la conception de haute performance des systèmes de protection balistique. v Acknowledgements The research in this thesis was co-funded by both The Natural Sciences and Engineering Research Council of Canada (NSERC), and our industrial partner company, Allen Vanguard Ltd. I would like to specially thank my supervisor, Prof. François Barthelat, for all the guidance and advice on my PhD studies. From validation techniques, to optimization design and technical writing, Prof. Barthelat provided novel ideas and valuable opinions to inspire and motivate me accomplishing all the work. I would also like to thank my co- supervisor, Prof. David Frost. Prof. Frost provided the 2nd opinions and correct grammatical constructions when I needed extra information and supports. I would also like to thank Dr. Deju Zhu (postdoctoral fellow) for all the discussion and guidance in building simulation models and using different software. For the experiments included in this thesis, I would like to thank Ms. Atefeh Nabavi (PhD student) and Mr. Alexander Capozzi (MSc student) for manufacturing the target samples. The work was presented in the TMS 141st Annual Meeting & Exhibition at Orlando, FL (Nabavi et al., 2012). I would also like to thank Prof. Oren E. Petel and Mr. Alexander Capozzi for measuring the mechanical properties of the Cr-CrS cermets. The work was under preparation to be submitted (Petel et al.). I would also like to thank Dr. Jean-Philippe Dionne (Research Director) and Mr. Clint Hedge (Specialist) for organizing and performing the impact tests at Allen Vanguard Ltd. vi I would like to thank my colleagues, Ms. Atefeh Nabavi, Mr. Ahmad Khayer Dastjerdi, Mr. Seyed Mohammad Mirkhalaf, Ms. Jihane Ajaja, Mr. Lawrence Szewciw, Mr. Sacha Cavelier, Dr. Sacheen Bekah, and Dr. Reza Rabiei for all the professional discussion and supportive companion throughout my PhD studies. I would also like to thank my friends, Mr. Shih-Hao Lin and Mr. André Slupik, for helping me translating the abstract of this thesis into French résumé. Last but not least, I would like to thank my family for supporting me all the way through my engineering studies, especially during those stuck and dark times with endless model failure and thesis revision. Thanks to all the faith from my mom, Ms. Yang Jane, my dad, Prof. Angus Shiue, my sis, Prof. Ivy Shiue, and my brother, Lt. Roy Shiue, that I’ll finish my PhD degree someday. vii Table of contents Abstract ............................................................................................................................... ii Résumé ............................................................................................................................... iv Acknowledgements ............................................................................................................ vi Table of contents .............................................................................................................. viii List of figures ..................................................................................................................... xi List of tables ..................................................................................................................... xvi Chapter 1: Introduction ........................................................................................................ 1 1.1 Armour materials and structures ............................................................................ 1 1.2 Addition of hard and millimeter-size inclusions .................................................... 4 1.3 Overview of the simulation methods ..................................................................... 6 1.4 Chromium–chromium sulfide (Cr-CrS) cermets ................................................... 8 1.5 The SHS combustion method .............................................................................. 10 1.6 Dissertation structure ........................................................................................... 12 Chapter 2: The SPH method .............................................................................................