(12) Patent Application Publication (10) Pub. No.: US 2010/0124746A1 Liew (43) Pub
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Extensive Translation of Circular Rnas Driven by N6-Methyladenosine
Cell Research (2017) 27:626-641. ORIGINAL ARTICLE www.nature.com/cr Extensive translation of circular RNAs driven by N6-methyladenosine Yun Yang1, 2, 3, 4, *, Xiaojuan Fan2, *, Miaowei Mao4, 5, *, Xiaowei Song2, 4, Ping Wu6, 7, Yang Zhang8, Yongfeng Jin1, Yi Yang5, Ling-Ling Chen8, Yang Wang9, Catherine CL Wong6, 7, Xinshu Xiao3, Zefeng Wang2, 4 1Institute of Biochemistry, College of Life Sciences, Zhejiang University at Zijingang, Zhejiang, Hangzhou, Zhejiang 310058, Chi- na; 2CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 3Department of Integrative Biology and Physiology and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; 4Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; 5Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Sci- ence and Technology, Shanghai, China; 6National Center for Protein Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 7Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China; 8Institute of Biochemistry and Cell Biology, Shanghai Institute for Biolog- ical Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 9Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China Extensive pre-mRNA back-splicing generates numerous circular RNAs (circRNAs) in human transcriptome. However, the biological functions of these circRNAs remain largely unclear. Here we report that N6-methyladenosine (m6A), the most abundant base modification of RNA, promotes efficient initiation of protein translation from cir- cRNAs in human cells. -
502 the Keratinocyte Growth-Differentiation Switch Intact Skin
[Frontiers in Bioscience 3, d502-508, May 15, 1998] THE KERATINOCYTE GROWTH-DIFFERENTIATION SWITCH Paolo Dotto Cutaneous Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Massachusetts, 02129- 2000 Received 5/4/98 Accepted 5/8/98 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Signals which control the switch between keratinocyte growth and differentiation 4. Intermediate signalling pathways which are responsible for transduction of the differentiation signal 5. Tyrosine phosphorylation : key to regulation of keratinocyte differentiation 6. Transcription and cell cycle regulatory events connected with the onset of keratinocyte differentiation 7. References medium at low calcium concentrations (our unpublished 1. ABSTRACT observations). Growth/differentiation control of normal epithelial Besides calcium, growth/differentiation of primary cells has been relatively understudied, because of the keratinocyte cultures can be controlled by pharmacological complexities involved in their cultivation and means. In particular, treatment with the phorbol ester TPA characterization. The present review is focused on progress (12-0-tetradecanoylphorbol-13-acetate) induces growth in this area using the mouse primary keratinocyte system. arrest as well as expression of a set of differentiation This system reproduces under well defined culture markers such as involucrin, loricrin and filaggrin. However, conditions the switch between epithelial cell growth and expression of other markers induced differentiation -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Nuclear Import Protein KPNA7 and Its Cargos Acta Universitatis Tamperensis 2346
ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos ELISA Acta Universitatis Tamperensis 2346 ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology AUT 2346 AUT ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology ACADEMIC DISSERTATION To be presented, with the permission of the Faculty Council of the Faculty of Medicine and Life Sciences of the University of Tampere, for public discussion in the auditorium F114 of the Arvo building, Arvo Ylpön katu 34, Tampere, on 9 February 2018, at 12 o’clock. UNIVERSITY OF TAMPERE ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology Acta Universitatis Tamperensis 2346 Tampere University Press Tampere 2018 ACADEMIC DISSERTATION University of Tampere, Faculty of Medicine and Life Sciences Finland Supervised by Reviewed by Professor Anne Kallioniemi Docent Pia Vahteristo University of Tampere University of Helsinki Finland Finland Docent Maria Vartiainen University of Helsinki Finland The originality of this thesis has been checked using the Turnitin OriginalityCheck service in accordance with the quality management system of the University of Tampere. Copyright ©2018 Tampere University Press and the author Cover design by Mikko Reinikka Acta Universitatis Tamperensis 2346 Acta Electronica Universitatis Tamperensis 1851 ISBN 978-952-03-0641-0 (print) ISBN 978-952-03-0642-7 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://tampub.uta.fi Suomen Yliopistopaino Oy – Juvenes Print Tampere 2018 441 729 Painotuote CONTENTS List of original communications ................................................................................................ -
Composition of Herpesvirus Ribonucleoprotein Complexes †
Abstract Composition of Herpesvirus Ribonucleoprotein Complexes † Eric S. Pringle 1,2,* and Craig McCormick 1,2 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 2 Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected] † Presented at Viruses 2020—Novel Concepts in Virology, Barcelona, Spain, 5–7 February 2020. Published: 4 July 2020 Abstract: Herpesvirus genomes are decoded by host RNA polymerase enzymes, generating messenger ribonucleotides (mRNA) that are post-transcriptionally modified and exported to the cytoplasm through the combined work of host and viral factors. These viral mRNA bear 5′-m7GTP caps and poly(A) tails that should permit the assembly of canonical host eIF4F cap-binding complexes to initiate protein synthesis. However, the precise mechanisms of translation initiation remain to be investigated for Kaposi’s sarcoma-associated herpesvirus (KSHV) and other herpesviruses. During KSHV lytic replication in lymphoid cells, the activation of caspases leads to the cleavage of eIF4G and depletion of eIF4F. Translating mRNPs depleted of eIF4F retain viral mRNA, suggesting that non-eIF4F translation initiation is sufficient to support viral protein synthesis. To identify proteins required to support viral protein synthesis, we isolated and characterized actively translating messenger ribonucleoprotein (mRNP) complexes by ultracentrifugation and sucrose-gradient fractionation followed by quantitative mass spectrometry. The abundance of host translation initiation factors available to initiate viral protein synthesis were comparable between cells undergoing KSHV lytic or latent replication. The translation initiation factors eIF4E2, NCBP1, eIF4G2, and eIF3d were detected in association with actively translating mRNP complexes during KSHV lytic replication, but their depletion by RNA silencing did not affect virion production. -
Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo -
Nuclear Pore Proteins and the Control of Genome Functions
Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Nuclear pore proteins and the control of genome functions Arkaitz Ibarra and Martin W. Hetzer Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA Nuclear pore complexes (NPCs) are composed of several Cytoplasmic filaments are mainly formed by Nup358/ copies of ~30 different proteins called nucleoporins (Nups). RanBP2, Nup214, and Nup88, while the nuclear basket is NPCs penetrate the nuclear envelope (NE) and regulate the composed of Nup153 and Tpr (Fig. 1; for Nup othologs, see nucleocytoplasmic trafficking of macromolecules. Beyond Rothballer and Kutay 2012). this vital role, NPC components influence genome func- The selective access of regulatory factors into the tions in a transport-independent manner. Nups play an nucleus and export of specific RNA molecules mediated evolutionarily conserved role in gene expression regulation by the NPC is required for the accurate progression of most that, in metazoans, extends into the nuclear interior. major cellular processes. However, our perception of Additionally, in proliferative cells, Nups play a crucial role the NPC components is rapidly evolving, as accumulating in genome integrity maintenance and mitotic progression. evidence indicates that they can also directly impact Here we discuss genome-related functions of Nups and DNA metabolism by genome-related functions (Liang their impact on essential DNA metabolism processes such and Hetzer 2011). Among these, one of the most remark- as transcription, chromosome duplication, and segregation. able and well-conserved roles of Nups is to associate with specific target genes to regulate their transcriptional activity (Casolari et al. -
EIF4G2 Rabbit Pab
Leader in Biomolecular Solutions for Life Science EIF4G2 Rabbit pAb Catalog No.: A2897 Basic Information Background Catalog No. Translation initiation is mediated by specific recognition of the cap structure by A2897 eukaryotic translation initiation factor 4F (eIF4F), which is a cap binding protein complex that consists of three subunits: eIF4A, eIF4E and eIF4G. The protein encoded by this gene Observed MW shares similarity with the C-terminal region of eIF4G that contains the binding sites for 102kDa eIF4A and eIF3; eIF4G, in addition, contains a binding site for eIF4E at the N-terminus. Unlike eIF4G, which supports cap-dependent and independent translation, this gene Calculated MW product functions as a general repressor of translation by forming translationally 98kDa/102kDa inactive complexes. In vitro and in vivo studies indicate that translation of this mRNA initiates exclusively at a non-AUG (GUG) codon. Alternatively spliced transcript variants Category encoding different isoforms of this gene have been described. Primary antibody Applications WB, IHC, IF, IP Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:1000 Gene ID Swiss Prot 1982 P78344 IHC 1:100 - 1:200 Immunogen 1:50 - 1:200 IF A synthetic peptide corresponding to a sequence within amino acids 750-850 of human EIF4G2 (NP_001409.3). IP 1:50 - 1:200 Synonyms EIF4G2;AAG1;DAP5;NAT1;P97 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using EIF4G2 antibody (A2897) at 1:400 dilution. -
The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells. -
Chronic Myeloid Leukemia: Mechanisms of Blastic Transformation
Chronic myeloid leukemia: mechanisms of blastic transformation Danilo Perrotti, … , John Goldman, Tomasz Skorski J Clin Invest. 2010;120(7):2254-2264. https://doi.org/10.1172/JCI41246. Science in Medicine The BCR-ABL1 oncoprotein transforms pluripotent HSCs and initiates chronic myeloid leukemia (CML). Patients with early phase (also known as chronic phase [CP]) disease usually respond to treatment with ABL tyrosine kinase inhibitors (TKIs), although some patients who respond initially later become resistant. In most patients, TKIs reduce the leukemia cell load substantially, but the cells from which the leukemia cells are derived during CP (so-called leukemia stem cells [LSCs]) are intrinsically insensitive to TKIs and survive long term. LSCs or their progeny can acquire additional genetic and/or epigenetic changes that cause the leukemia to transform from CP to a more advanced phase, which has been subclassified as either accelerated phase or blastic phase disease. The latter responds poorly to treatment and is usually fatal. Here, we discuss what is known about the molecular mechanisms leading to blastic transformation of CML and propose some novel therapeutic approaches. Find the latest version: https://jci.me/41246/pdf Science in medicine Chronic myeloid leukemia: mechanisms of blastic transformation Danilo Perrotti,1 Catriona Jamieson,2 John Goldman,3 and Tomasz Skorski4 1Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA. 2Division of Hematology-Oncology, Department of Internal Medicine, University of California at San Diego, La Jolla, California, USA. 3Department of Haematology, Imperial College at Hammersmith Hospital, London, United Kingdom. 4Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA. -
Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction -
Product Data Sheet Purified Anti-NUP153
Version: 2 Revision Date: 2016-01-08 Product Data Sheet Purified anti-NUP153 Catalog # / Size: 906201 / 100 µl Previously: Covance Catalog# MMS-102P Clone: QE5 Isotype: Mouse IgG1 Immunogen: The QE5 monoclonal antibody was generated against rat liver nuclear envelope proteins. Reactivity: Eukaryote Preparation: The antibody was purified by affinity chromatography. Formulation: Phosphate-buffered solution + 0.03% thimerosal. Concentration: 1 mg/ml Storage: The antibody solution should be stored undiluted between 2°C and 8°C. Please note the storage condition for this antibody has been changed from -20°C to between 2°C and 8°C. You can also check your vial or your Methanol fixed HeLa stained with the CoA to find the most accurate storage condition for this antibody. antibody QE5. This antibody brilliantly highlights the nuclear membrane (green). The golgi is stained with the Applications: antibody to Giantin. Applications: ICC, WB, IF, IP IEM - Reported in literature Recommended Usage: Each lot of this antibody is quality control tested by Immunocytochemistry. The optimal working dilution should be determined for each specific assay condition. • WB: 1:500* • IF: 1:250 • IP: 1:50 Application Notes: This antibody is effective in immunoblotting, immunofluorescence (IF) and immunoprecipitation (IP). *Predicted MW = 250 kD This antibody recognizes NUP153 as well as two related nuclear pore complex proteins: NUP214 and p62. By immunofluorescence, QE5 labels the nuclear envelope of eukaryotic cells giving a punctate staining pattern. Application References: 1. Pare GC, Easlick JL, Mislow JM, McNally EM, Kapiloff MS. Nesprin-1alpha contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope.