Organic Ligand Complexation Reactions On
Total Page:16
File Type:pdf, Size:1020Kb
Organic ligand complexation reactions on aluminium-bearing mineral surfaces studied via in-situ Multiple Internal Reflection Infrared Spectroscopy, adsorption experiments, and surface complexation modelling A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2010 Charalambos Assos School of Earth, Atmospheric and Environmental Sciences Table of Contents LIST OF FIGURES ......................................................................................................4 LIST OF TABLES ........................................................................................................8 ABSTRACT.................................................................................................................10 DECLARATION.........................................................................................................11 COPYRIGHT STATEMENT....................................................................................12 CHAPTER 1 INTRODUCTION ...............................................................................13 AIMS AND OBJECTIVES .................................................................................................38 CHAPTER 2 THE USE OF IR SPECTROSCOPY IN THE STUDY OF ORGANIC LIGAND SURFACE COMPLEXATION............................................40 INTRODUCTION.............................................................................................................40 METHODOLOGY ...........................................................................................................44 Materials .................................................................................................................44 MIR-FTIR spectroscopy..........................................................................................45 Sample preparation and coating procedure ...........................................................45 MIR-FTIR Measurements........................................................................................46 THEORETICAL BACKGROUND .......................................................................................47 THE USE OF IR TECHNIQUES FOR THE STUDY OF MINERAL-ORGANIC LIGAND INTERACTIONS AT THE MOLECULAR SCALE ..................................................................60 CASE STUDY: THE COMPLEXATION OF OXALIC ACID ON KAOLINITE STUDIED VIA FLOW THROUGH IN SITU MIR-FTIR SPECTROSCOPY ..............................................................72 Results and discussion ............................................................................................72 SUMMARY AND CONCLUSIONS .....................................................................................82 CHAPTER 3 COMPLEXATION OF PHTHALIC AND SALICYLIC ACID ON THE SURFACE OF KAOLINITE............................................................................83 INTRODUCTION.............................................................................................................83 METHODOLOGY ...........................................................................................................87 Materials .................................................................................................................87 Multiple Internal Reflection (MIR) - FTIR Spectroscopy .......................................88 Adsorption Experiments..........................................................................................89 Surface Complexation Modelling............................................................................94 RESULTS AND DISCUSSION...........................................................................................95 IR spectroscopic measurements ..............................................................................95 Macroscopic adsorption properties ......................................................................128 Surface complexation modelling...........................................................................136 SUMMARY AND CONCLUSIONS...................................................................................173 2 CHAPTER 4 THE ADSORPTION OF HUMIC ACID ON KAOLINITE AND GIBBSITE..................................................................................................................175 INTRODUCTION...........................................................................................................175 METHODOLOGY .........................................................................................................177 Materials ...............................................................................................................177 Humic acid titrations ............................................................................................178 Modelling ..............................................................................................................179 Adsorption experiments.........................................................................................181 IR spectroscopy .....................................................................................................184 RESULTS AND DISCUSSION.........................................................................................185 Acid-base properties of humic acid.......................................................................185 Adsorption experiments.........................................................................................194 IR measurements ...................................................................................................223 Proposed binding mechanisms from the combined study of spectroscopic and macroscopic adsorption data................................................................................234 CONCLUSIONS ............................................................................................................235 CHAPTER 5 GENERAL DISCUSSION AND CONCLUSIONS........................237 REFERENCES..........................................................................................................246 APPENDIX ................................................................................................................260 3 List of Figures Chapter 1 Figure 1-1 Schematic representation of surface complex formation..........................................15 + - Figure 1-2 The distribution diagram of the three surface species (X–OH, X-OH2 and X–O ) assumed by the 2-pK model for a hypothetical mineral surface on which protons are the only adsorbing ions. ..........................................................................................................17 Figure 1-3 Schematic representation of the electric double layer according to the Stern- Grahame model. ................................................................................................................22 Figure 1-4 Rates of silicate dissolution as a function of pH, at far from equilibrium conditions. ..........................................................................................................................................32 Chapter2 Figure 2-1 Coordination modes of the carboxylate functional group. .......................................41 Figure 2-2 Schematic representation of the experimental set-up used for the acquisition of in situ MIR-FTIR spectra of organic ligand surface complexes.............................................45 Figure 2-3 Vibrational modes of the carboxyl group in its protonated and anionic state...........49 Figure 2-4 The IR spectra of aqueous phthalate collected at pH 7, aqueous strontium-phthalate complex collected at pH 7, and aqueous iron-phthalate complex collected at pH 3. .........55 Figure 2-5 The propagation of the IR beam through the internal reflection element.. ...............62 Figure 2-6 Steps required to isolate the spectrum of a surface species.. ....................................65 Figure 2-7 (a) The infrared spectrum of adsorbed salicylic acid onto gibbsite, from a 7.5x10-4 M solution at pH 5, obtained after 56 minutes of reaction time. (b) The infrared spectrum of the surface complex in (a) obtained after 2 hours reaction time (c) the difference spectrum obtained by subtracting (b) from (a). .................................................................................70 Figure 2-8 The negative peaks appearing on the spectrum of adsorbed phthalic acid following the dissolution of the magnesite coating from the ZnSe crystal.........................................71 Figure 2-9 Oxalate species distribution as a function of pH. ..................................................73 Figure 2-10 IR spectra of aqueous oxalic acid as a function of pH.. .........................................74 Figure 2-11 IR spectra of adsorbed oxalic acid on kaolinite, from a 5x10-3 M and 5x 10-4 M oxalic acid solution, at pH 3.5. ..........................................................................................75 Figure 2-12 IR spectra of adsorbed oxalic acid on kaolinite, from a 5x10-3 M oxalic acid solution, obtained at pH 3.5 and three different background electrolyte concentrations....79 Figure 2-13 The spectra of adsorbed oxalic acid on kaolinite, at pH 6, from a 5x10-3 M and 5x10-4 M oxalic acid solution.............................................................................................80 Chapter 3 Figure 3-1 IR spectra of aqueous phthalic acid as a function of pH.. ........................................96 Figure 3-2