(12) Patent Application Publication (10) Pub. No.: US 2011/0136210 A1 Benjamin Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2011/0136210 A1 Benjamin Et Al US 2011013621 OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0136210 A1 Benjamin et al. (43) Pub. Date: Jun. 9, 2011 (54) USE OF METHYLSULFONYLMETHANE Publication Classification (MSM) TO MODULATE MICROBIAL ACTIVITY (51) Int. Cl. CI2N 7/06 (2006.01) (75) Inventors: Rodney L. Benjamin, Camas, WA CI2N I/38 (2006.01) (US); Jeffrey Varelman, Moyie (52) U.S. Cl. ......................................... 435/238; 435/244 Springs, ID (US); Anthony L. (57) ABSTRACT Keller, Ashland, OR (US) Disclosed herein are methods of use of methylsulfonyl (73) Assignee: Biogenic Innovations, LLC methane (MSM) to modulate microbial activity, such as to enhance or inhibit the activity of microorganisms. In one (21) Appl. No.: 13/029,001 example, MSM (such as about 0.5% to 5% MSM) is used to enhance fermentation efficiency. Such as to enhance fermen (22) Filed: Feb. 16, 2011 tation efficiency associated with the production of beer, cider, wine, a biofuel, dairy product or any combination thereof. Related U.S. Application Data Also disclosed are in vitro methods for enhancing the growth of one or more probiotic microorganisms and methods of (63) Continuation of application No. PCT/US2010/ enhancing growth of a microorganism in a diagnostic test 054845, filed on Oct. 29, 2010. sample. Methods of inhibiting microbial activity are also disclosed. In one particular example, a method of inhibiting (60) Provisional application No. 61/294,437, filed on Jan. microbial activity includes selecting a medium that is suscep 12, 2010, provisional application No. 61/259,098, tible to H1N1 influenza contamination; and contacting the filed on Nov. 6, 2009, provisional application No. medium with MSM at a concentration of about 10% to about 61/257,751, filed on Nov. 3, 2009, provisional appli 16% of weight by volume, thereby inhibiting H1N1 influenza cation No. 61/256,935, filed on Oct. 30, 2009. microbial activity. US 2011/O 13621.0 A1 Jun. 9, 2011 USE OF METHYLSULFONYLMETHANE MSM concentrations between about 0.04% to about 5% by (MSM) TO MODULATE MICROBIAL weight enhance microbial activity, including enhancing ACTIVITY microbial fermentation efficiency, microbial growth and/or culture efficiency. CROSS REFERENCE TO RELATED 0006. As such, disclosed herein are methods of use of APPLICATIONS MSM to modulate microbial activity, such as to enhance or 0001. This is a continuation of international patent appli inhibit the activity of microorganisms. cation PCT/US2010/054845, filed Oct. 29, 2010, designating 0007. In some embodiments, a method of enhancing fer the United States, and claims priority to U.S. Provisional mentation efficiency of a microorganism is disclosed. For Applications No. 61/294,437 filed Jan. 12, 2010; No. 61/259, example, the method includes contacting medium containing 098 filed Nov. 6, 2009; No. 61/257,751 filed Nov. 3, 2009; and a microorganism capable of fermentation with MSM, No. 61/256,935, filed Oct. 30, 2009; each of which is hereby wherein the MSM is provided at a concentration of about incorporated by reference in its entirety. 0.5% to about 5% by weight of the medium or at a concen tration of about 0.5% to about 5% by weight of the moisture FIELD OF THE DISCLOSURE content of the medium, wherein the MSM increases the fer mentation efficiency of the microorganism as compared to the 0002 This disclosure relates to the field of methylsulfo fermentation efficiency in the absence of MSM. nylmethane (MSM), specifically to methods of use of MSM 0008. In some embodiments, in vitro methods for enhanc to modify biological activity, such as to enhance or inhibit ing the growth of one or more probiotic microorganisms are microbial activity including bacterial growth. disclosed. In some examples, the method comprises contact ing one or more probiotic microorganisms with a medium BACKGROUND capable of supporting growth of one or more probiotic micro 0003 Microorganisms (or microbes) are microscopic organisms; and providing MSM to the medium at about 0.4% organisms that include bacteria, fungi, archaea, protists, to about 5% by weight of the medium or by weight of a plants (e.g., green algae), Viruses, prions, parasites, and ani moisture content of the medium thereby enhancing growth of mals such as amoeba, plankton. Depending on the context, the one or more microorganisms in vitro as compared to microorganisms may be viewed as either harmful or benefi growth of the one or more microorganisms in vitro in the cial. In some cases, microorganisms may be harmful and lead absence of MSM. to illness and disease in plants, animals or humans. Moreover, 0009. Also provided are methods for enhancing growth of in addition to causing infections or diseases, undesired micro a microorganism in a diagnostic test sample. In some bial growth may also occur in consumer products, such as examples, the method comprises contacting the diagnostic food contamination. In other cases, microorganism growth is test sample comprising one or more microorganisms with a beneficial and is routinely exploited in biotechnology, mod medium capable of Supporting growth of the one or more ern diagnostic technologies, in chemical processes (e.g., fer microorganisms; providing MSM to the medium at a concen mentation), in food and beverage preparation, in environmen tration of about 0.4% to about 5% by weight of the medium or tal and industrial applications, and in maintaining and/or by weight of a moisture content of the medium, thereby promoting human health. enhancing the growth of the one or more microorganisms in the diagnostic test sample as compared to growth of the one or SUMMARY more microorganisms in the absence of MSM. 0004 Disclosed herein are methods of modulating micro 0010 Further disclosed are methods of inhibiting micro organism activity with MSM. MSM is an organosulfur com bial activity. In some examples, the method comprises select pound with the formula (CH)SO. In particular, disclosed ing a medium that is susceptible to H1N1 influenza contami herein is the surprising capability of MSM to enhance or nation; and contacting the medium with MSM at a inhibit microorganism activity, Such as microorganism concentration of about 10% to about 16% of weight by Vol growth or Survival, depending upon the concentration of ume, thereby inhibiting H1N1 influenza microbial activity. MSM provided to the microorganism (e.g., in the medium in 0011. The foregoing and other features of the disclosure which the organism is grown). MSM at a concentration of will become more apparent from the following detailed about 0.5% to about 5% by weight of medium or by weight of description of a several embodiments. moisture content of the medium enhances microbial activity whereas MSM at a concentration of about 6% to about 17% DETAILED DESCRIPTION by weight of medium or by weight of moisture content of the I. Overview of Several Embodiments medium inhibits microbial activity. 0005 Disclosed herein is the surprising discovery that 0012 Disclosed herein is the surprising discovery that MSM can both inhibit and enhance microbial activity, MSM can both inhibit and enhance microbial activity, depending upon the concentration of MSM. For example, depending upon the concentration of MSM. For example, MSM concentrations between about 6 and about 17 percent MSM concentrations between about 6 and about 17 percent by weight of medium (or of moisture content of medium by weight of medium (or of moisture content of medium inhibit microbial activity by reducing or otherwise impacting inhibit microbial activity by reducing or otherwise impacting the growth, Survival rate (e.g., by causing or expediting cell the growth, Survival rate (e.g., by causing or expediting cell deterioration or death, Such as programmed cell death), deterioration or death, Such as programmed cell death), metabolism, reproduction (e.g., gene expression, protein metabolism, reproduction (e.g., gene expression, protein expression, signal transduction, transcription, translation, expression, signal transduction, transcription, translation, protein folding, etc.), proliferation, vitality, robustness, protein folding, etc.), proliferation, vitality, robustness, action, and/or function of the microorganism. In contrast, action, and/or function of the microorganism. In contrast, US 2011/O 13621.0 A1 Jun. 9, 2011 MSM concentrations between about 0.04% to about 5% by 0021. In some examples, the one or more probiotic micro weight enhance microbial activity, including enhancing organisms comprises Lactobacillus acidophilus, Lactobacil microbial fermentation efficiency, microbial growth and/or lus delbrueckii, Bacillus coagulans, Lactobacillus rhamno culture efficiency. sus, Bifidobacteruim bifidum or any combination thereof. 0013. As such, disclosed herein are methods of use of 0022. In some examples, the medium comprises a probi MSM to modulate microbial activity, such as to enhance or otic-containing product, Such as milk, yogurt, rice yogurt, inhibit the activity of microorganisms. frozen yogurt, chocolate, cheese, beer, wine, Vinegar, 0014. In some embodiments, a method of enhancing fer Sauerkraut or any combination thereof. mentation efficiency of a microorganism is disclosed. For 0023. Also disclosed are methods for enhancing growth of example, the method includes contacting medium containing a microorganism in a diagnostic test sample. In some a microorganism capable of fermentation with MSM, examples, the method comprises contacting the diagnostic wherein the MSM is provided at a concentration of about test sample comprising one or more microorganisms with a 0.5% to about 5% by weight of the medium or at a concen medium capable of Supporting growth of the one or more tration of about 0.5% to about 5% by weight of the moisture microorganisms; providing MSM to the medium at a concen content of the medium, wherein the MSM increases the fer tration of about 0.4% to about 5% by weight of the medium or mentation efficiency of the microorganism as compared to the by weight of a moisture content of the medium, thereby fermentation efficiency in the absence of MSM.
Recommended publications
  • Uncommon Pathogens Causing Hospital-Acquired Infections in Postoperative Cardiac Surgical Patients
    Published online: 2020-03-06 THIEME Review Article 89 Uncommon Pathogens Causing Hospital-Acquired Infections in Postoperative Cardiac Surgical Patients Manoj Kumar Sahu1 Netto George2 Neha Rastogi2 Chalatti Bipin1 Sarvesh Pal Singh1 1Department of Cardiothoracic and Vascular Surgery, CN Centre, All Address for correspondence Manoj K Sahu, MD, DNB, Department India Institute of Medical Sciences, Ansari Nagar, New Delhi, India of Cardiothoracic and Vascular Surgery, CTVS office, 7th floor, CN 2Infectious Disease, Department of Medicine, All India Institute of Centre, All India Institute of Medical Sciences, New Delhi-110029, Medical Sciences, Ansari Nagar, New Delhi, India India (e-mail: drmanojsahu@gmail.com). J Card Crit Care 2020;3:89–96 Abstract Bacterial infections are common causes of sepsis in the intensive care units. However, usually a finite number of Gram-negative bacteria cause sepsis (mostly according to the hospital flora). Some organisms such as Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus are relatively common. Others such as Stenotrophomonas maltophilia, Chryseobacterium indologenes, Shewanella putrefaciens, Ralstonia pickettii, Providencia, Morganella species, Nocardia, Elizabethkingia, Proteus, and Burkholderia are rare but of immense importance to public health, in view of the high mortality rates these are associated with. Being aware of these organisms, as the cause of hospital-acquired infections, helps in the prevention, Keywords treatment, and control of sepsis in the high-risk cardiac surgical patients including in ► uncommon pathogens heart transplants. Therefore, a basic understanding of when to suspect these organ- ► hospital-acquired isms is important for clinical diagnosis and initiating therapeutic options. This review infection discusses some rarely appearing pathogens in our intensive care unit with respect to ► cardiac surgical the spectrum of infections, and various antibiotics that were effective in managing intensive care unit these bacteria.
    [Show full text]
  • B-Lactams: Chemical Structure, Mode of Action and Mechanisms of Resistance
    b-Lactams: chemical structure, mode of action and mechanisms of resistance Ru´ben Fernandes, Paula Amador and Cristina Prudeˆncio This synopsis summarizes the key chemical and bacteriological characteristics of b-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This review also summarizes the main resistance mechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum b-lactamases and AmpC b-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump b-lactams out of the bacterial cell. Keywords: b-lactams, chemical structure, mechanisms of resistance, mode of action Historical perspective Alexander Fleming first noticed the antibacterial nature of penicillin in 1928. When working with Antimicrobials must be understood as any kind of agent another bacteriological problem, Fleming observed with inhibitory or killing properties to a microorganism. a contaminated culture of Staphylococcus aureus with Antibiotic is a more restrictive term, which implies the the mold Penicillium notatum. Fleming remarkably saw natural source of the antimicrobial agent. Similarly, under- the potential of this unfortunate event. He dis- lying the term chemotherapeutic is the artificial origin of continued the work that he was dealing with and was an antimicrobial agent by chemical synthesis [1]. Initially, able to describe the compound around the mold antibiotics were considered as small molecular weight and isolates it. He named it penicillin and published organic molecules or metabolites used in response of his findings along with some applications of penicillin some microorganisms against others that inhabit the same [4].
    [Show full text]
  • Who Expert Committee on Specifications for Pharmaceutical Preparations
    WHO Technical Report Series 902 WHO EXPERT COMMITTEE ON SPECIFICATIONS FOR PHARMACEUTICAL PREPARATIONS A Thirty-sixth Report aA World Health Organization Geneva i WEC Cover1 1 1/31/02, 6:35 PM The World Health Organization was established in 1948 as a specialized agency of the United Nations serving as the directing and coordinating authority for international health matters and public health. One of WHO’s constitutional functions is to provide objective and reliable information and advice in the field of human health, a responsibility that it fulfils in part through its extensive programme of publications. The Organization seeks through its publications to support national health strat- egies and address the most pressing public health concerns of populations around the world. To respond to the needs of Member States at all levels of development, WHO publishes practical manuals, handbooks and training material for specific categories of health workers; internationally applicable guidelines and standards; reviews and analyses of health policies, programmes and research; and state-of-the-art consensus reports that offer technical advice and recommen- dations for decision-makers. These books are closely tied to the Organization’s priority activities, encompassing disease prevention and control, the development of equitable health systems based on primary health care, and health promotion for individuals and communities. Progress towards better health for all also demands the global dissemination and exchange of information that draws on the knowledge and experience of all WHO’s Member countries and the collaboration of world leaders in public health and the biomedical sciences. To ensure the widest possible availability of authoritative information and guidance on health matters, WHO secures the broad international distribution of its publica- tions and encourages their translation and adaptation.
    [Show full text]
  • 경추 척수 손상 환자에서 발생한 Providencia Rettgeri 패혈증 1예 조현정·임승진·천승연·박권오·이상호·박종원·이진서·엄중식 한림대학교 의과대학 내과학교실
    Case Report Infection & DOI: 10.3947/ic.2010.42.6.428 Chemotherapy Infect Chemother 2010;42(6):428-430 경추 척수 손상 환자에서 발생한 Providencia rettgeri 패혈증 1예 조현정·임승진·천승연·박권오·이상호·박종원·이진서·엄중식 한림대학교 의과대학 내과학교실 A Case of Providencia rettgeri Sepsis in a Patient with Hyun-Jung Cho, Seung-Jin Lim, Seung-Yeon Chun, Cervical Cord Injury Kwon-Oh Park, Sang-Ho Lee, Jong-Won Park, Jin- Seo Lee, and Joong-Sik Eom Providencia rettgeri is a member of Enterobacteriacea that is known to cause Department of Internal Medicine, Hallym Univer- urinary tract infection (UTI), septicemia, and wound infections, especially in sity College of Medi cine, Seoul, Korea immunocompromised patients and in those with indwelling urinary catheters. We experienced a case of UTI sepsis by Providencia rettgeri in a patient with spinal cord injury. The patient had only high fever without urinary symptoms or signs after high dose intravenous methylprednisolone. The laboratory results showed leukocytosis (21,900/μL, segmented neutrophils 91.1%) and pyuria. Cefepime was given empirically and it was switched to oral trimethoprim-sulfamethoxazole because P. rettgeri was identified from blood and urine culture which was susceptible to TMP-SMX. The patient was improved clinically but P. rettgeri was not eradicated microbiologically. To the best of our knowledge, this is the first case report on sepsis caused by Providencia rettgeri in Korea. Key Words: Providencia rettgeri, Sepsis, Urinary tract infection Introduction The genus Providencia is a member of the Enterobacteriaceae family which commonly dwells in soil, water, and sewage [1, 2]. Providencia rettgeri is one of five Providencia species that is known to cause various infections, especially the Copyright © 2010 by The Korean Society of Infectious Diseases | Korean urinary tract infection (UTI) [3].
    [Show full text]
  • Rapid Antigen Detection Test for Group a Streptococcus in Children with Pharyngitis (Review)
    Cochrane Database of Systematic Reviews Rapid antigen detection test for group A streptococcus in children with pharyngitis (Review) Cohen JF, Bertille N, Cohen R, Chalumeau M Cohen JF, Bertille N, Cohen R, Chalumeau M. Rapid antigen detection test for group A streptococcus in children with pharyngitis. Cochrane Database of Systematic Reviews 2016, Issue 7. Art. No.: CD010502. DOI: 10.1002/14651858.CD010502.pub2. www.cochranelibrary.com Rapid antigen detection test for group A streptococcus in children with pharyngitis (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 3 BACKGROUND .................................... 5 OBJECTIVES ..................................... 7 METHODS ...................................... 7 RESULTS....................................... 10 Figure1. ..................................... 11 Figure2. ..................................... 12 Figure3. ..................................... 13 Figure4. ..................................... 15 Figure5. ..................................... 16 Figure6. ..................................... 18 Figure7. ..................................... 20 DISCUSSION ..................................... 21 AUTHORS’CONCLUSIONS . 23 ACKNOWLEDGEMENTS . 23 REFERENCES ..................................... 24 CHARACTERISTICSOFSTUDIES . 42 DATA .......................................
    [Show full text]
  • Pdf 355.26 K
    Beni-Suef BS. VET. MED. J. JULY 2010 VOL.20 NO.2 P.16-24 Veterinary Medical Journal An approach towards bacterial pathogens of zoonotic importance harbored by commensal rodents prevalent in Beni- Suef Governorate W. H. Hassan1, A. E. Abdel-Ghany2 1Department of Bacteriology, Mycology and Immunology, and 2 Department of Hygiene, Management and Zoonoses, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt This study was conducted in the period July 2009 through June 2010 to determine the role of commensal rodents in transmitting bacterial pathogens to man in Beni-Suef Governorate, Egypt. A total of 50 rats of various species were selected from both urban and rural areas at different localities. In the laboratory, rodent species were identified and bacteriological examination was performed. Seven types of samples were cultured from external and internal body parts of each rat. The identified rodent spp. included Rattus norvegicus (16%), Rattus rattus rattus (42%) and Rattus rattus frugivorus (42%). The results demonstrated that S. aureus, S. lentus, S. sciuri and S. xylosus were isolated from the examined rats at percentages of 8, 2, 6 and 6 %, respectively. Moreover, E. durans (2%), E. faecalis (12%), E. faecium (24%), E. gallinarum (4%), Aerococcus viridans (12%) and S. porcinus (2%) in addition to Lc. lactis lactis (4%), Leuconostoc sp. (2%) and Corynebacterium kutscheri (8%) were also harbored by the screened rodents. On the other hand, S. arizonae, E. coli, E. cloacae and E. sakazakii were isolated from the examined rats at percentages of 4, 8, 4 and 6 %, respectively. Besides, Proteus mirabilis (6%), Proteus vulgaris (2%), Providencia rettgeri (6%), P.
    [Show full text]
  • Different Antibiotic Treatments for Group a Streptococcal Pharyngitis (Review)
    Different antibiotic treatments for group A streptococcal pharyngitis (Review) van Driel ML, De Sutter AIM, Keber N, Habraken H, Christiaens T This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2010, Issue 10 http://www.thecochranelibrary.com Different antibiotic treatments for group A streptococcal pharyngitis (Review) Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 3 METHODS ...................................... 3 RESULTS....................................... 5 DISCUSSION ..................................... 8 AUTHORS’CONCLUSIONS . 11 ACKNOWLEDGEMENTS . 11 REFERENCES ..................................... 12 CHARACTERISTICSOFSTUDIES . 16 DATAANDANALYSES. 43 Analysis 1.1. Comparison 1 Cephalosporin versus penicillin, Outcome 1 Resolution of symptoms post-treatment (ITT analysis). ................................... 45 Analysis 1.2. Comparison 1 Cephalosporin versus penicillin, Outcome 2 Resolution of symptoms post-treatment (evaluable participants)................................... 46 Analysis 1.3. Comparison 1 Cephalosporin versus penicillin, Outcome 3 Resolution of symptoms within 24 hours of treatment(ITTanalysis).. 47 Analysis 1.4. Comparison 1 Cephalosporin versus penicillin, Outcome
    [Show full text]
  • Possible Detection of Pathogenic Bacterial Species Inhabiting Streams in Great Smoky Mountains National Park
    POSSIBLE DETECTION OF PATHOGENIC BACTERIAL SPECIES INHABITING STREAMS IN GREAT SMOKY MOUNTAINS NATIONAL PARK A thesis presented to the faculty of the Graduate School of Western Carolina University in partial fulfillment of the requirement for the degree of Master of Science in Biology. By Kwame Agyapong Brown Director: Dr. Sean O’Connell Associate Professor of Biology and Biology Department Head Committee members: Dr. Sabine Rundle and Dr. Timothy Driscoll November 2016 ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my adviser Dr. Sean O’Connell for his insightful mentoring and thoughtful contribution throughout this research. I would also like to acknowledge my laboratory teammates: Lisa Dye, Rob McKinnon, Kacie Fraser, and Tori Carlson for their diverse contributions to this project. This project would not have been possible without the generous support of the Western Carolina University Biology Department and stockroom; so I would like to thank the entire WCU biology faculty and Wesley W. Bintz for supporting me throughout my Masters program. Finally, I would like to thank my thesis committee members and reader: Dr. Sabine Rundle, Dr. Timothy Driscoll and Dr. Anjana Sharma for their contributions to this project. ii TABLE OF CONTENTS List of Tables ................................................................................................................................. iv List of Figures ..................................................................................................................................v
    [Show full text]
  • The Use of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Graduate School Professional Papers 2010 The seU of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities Joshua Bryant Phillips The University of Montana Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/etd Recommended Citation Phillips, Joshua Bryant, "The sU e of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities" (2010). Graduate Student Theses, Dissertations, & Professional Papers. 1100. https://scholarworks.umt.edu/etd/1100 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu. THE USE OF NATURAL PRODUCT SUBSTRATES FOR THE SYNTHESIS OF LIBRARIES OF BIOLOGICALLY ACTIVE, NEW CHEMICAL ENTITIES by Joshua Bryant Phillips B.S. Chemistry, Northern Arizona University, 2002 B.S. Microbiology (health pre-professional), Northern Arizona University, 2002 Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chemistry The University of Montana June 2010 Phillips, Joshua Bryant Ph.D., June 2010 Chemistry THE USE OF NATURAL PRODUCT SUBSTRATES FOR THE SYNTHESIS OF LIBRARIES OF BIOLOGICALLY ACTIVE, NEW CHEMICAL ENTITIES Advisor: Dr. Nigel D. Priestley Chairperson: Dr. Bruce Bowler ABSTRACT Since Alexander Fleming first noted the killing of a bacterial culture by a mold, antibiotics have revolutionized medicine, being able to treat, and often cure life-threatening illnesses and making surgical procedures possible by eliminating the possibility of opportunistic infection.
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Outbreak of Carbapenem-Resistant Providencia Rettgeri in a Tertiary Hospital
    This open-access article is distributed under Creative Commons licence CC-BY-NC 4.0. IN PRACTICE CLINICAL UPDATE Outbreak of carbapenem-resistant Providencia rettgeri in a tertiary hospital V S Tshisevhe,1,2 MB ChB, MBA, Dip HIV Man (SA), DTM&H; M R Lekalakala,3 BSc; MB ChB, DTM&H, MMed, PDIC; N Tshuma,4 BSc, MBA; S Janse van Rensburg,1 B Med Tech; N Mbelle,1,2 BSc, MSc, MB BCh, MMed, DTM&H, MAP, FCPath (SA) 1 Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa 2 Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, South Africa 3 Department of Medical Microbiology, Polokwane National Health Laboratory Service, and Department of Medical Microbiology, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa 4 Community AIDS Response, Johannesburg, South Africa Corresponding author: V S Tshisevhe (vhudzani@gmail.com) The emergence of resistance to multiple antimicrobial agents in pathogenic bacteria is a significant public health threat, as there are limited effective antimicrobial agents for infections caused by multidrug-resistant (MDR) bacteria. Several MDR bacteria are now frequently detected. Carbapenem resistance in Enterobacteriaceae is often plasmid mediated, necessitating stringent infection control practices. We describe an outbreak of carbapenem-resistant Providencia rettgeri involving 4 patients admitted to intensive care and high-care units at a tertiary hospital. Clinical and demographic characteristics of 4 patients with carbapenem-resistant P. rettgeri were documented. All P. rettgeri isolated in these cases had a carbapenem-resistant antibiogram, with resistance to imipenem, ertapenem and meropenem. These cases could be epidemiologically linked.
    [Show full text]
  • No Disclosures
    3/15/2017 Cases in Infectious Diseases NO DISCLOSURES Richard A. Jacobs, M.D., PhD. Case Records of the Massachusetts General Hospital Case Presentation A 22 yr old comes to the office complaining of the acute onset of unilateral weakness • Periventricular heterotopia due to an FLNA of the right side of his face. mutation and congenital alveolar dysplasia. Your diagnosis is Bell’s Palsy. N Engl J Med 2017; 376:562‐574 1 3/15/2017 What is Your Therapy? Etiology of Facial Nerve Palsy 100% • 50% are idiopathic (Bell’s Palsy) 1. Prednisolone • Herpes Simplex/Varicella Zoster (Geniculate 2. Acyclovir ganglion) – Direct invasion v. immunologic/inflammatory 3. Prednisolone + • Lyme disease (most common cause of bilateral FN acyclovir palsy) 4. Nothing • Other infections—CMV, EBV,HIV • Non‐infectious—Diabetes, sarcoid, tumors, 1 trauma Therapy of Bell’s Palsy Therapy of Bell’s Palsy • 839 patients enrolled within 72 hours of • Quite controversial onset of symptoms • Because of the association with herpes viruses – Placebo + placebo (206) the use of acyclovir has been felt to be – Prednisilone (60mg X 5 days then reduced beneficial by 10 mg/day) + placebo (210) • – Valacyclovir (1000mg TID X 7 Days) + Two well done prospective, randomized, placebo (207) controlled, blinded studies have been done – Valacyclovir X7 Days + prednisolone X10 Days (206) Lancet Neurol 2008;7:993‐1000 2 3/15/2017 Therapy of Bell’s Palsy Prednisilone Prednisilone • Case closed on therapy??? NO!! + valacyclovir Placebo • Other less powered studies and subgroup Valacyclovir analyses suggest that acyclovir might be + placebo beneficial in the most severe cases – Minimal or no movement of facial muscles and inability to close the eye Take Home Points Case Presentation • 57 yo male with polycystic kidney disease, • Early treatment (within 72 hours of gout, HTN and hyperlipidemia onset) recommended • Underwent bilateral nephrectomies and renal • For most cases prednisolone for 10 days transplant (CMV D +/R‐).
    [Show full text]