Materials Towards a Revision of the Genus Pseudoliparis (Orchidaceae, Malaxidinae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ECUADOR EARTHQUAKES I Lq NATURAL DISASTER STUDIES Volume Five
PB93-186419 <> REPRODUCED BY U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD, VA. 22161 I, f J, J~ ITI mLt THE MARCH 5, 1987, ECUADOR EARTHQUAKES I lQ NATURAL DISASTER STUDIES Volume Five THE MARCH 5, 1987, ECUADOR EARTHQUAKES MASS WASTING AND SOCIOECONOMIC EFFECTS Study Team: Thomas O'Rourke, School of Civil and Envi ronmental Engineering, Cornell University, Robert L. Schuster (Team Leader and Tech Ithaca, New York nical Editor), Branch of Geologic Risk As sessment, U.S. Geological Survey, Denver, Contributing Authors: Colorado Jose Egred, Instituto Geoffsico, Escuela Patricia A. Bolton, Battelle Institute, Seattle, Politecnica Nacional, Quito, Ecuador Washington Alvaro F. Espinosa, Branch of Geologic Risk Louise K. Comfort, Graduate School of Pub Assessment, U.S. Geological Survey, Denver, lic and International Affairs, University of Pitts Colorado burgh, Pennsylvania Manuel Garda-Lopez, Departamento de Esteban Crespo, School of Civil and Environ Ingenierfa Civil, Universidad Nacional de mental Engineering, Cornell University, Ithaca, Colombia, Bogota New York Minard L. Hall, Instituto Geofisico, Escuela Alberto Nieto, Department of Geology, Uni Politecnica Nacional, Quito, Ecuador versity of Illinois, Urbana Galo Plaza-Nieto, Departamento de Geotecnica, Kenneth J. Nyman, School of Civil and Envi Escuela Politecnica Nacional, Quito, Ecuador ronmental Engineering, Cornell University, Ithaca, New York Hugo Yepes, Instituto Geofisico, Escuela Politecnica Nacional, Quito, Ecuador For: Committee on Natural Disasters Division of Natural Hazard Mitigation Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 id NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. -
Phylogenetic Relationships of Living and Recently Extinct Bandicoots Based on Nuclear and Mitochondrial DNA Sequences ⇑ M
Molecular Phylogenetics and Evolution 62 (2012) 97–108 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships of living and recently extinct bandicoots based on nuclear and mitochondrial DNA sequences ⇑ M. Westerman a, , B.P. Kear a,b, K. Aplin c, R.W. Meredith d, C. Emerling d, M.S. Springer d a Genetics Department, LaTrobe University, Bundoora, Victoria 3086, Australia b Palaeobiology Programme, Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden c Australian National Wildlife Collection, CSIRO Sustainable Ecosystems, Canberra, ACT 2601, Australia d Department of Biology, University of California, Riverside, CA 92521, USA article info abstract Article history: Bandicoots (Peramelemorphia) are a major order of australidelphian marsupials, which despite a fossil Received 4 November 2010 record spanning at least the past 25 million years and a pandemic Australasian range, remain poorly Revised 6 September 2011 understood in terms of their evolutionary relationships. Many living peramelemorphians are critically Accepted 12 September 2011 endangered, making this group an important focus for biological and conservation research. To establish Available online 11 November 2011 a phylogenetic framework for the group, we compiled a concatenated alignment of nuclear and mito- chondrial DNA sequences, comprising representatives of most living and recently extinct species. Our Keywords: analysis confirmed the currently recognised deep split between Macrotis (Thylacomyidae), Chaeropus Marsupial (Chaeropodidae) and all other living bandicoots (Peramelidae). The mainly New Guinean rainforest per- Bandicoot Peramelemorphia amelids were returned as the sister clade of Australian dry-country species. The wholly New Guinean Per- Phylogeny oryctinae was sister to Echymiperinae. -
Campbell O. Webb , Timothy Boucher , Stuart Sheppard , Marcy Summers
(Revision : 1.10) AREPORT TO THE NATURE CONSERVANCY VEGETATION OF THE ADELBERT RANGE MADANG PROVINCE, PNG Campbell O. Webb 1, Timothy Boucher 2, Stuart Sheppard 3, Marcy Summers 2 1 The Arnold Arboretum of Harvard University 22 Divinity Ave, Cambridge, MA 02138, USA Email: [email protected] 2 The Nature Conservancy 4245 North Fairfax Drive, Suite 100, Arlington, VA 22203 Email: [email protected], [email protected] 3 The Nature Conservancy Indo-Pacific Resource Centre 14 Lockhart Street, Woolloongabba, Brisbane, Queensland 4102, Australia Email: [email protected] ADELBERTS VEGETATION Contents 1 Summary 4 2 Introduction 5 3 Sources of Information 5 3.1 Prior surveys and literature .............................. 5 3.2 Remote sensing .................................... 5 3.3 GIS data layers .................................... 6 3.4 Field surveys ..................................... 6 4 Physical factors 7 4.1 Geology ........................................ 7 4.2 Land systems ..................................... 8 4.3 Rainfall ........................................ 9 5 Vegetation Types 9 5.1 Submontane forest .................................. 9 5.2 Upland forest ..................................... 10 5.3 Castanopsis forest ................................... 12 5.4 Araucaria forest .................................... 12 5.5 Hill forest ....................................... 12 5.6 Lowland forest .................................... 13 5.7 Deciduous forest ................................... 13 5.8 Alluvial forest .................................... -
World Bank Document
PNG Rural Communications ESMF E2429 &217(176 Acronyms.......................................................................................................................... 3 Chapter 1: Introduction........................................................................................................ 5 1.1 General Context of the Report.................................................................................................... 5 1.2 Executive Summary .................................................................................................................. 6 1.2.1 General Summary ................................................................................................................. 6 Public Disclosure Authorized 1.2.2 Field Report Summary............................................................................................................ 7 Chapter 2. Environmental and Social Management Framework ................................................. 9 2.1 Background to ESMF ................................................................................................................ 9 2.2 Objectives of the ESMF............................................................................................................. 9 2.3 Background to PNG Information and Communication Sector ...................................................... 10 2.4 PNG’s Current Rural Communication Project Description ........................................................... 14 2.5 Project Location..................................................................................................................... -
Traditional Cartography in Papua New Guinea
12 · Traditional Cartography in Papua New Guinea ERIC KLINE SILVERMAN SOCIAL LIFE, COSMOLOGY, AND rather of social conventions such as gift exchanges that POLITICS IN MELANESIA enable people to continually forge and negotiate rela tionships and alliances. Gift exchange, first studied by The cultural diversity of Melanesia in the southwestern Marcel Mauss, is the basis for the constitution of tradi Pacific Ocean is astounding. Regional generalizations are tional or prestate societies in particular. 1 Guided by the bound to falter: some sociocultural exception to any principle of reciprocity, gift exchange refers to the moral posited rule will almost assuredly exist. Nevertheless, it is obligation to give, to receive, and to give back various ob possible at least to sketch some common, nearly pan jects such as food, tobacco, and valuables as well as labor Melanesian social and cultural parameters. Since all in and services. As a result, people are enmeshed in a web of digenous representations of space in Melanesia are the obligations whereby they are constantly giving and re product or the reflection of social life, this brief discus ceiving, thus holding the society together. All societies in sion will provide a necessary context for understanding Melanesia are at some level a group of people who speak the social generation of local modes of cartography. a common language, share the same culture, and form a The peoples of the first migration from Southeast Asia moral community united by gift exchange. spread into New Guinea, the larger islands off New However, there are other foundations of societies in Guinea, and Australia, which at that time were connected Melanesia, and although these vary greatly, they can be by a land bridge (fig. -
Distribution, Altitudinal Range and Abundance of the Fish Species in the Lower Order Streams of the Sepik-Ramu Catchment
PNG/85/001 Field Document No.9 October, 1990 PAPUA NEW GUINEA Distribution, Altitudinal Range and Abundance of the Fish Species in the Lower Order Streams of the Sepik-Ramu Catchment A report prepared for project PNG/85/001 Sepik River Fish Sock Enhancement Project by PAUL VAN ZWIETEN (Associate Professional Officer) FOOD AND AGRICULTURE ORGANISATION OF THE UNITED NATIONS Rome, 1990 This report was prepared during the course of the project identified in the title page. The conclusions and recommendations given in the report are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the project. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the United Nations or the Food and Agriculture Organisation of the United Nations concerning the legal or constitutional status of any country, territory or sea area, or concerning the delimitation of frontiers. CONTENTS 1. INTRODUCTION. 1 2. DISTRIBUTION, ALTITUDINAL RANGE AND ABUNDANCE .......... 2 2. 1 General corrunents... • . 2 2.2 Distribution, altitudinal range and abundance per species. 4 2. 2. 1 Melanotaeniidae. • . 4 2. 2. 2 Eleotridae. • . 5 2.2.3 Plotosidae ........................................ 7 2 . 2 . 4 Gobiidae ....................... ~ . • . • . • . 8 2. 2. 5 Apogonidae ........................................ 10 2 . 2 . 6 Teraponidae ....................................... 10 2.2.7 Ariidae ........................................... 10 2.2.8 Arnbassidae ........................................ 11 2. 2. 9 Hemirhamphidae .................................... 11 2. 2. 10 Anguillidae ...................................... 11 2.2.11 Cichlidae (introduced) ........................... 12 2.2.12 Cyprinidae (introduced) .......................... 12 2.2.13 Poeciliidae (introduced) ......................... -
An Ichthyological Survey of the Sepik River, Papua New Guinea
Rec. West. Aust. Mus. Suppl. no. 34 An ichthyological survey of the Sepik River, Papua New Guinea Gerald R. Allen* and David Coatest Abstract A survey of the freshwater fishes of the Sepik River system of northern Papua New r Guinea was undertaken by the authors between 1978 and 1985 with the use of gill nets and rotenone, and also by monitoring catches at local villages and markets. We also include records of past expeditions, namely that of the Dutch naturalist Gjellerup in 1910 and the yacht Illyria in 1929. The total known freshwater fauna as reported herein consists of 57 species in 35 genera and 23 families. The fauna is typical of other sections of New Guinea and northern Australia in that it is dominated by catfishes (Ariidae and Plotosidae), rainbowfishes (Melanotaeniidae), gudgeons (Eleotrididae) and gobies (Gobiidae) which collectively comprise 57 percent of the total species. With the exception of 22 widely distributed species that are frequently estuarine dwellers and are confined to the lower Sepik, the fishes are strongly endemic, either to the Sepik-Ramu drainages (which interconnect during floods), or the "intermontane trough" composed of the combined Markham, Ramu, Sepik, and Mamberamo systems. Individual accounts, including brief descriptions and information pertaining to habitat, distribution and biology are included for each species. In addition illustrations are provided for many of the endemic species. Introduction Considering its size, high rainfall and consequent abundance of fresh water habitats, the inland fishes of New Guinea (the term New Guinea is used in this paper to refer to the geographic unit composed of Papua New Guinea and Irian ]aya) are poorly documented except for scattered localities and a more or less comprehensive treatment of melanotaeniid rainbowfishes (AlIen and Cross 1982). -
Koulali Etal 2015 Gp
Geophysical Journal International Geophys. J. Int. (2015) 202, 993–1004 doi: 10.1093/gji/ggv200 GJI Geodynamics and tectonics New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS A. Koulali,1 P. Tr e g o n i n g , 1 S. McClusky,1 R. Stanaway,2 L. Wallace3 and G. Lister1 1Research School of Earth Sciences, Australian National University, Canberra ACT 0200,Australia.E-mail:[email protected] 2School of Civil and Environmental Engineering, University of New South Wales, Australia 3Institute for Geophysics, University of Texas at Austin, Austin, TX, USA Accepted 2015 May 12. Received 2015 March 4; in original form 2014 August 7 Downloaded from SUMMARY New Guinea is a region characterized by rapid oblique convergence between the Pacific and Australian tectonic plates. The detailed tectonics of the region, including the partitioning of relative block motions and fault slip rates within this complex boundary plate boundary zone are still not well understood. In this study, we quantify the distribution of the deformation http://gji.oxfordjournals.org/ throughout the central and western parts of Papua New Guinea (PNG) using 20 yr of GPS data (1993–2014). We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for the location and rotation rates of microplate Euler poles as well as fault slip parameters in the region. Convergence between the Pacific and the Australian plates is accommodated in northwestern PNG largely by the New Guinea Trench 1 with rates exceeding 90 mm yr− ,indicatingthatthisisthemajoractiveinterplateboundary. -
47356-002: Power Sector Development Investment Program
Initial Environmental Examination March 2021 Papua New Guinea: Power Sector Development Project Prepared by PNG Power Ltd for the Department of Petroleum and Energy, PNG, and the Asian Development Bank CURRENCY EQUIVALENTS (as of 10 March 2021) Currency unit – kina (K) K1.00 = $0.29 $1.00 = K3.51 ABBREVIATIONS ADB – Asian Development Bank AIFFP – Australian Infrastructure Financing Facility for the Pacific CEMP – Contractor Environmental Management Plan DNPM – Department of National Planning and Monitoring EMP – environment management plan FIRR – financial internal rate of return GBV – gender-based violence IEE – initial environmental examination kV – kilovolt km – kilometer MW – megawatt PAM – project administration manual PMU – project management unit PNG – Papua New Guinea PPL – PNG Power Limited ROW – right-of-way SCADA – supervisory control and data acquisition SOE – state-owned enterprise STEM – Science, Technology, Engineering, and Mathematics TEIP – Town Electrification Investment Program NOTE In this report, “$” refers to United States dollars unless otherwise stated. This initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “terms of use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian ii Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. iii CONTENTS CONTENTS I FIGURES II TABLES II ABBREVIATIONS III ELECTRICAL TERMINOLOGY III EXECUTIVE SUMMARY V I. -
Diastrophic Evolution of Western Papua and New Guinea
DIASTROPHIC EVOLUTION OF WESTERN PAPUA AND NEW GUINEA by JAN G. WITH, B.S., M.S. (The Pennsylvania State University) A thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy UNIVERSITY OF TASMANIA HOBART July 1964 This thesis contains no material which has been accepted for the award of any other degree or diploma in any university and to the best of my knowledge and belief contains no copy or paraphrase of material previously published or written by another person except where due reference is made in the text of the thesis. JAN G. SMITH University of Tasmania Hobart July 1964 CONTENTS Page LIST OF ILLUSTRATIONS • • • xi ABSTRACT 1 INTRODUCTION 3 Nature and purpose of study Location Method of study and presentation Previous work Acknowledgements 1 DIASTROPHIC FRAMEWORK OF WESTERN PAPUA AND NEW GUINEA 8 1.1 QUARTERNARY DIASTROPHISM 14 1.1.1 Morphology of Western Papua and New Guinea 14 Western cordilleran region Central cordilleran region Central foothills region Darai Hills Fly-Digoel shelf Oriomo Plateau Kukukuku lobe Sepik and Ramu-Markham depressions 1.1.2 Nature of Quaternary Sediments and Crustal Movements 20 Fly-Digoel shelf Delta embayment Western cordilleran region Central cordilleran region Central foothills Sepik and Ramu-Markham depressions 1.1.3 Volcanism.. *400000 26 1.2 PLIOCENE DIASTROPHISM 28 1.2.1 Pliocene Rocks 28 Digoel-Strickland basin Fly-Digoel shelf Purari basin CONTENTS Page 1 DIASTROPHIC FRAMEWORK OF WESTERN PAPUA AND NEW GUINEA (continued) 1.2.2 Framework of Pliocene Diastrophism. • •••••• 34 Digoel-Strickland basin Fly-Digoel platform Purari basin Continuity of the Pliocene exogeosyncline Darai swell 1.2.3 Chronology of Pliocene and Quaternary Movements 38 Central foothills and cordillera Western cordillera 1.3 UPPER MIOCENE DIASTROPHISM 43 1.3.1 Upper Miocene Rocks 43 Limestone facies Mudstone fades 1.3.2 Framework of Upper Miocene Diastrophism. -
Summary of the Geology, Geomorphology, Climate and Vegetation O:R: the Sep:I.K and Ramu River Catchments with Notes on Their Relevance to Fisheries
PNG/85/001. Field Document Number 2 March, 1989 PAPUA NEW GUINBA Summary of the geology, geomorphology, climate and vegetation o:r: the Sep:i.k and Ramu River catchments with notes on their relevance to fisheries A report prepared for project PNG/85/001: Sepik River Fish Stock Enhancement Project Compiled by D. C0.2\'l'ES (Chief Technical Adviser) FOOD AND AGRICULTURE ORGANISATION OF THE UNITED NATIONS Rome, 1.989 Th~s report was prepa~ed during the course of the project identified on the title page. The conclusions and recommendations given in the report are those considered appropriate at the time of its preparation. They may be modified in the light of further knowledge gained at subsequent stages of the project. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on ~he part of the United Nations or the Food and Agriculture Organisation of the United Nations concerning the legal or constitutional status of any country, territory or sea area, or concerning the delimitation of frontiers. TABLE OF CONTENTS page 1. INTRODUCTION. • . • . • • • . • . 1 2 . GEOLOGY. • . • . • • • • . 1 3. ALTITUDINAL ZONES. • . • . • . 4 4. CLIMATE. • . 5 5 . VEGETATION. • . • . 7 6. DISCUSSION AND CONCLUSIONS ........................ 10 7 . REFERENCES . • . • . 16 FIGURES. • . • 18 TABLES. • . • • • • . 3 6 1 1. INTRODUCTION This document provides background information for project PNG/85/001. A synthesis of knowledge of various aspects of the Sepik and Ramu River catchments is provided. The information is presented in relation to project objectives and activities. Most sections have been summarised from existing books and other information (quoted where relevant) but have been placed within the context of the Sepik and Ramu rivers and project PNG/85/001. -
Lichens from Mount Kinabalu
281 Tropical Bryology 8: 281-314, 1993 Lichens from Mount Kinabalu J.J.M. Sipman Botanischer Garten und Museum, Königin-Luise-Str. 6-8, 14115 Berlin, Germany Abstract: 286 species of lichenized fungi on Mount Kinabalu are recorded by field survey and investigation of literature records and herbarium material. An annotated catalogue is presented, together with habitat notes, and a list of collectors. The summit area has a saxicolous lichen flora of boreal affinities, while the lower zones are more closely related to other SE Asian mountains. Eleven species appear to be restricted to the mountain, and four new species are described: Phaeographis kinabalensis, Stereocaulon granulans, Pertusaria epitheciifera and Thelotrema subweberi. 1. Introduction 1965, 1967, Beaman & Beaman 1993). Among Mount Kinabalu is in many respects a the cryptogams, bryophytes have received remarkable site for plant life. It rises up to more considerable attention (Menzel 1988 and than 4000 meters from large stretches of lowland successive papers of this series, 1988a). Lichens and low mountains, so that its higher parts are have been collected from the beginning of the very strongly isolated from areas with a similar exploration on, but mostly in an incidental and climate. Geologically it is a very young and fast- unrepresentative way. An important exception rising mountain, and its plant life seems to have is Mason E. Hale, who visited the mountain in had little time to adapt to high altitude conditions. August of 1968 and collected over one thousand Also its bedrock sets it apart. Its central part is specimens, especially Parmeliaceae and composed of granite, surrounded by a ring of Graphidales.