Lecture 28: Transition Metals: Crystal Field Theory Part I

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 28: Transition Metals: Crystal Field Theory Part I 5.111 Lecture #28 Wednesday, November 19, 2014 Reading For Today: 16.8-16.11 in 4th and 5th editions Reading for Lecture #29: same as above Topic: I. Introduction to Crystal Field Theory II. Crystal Field Theory: Octahedral Case III. Spectrochemical Series I. Introduction to Crystal Field Theory Crystal field and ligand field theories were developed to explain the special features of transition metal coordination complexes, including their beautiful colors and their magnetic properties. Coordination complexes are often used as contrast agents for magnetic resonance imaging (MRI) and other types of imaging. Basic idea behind theories: When a metal ion with a given oxidation number (Mn+, where M is a metal and n+ is its oxidation number) is placed at the center of a coordination sphere defined by a set of ligands, the energy levels of the d orbitals housing the metal electrons are from those in the free metal ion. Crystal field theory is based on an ionic description of the metal-ligand bond. Ligand field theory includes covalent and ionic aspects of coordination. It is a more powerful description of transition metal complexes. It is, however, beyond the scope of this course. (Take 5.03 if you are interested in this topic). Crystal Field Theory considers ligands as point charges and considers the repulsion between the negative point charges and the d-orbitals, and even though this theory is simple, a number of properties of transition metals can be explained. L- L- L- Mn+ L- - L L- © W.H.Freeman & Co Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 1 II. Crystal Field Theory: Octahedral Case L- - Z L Z L- Mn+ L- Y Y X X L- - L 2 2 d - x y 2 dz 2 2 2 • Ligand (L) point charges are directed right toward the dz and dx -y orbitals of metal (Mn+), resulting in a large repulsion. 2 2 2 • The dz and dx -y orbitals are destabilized, and they are destabilized by the same 2 2 2 amount. dz and dx -y are . 2 2 2 • The dz and dx -y orbitals are destabilized relative to dxy, dyz , and dxz. Z Z Z L- L- - n+ L- L M Y Y Y X X X L- L- dyz dxy dxz • Ligand point charges are directed in between dxy, dxz, and dyz orbitals (not directly toward them), resulting in repulsion. 2 2 2 • The dxy, dxz, and dyz orbitals are stabilized relative to dz and dx -y orbitals, and they are stabilized by the same amount. • dxy, dxz, and dyz orbitals are degenerate with respect to each other. 2 Octahedral Crystal Field Splitting Diagram 2 2 2 label for degenerate dx -y and dz orbitals (eg) 2 2 d 2 dx -y z + 3 O O 5 - 2 O average energy of d orbitals with 5 ligands (t ) dxy d d 2g (Spherical crystal field) xz yz (Octahedral crystal field) label for degenerate dxy, dxz, dyz orbitals ∆o is the overall splitting between eg and t2g orbitals = octahedral field splitting energy ("o" in ∆o is for octahedral) Because the overall energy is maintained, the energy of the three t2g orbitals are lowered by (2/5) ∆o and the energy of the two eg orbitals are raised by (3/5) ∆o relative to the spherical crystal field. What determines the magnitude of ∆o ? Answer: the _____________of the ligand. III. Spectrochemical Series The relative abilities of common ligands to split the d-orbital energy levels generate what is known as the spectrochemical series. Strong field ligands - produce energy separations between d-orbitals (big ∆o) Weak field ligands - produce small energy separations between d-orbitals (small ∆o) - - - - - - I < Br < Cl <F < OH < H2O <NH3 < CO < CN weak field ligands strong field ligands ∆o is small ∆o is large 3+ 3- Example 1. Consider two different iron compounds: [Fe(H2O)6] and [Fe(CN)6] . (a) Figure out the oxidation number of Fe (b) Figure out d count 3 (c) Draw octahedral crystal field splitting diagrams Small Δo (______________field) Large Δo(______________fiel d) (e ) 2 2 d 2 g (eg) dx -y z 2 2 2 + 3 O dx -y dz + 3 O 5 5 O O - 2 - 2 5 O O (t2g) (t 5 d 2g) dxy dxz yz dxy dxz dyz Compound is Compound is (d) Place electrons. There are two ways to place electrons: (1) singly to the fullest extent possible before pairing (i.e. using both t2g and eg orbitals) or (2) only fill t2g before pairing. The decision is made based on whether Δo is greater or less than the pairing energy (PE): energy of electron-electron repulsion. When ∆o is small, ∆o < PE When ∆o is large, ∆o > PE Electrons are placed singly with parallel Electrons are paired in lower energy spins to the fullest possible extent in t2g orbitals. eg orbitals are not both t2g and eg orbitals. occupied until t2g orbitals are filled. This arrangement of electrons gives This arrangement of electrons gives the maximum number of unpaired the minimum number of unpaired electrons (high spin). electrons (low spin). (e) Write dn electron configuration: (f) Predict Crystal Field Stabilization Energy (CFSE) - relative to that of the hypothetical spherical crystal. CFSE = Practice Questions (eg) 2+ 7 (e ) + 3 1. Place electrons correctly for an octahedral Co (d ) g O d 2 2 d 2 x -y z + 3 O 5 weak field complex. O 5 O - 2 - 2 O O 5 5 (t2g) (t2g) dxy dxz dyz dyz 3+ 3+ Cr3+ in [Cr(NH ) ]3+ Cr in [Cr(H2O)6] 3 6 4 (eg) (eg) + 3 O 2. Predict the CFSE of a high spin octahedral d 2 2 d 2 3+ 4 x -y z + 3 O 5 Mn (d ) complex 5 O - 2 - 2 O O 5 5 (t2g) (t2g) dxy dxz dyz 3+ 3- Back to [Fe(H2O)6] and [Fe(CN)6] 3+ 3+ Cr3+ in [Cr(NH ) ]3+ Cr in [Cr(H2O)6] 3 6 Predict whether these compounds are paramagnetic (attracted by a magnetic field) or diamagnetic (repelled by a magnetic field). Based on the above diagrams, they are likely to be____________________(i.e. have electrons). Predict the colors of these two iron complexes Light Absorbed and Emitted by Octahedral Coordination Complexes A substance absorbs photons of light if the energies of the photons the energies required to excite the electrons to higher energy levels. Elight = hν = ∆o E = energy of light absorbed; h = planck's constant ν = frequency; ∆o = octahedral crystal field splitting energy If low frequency light is absorbed, the wavelength of the absorbed light is . (yellow/orange/red end of spectrum) If high frequency light is absorbed, the wavelength of the absorbed light is . (violet/blue/green end of spectrum) c=λν c = speed of light λ = wavelength ν = frequency violet blue green yellow orange red | | | | | | | λ 400nm 430nm 490nm 560nm 580nm 620nm 800nm Color of transmitted light is to the col or of absorbed light. 3+ 3- Going back to our example: high spin [Fe(H2O)6] and low spin [Fe(CN)6] 3+ High spin [Fe(H2O)6] absorbs low frequency/long wavelength light and transmits wavelength light. It can appear pale violet to yellow brown. 3- Low spin [Fe(CN)6] absorbs high frequency/short wavelength light and transmits wavelength light. It is bright red-orange. 5 Which coordination complexes are colorless? All d-orbitals are . d-d transitions in the visible range possible. Examples: Will Co3+ be colorless? Which vitamin contains cobalt? Cobalt Flower Demonstration 2+ Predict the color of [Co(H2O)6] (∆o = 239 kJ/mol) (a) Calculate the wavelength of absorbed light -34 8 λ = hc/∆o = (6.626 x 10 J s) (2.997 x 10 m/s) = (239 kJ/mol)(1000 J/kJ)(1 mol/6.022 x 1023) 2+ [Co(H2O)6] absorbs _____________ light. (b) Predict the color of the transmitted light . 2+ In solution, CoCl2 + H2O -> [Co(H2O)6] color = In the solid state, CoCl2 + H2O –> trans-[CoCl2(H2O)4] color = blue So we can go between and blue by adding water (hydrating) or removing water (dehydrating). 6 MIT OpenCourseWare https://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2014 For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms..
Recommended publications
  • CHEM 250 (4 Credits): Reactions of Nucleophiles and Electrophiles (Reactivity 1)
    CHEM 250 (4 credits): Reactions of Nucleophiles and Electrophiles (Reactivity 1): Description: This course investigates fundamental carbonyl reactivity (addition and substitution) in understanding organic, inorganic and biochemical processes. Some emphasis is placed on enthalpy, entropy and free energy as a basis of understanding reactivity. An understanding of chemical reactivity is based on principles of Lewis acidity and basicity. The formation, stability and reactivity of coordination complexes are included. Together, these topics lead to an understanding of biochemical pathways such as glycolysis. Enzyme regulation and inhibition is discussed in the context of thermodynamics and mechanisms. Various applications of modern multi-disciplinary research will be explored. Prerequisite: CHEM 125. Course Goals and Objectives: 1. Students will gain a qualitative understanding of thermodynamics. A. Students will develop a qualitative understanding of enthalpy and entropy. B. Students will predict the sign of an entropy change for chemical or physical processes. C. Students will understand entropy effects such as the chelate effect on chemical reactions. D. Students will use bond enthalpies or pKas to determine the enthalpy change for a reaction. E. Students will draw or interpret a reaction progress diagram. F. Students will apply the Principle of Microscopic Reversibility to understand reaction mechanisms. G. Students will use Gibbs free energy to relate enthalpy and entropy changes. H. Students will develop a qualitative understanding of progress toward equilibrium under physiological conditions (the difference between G and Go.) I. Students will understand coupled reactions and how this can be used to drive a non- spontaneous reaction toward products. J. Students will apply LeChatelier’s Principle to affect the position of anequilibrium by adding or removing reactants or products.
    [Show full text]
  • An Earlier Collection of These Notes in One PDF File
    UNIVERSITY OF THE WEST INDIES MONA, JAMAICA Chemistry of the First Row Transition Metal Complexes C21J Inorganic Chemistry http://wwwchem.uwimona.edu.jm/courses/index.html Prof. R. J. Lancashire September 2005 Chemistry of the First Row Transition Metal Complexes. C21J Inorganic Chemistry 24 Lectures 2005/2006 1. Review of Crystal Field Theory. Crystal Field Stabilisation Energies: origin and effects on structures and thermodynamic properties. Introduction to Absorption Spectroscopy and Magnetism. The d1 case. Ligand Field Theory and evidence for the interaction of ligand orbitals with metal orbitals. 2. Spectroscopic properties of first row transition metal complexes. a) Electronic states of partly filled quantum levels. l, ml and s quantum numbers. Selection rules for electronic transitions. b) Splitting of the free ion energy levels in Octahedral and Tetrahedral complexes. Orgel and Tanabe-Sugano diagrams. c) Spectra of aquated metal ions. Factors affecting positions, intensities and shapes of absorption bands. 3. Magnetic Susceptibilities of first row transition metal complexes. a) Effect of orbital contributions arising from ground and excited states. b) Deviation from the spin-only approximation. c) Experimental determination of magnetic moments. Interpretation of data. 4. General properties (physical and chemical) of the 3d transition metals as a consequence of their electronic configuration. Periodic trends in stabilities of common oxidation states. Contrast between first-row elements and their heavier congeners. 5. A survey of the chemistry of some of the elements Ti....Cu, which will include the following topics: a) Occurrence, extraction, biological significance, reactions and uses b) Redox reactions, effects of pH on the simple aqua ions c) Simple oxides, halides and other simple binary compounds.
    [Show full text]
  • Organic Ligand Complexation Reactions On
    Organic ligand complexation reactions on aluminium-bearing mineral surfaces studied via in-situ Multiple Internal Reflection Infrared Spectroscopy, adsorption experiments, and surface complexation modelling A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2010 Charalambos Assos School of Earth, Atmospheric and Environmental Sciences Table of Contents LIST OF FIGURES ......................................................................................................4 LIST OF TABLES ........................................................................................................8 ABSTRACT.................................................................................................................10 DECLARATION.........................................................................................................11 COPYRIGHT STATEMENT....................................................................................12 CHAPTER 1 INTRODUCTION ...............................................................................13 AIMS AND OBJECTIVES .................................................................................................38 CHAPTER 2 THE USE OF IR SPECTROSCOPY IN THE STUDY OF ORGANIC LIGAND SURFACE COMPLEXATION............................................40 INTRODUCTION.............................................................................................................40 METHODOLOGY ...........................................................................................................44
    [Show full text]
  • Crystal Field Theory (CFT)
    Crystal Field Theory (CFT) The bonding of transition metal complexes can be explained by two approaches: crystal field theory and molecular orbital theory. Molecular orbital theory takes a covalent approach, and considers the overlap of d-orbitals with orbitals on the ligands to form molecular orbitals; this is not covered on this site. Crystal field theory takes the ionic approach and considers the ligands as point charges around a central metal positive ion, ignoring any covalent interactions. The negative charge on the ligands is repelled by electrons in the d-orbitals of the metal. The orientation of the d orbitals with respect to the ligands around the central metal ion is important, and can be used to explain why the five d-orbitals are not degenerate (= at the same energy). Whether the d orbitals point along or in between the cartesian axes determines how the orbitals are split into groups of different energies. Why is it required? The valence bond approach could not explain the Electronic spectra, Magnetic moments, Reaction mechanisms of the complexes. Assumptions of CFT: 1. The central Metal cation is surrounded by ligand which contain one or more lone pair of electrons. 2. The ionic ligand (F-, Cl- etc.) are regarded as point charges and neutral molecules (H2O, NH3 etc.) as point dipoles. 3. The electrons of ligand does not enter metal orbital. Thus there is no orbital overlap takes place. 4. The bonding between metal and ligand is purely electrostatic i.e. only ionic interaction. The approach taken uses classical potential energy equations that take into account the attractive and repulsive interactions between charged particles (that is, Coulomb's Law interactions).
    [Show full text]
  • Nobel Lecture, 8 December 1981 by ROALD HOFFMANN Department of Chemistry, Cornell University, Ithaca, N.Y
    BUILDING BRIDGES BETWEEN INORGANIC AND ORGANIC CHEMISTRY Nobel lecture, 8 December 1981 by ROALD HOFFMANN Department of Chemistry, Cornell University, Ithaca, N.Y. 14853 R. B. Woodward, a supreme patterner of chaos, was one of my teachers. I dedicate this lecture to him, for it is our collaboration on orbital symmetry conservation, the electronic factors which govern the course of chemical reac- tions, which is recognized by half of the 1981 Nobel Prize in Chemistry. From Woodward I learned much: the significance of the experimental stimulus to theory, the craft of constructing explanations, the importance of aesthetics in science. I will try to show you how these characteristics of chemical theory may be applied to the construction of conceptual bridges between inorganic and organic chemistry. FRAGMENTS Chains, rings, substituents - those are the building blocks of the marvelous edifice of modern organic chemistry. Any hydrocarbon may be constructed on paper from methyl groups, CH 3, methylenes, CH 2, methynes, CH, and carbon atoms, C. By substitution and the introduction of heteroatoms all of the skeletons and functional groupings imaginable, from ethane to tetrodotoxin, may be obtained. The last thirty years have witnessed a remarkable renaissance of inorganic chemistry, and the particular flowering of the field of transition metal organo- metallic chemistry. Scheme 1 shows a selection of some of the simpler creations of the laboratory in this rich and ever-growing field. Structures l-3 illustrate at a glance one remarkable feature of transition metal fragments. Here are three iron tricarbonyl complexes of organic moie- ties - cyclobutadiene, trimethylenemethane, an enol, hydroxybutadiene - which on their own would have little kinetic or thermodynamic stability.
    [Show full text]
  • Copyrighted Material
    1 INTRODUCTION 1.1 WHY STUDY ORGANOMETALLIC CHEMISTRY? Organometallic chemists try to understand how organic molecules or groups interact with compounds of the inorganic elements, chiefl y metals. These elements can be divided into the main group, consisting of the s and p blocks of the periodic table, and the transition elements of the d and f blocks. Main-group organometallics, such as n -BuLi and PhB(OH)2 , have proved so useful for organic synthesis that their leading characteristics are usually extensively covered in organic chemistry courses. Here, we look instead at the transition metals because their chemistry involves the intervention of d and f orbitals that bring into play reaction pathways not readily accessible elsewhere in the periodic table. While main-group organometallics are typically stoichiometric reagents, many of their transition metal analogs are most effective when they act as catalysts. Indeed, the expanding range of applications of catalysis is a COPYRIGHTEDmajor reason for the continued MATERIAL rising interest in organo- metallics. As late as 1975, the majority of organic syntheses had no recourse to transition metals at any stage; in contrast, they now very often appear, almost always as catalysts. Catalysis is also a central prin- ciple of Green Chemistry 1 because it helps avoid the waste formation, The Organometallic Chemistry of the Transition Metals, Sixth Edition. Robert H. Crabtree. © 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc. 1 2 INTRODUCTION for example, of Mg salts from Grignard reactions, that tends to accom- pany the use of stoichiometric reagents. The fi eld thus occupies the borderland between organic and inorganic chemistry.
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • Chapter 21 D-Metal Organometalloc Chemistry
    Chapter 21 d-metal organometalloc chemistry Bonding Ligands Compounds Reactions Chapter 13 Organometallic Chemistry 13-1 Historical Background 13-2 Organic Ligands and Nomenclature 13-3 The 18-Electron Rule 13-4 Ligands in Organometallic Chemistry 13-5 Bonding Between Metal Atoms and Organic π Systems 13-6 Complexes Containing M-C, M=C, and M≡C Bonds 13-7 Spectral Analysis and Characterization of Organometallic Complexes “Inorganic Chemistry” Third Ed. Gary L. Miessler, Donald A. Tarr, 2004, Pearson Prentice Hall http://en.wikipedia.org/wiki/Expedia 13-1 Historical Background Sandwich compounds Cluster compounds 13-1 Historical Background Other examples of organometallic compounds 13-1 Historical Background Organometallic Compound Organometallic chemistry is the study of chemical compounds containing bonds between carbon and a metal. Organometallic chemistry combines aspects of inorganic chemistry and organic chemistry. Organometallic compounds find practical use in stoichiometric and catalytically active compounds. Electron counting is key in understanding organometallic chemistry. The 18-electron rule is helpful in predicting the stabilities of organometallic compounds. Organometallic compounds which have 18 electrons (filled s, p, and d orbitals) are relatively stable. This suggests the compound is isolable, but it can result in the compound being inert. 13-1 Historical Background In attempt to synthesize fulvalene Produced an orange solid (ferrocene) Discovery of ferrocene began the era of modern organometallic chemistry. Staggered
    [Show full text]
  • Werner-Type Complexes of Uranium(III) and (IV) Judith Riedhammer, J
    pubs.acs.org/IC Article Werner-Type Complexes of Uranium(III) and (IV) Judith Riedhammer, J. Rolando Aguilar-Calderon,́ Matthias Miehlich, Dominik P. Halter, Dominik Munz, Frank W. Heinemann, Skye Fortier, Karsten Meyer,* and Daniel J. Mindiola* Cite This: Inorg. Chem. 2020, 59, 2443−2449 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Transmetalation of the β-diketiminate salt [M]- Me Ph + Me Ph− − [ nacnac ](M =NaorK; nacnac = {PhNC(CH3)}2CH ) with UI3(THF)4 resulted in the formation of the homoleptic, Me Ph octahedral complex [U( nacnac )3](1). Green colored 1 was fully characterized by a solid-state X-ray diffraction analysis and a combination of UV/vis/NIR, NMR, and EPR spectroscopic studies as well as solid-state SQUID magnetization studies and density functional theory calculations. Electrochemical studies of 1 revealed this species to possess two anodic waves for the U(III/IV) and U(IV/V) redox couples, with the former being chemically accessible. Using mild oxidants, such as [CoCp2][PF6]or [FeCp ][Al{OC(CF ) } ], yields the discrete salts [1][A] (A = − 2 3 −3 4 PF6 , Al{OC(CF3)3}4 ), whereas the anion exchange of [1][PF6] with NaBPh4 yields [1][BPh4]. Me Dipp μ 12 ■ INTRODUCTION UCl3(THF)] and [{( nacnac )UCl}2( 2-Cl)3]Cl. In Me Dipp− ’ some cases, disubstitution of nacnac generates the Alfred Werner s disapproval of the complex ion-chain theory Me Dipp η3 Me Dipp 13 proposed by Jørgensen and Blomstrand,1 via the introduction rearranged species [( nacnac )( - nacnac )UI], of coordination complexes and the concept of Nebenvalenz,1,2 where one ligand has changed hapticity, most likely due to fi steric constraints.
    [Show full text]
  • M.Sc. (Chemistry) M
    Regulations 2019 Curriculum and Syllabi (Amendments updated upto June 2020) M.Sc. (Chemistry) M. Sc. Chemistry Regulations 2019 REGULATIONS 2019 CURRICULUM AND SYLLABI (Amendments updated upto June 2020) M.Sc. CHEMISTRY B.S. Abdur Rahman Crescent Institute of Science and Technology 1 M. Sc. Chemistry Regulations 2019 B.S. Abdur Rahman Crescent Institute of Science and Technology 2 M. Sc. Chemistry Regulations 2019 VISION AND MISSION OF THE INSTITUTION VISION B.S.Abdur Rahman Crescent Institute of Science and Technology aspires to be a leader in Education, Training and Research in multidisciplinary areas of importance and to play a vital role in the Socio-Economic progress of the Country in a sustainable manner. MISSION To blossom into an internationally renowned Institute. To empower the youth through quality and value-based education. To promote professional leadership and entrepreneurship. To achieve excellence in all its endeavors to face global challenges. To provide excellent teaching and research ambience. To network with global Institutions of Excellence, Business, Industry and Research Organizations. To contribute to the knowledge base through Scientific enquiry, Applied Research and Innovation. B.S. Abdur Rahman Crescent Institute of Science and Technology 3 M. Sc. Chemistry Regulations 2019 B.S. Abdur Rahman Crescent Institute of Science and Technology 4 M. Sc. Chemistry Regulations 2019 DEPARTMENT OF CHEMISTRY VISION AND MISSION VISION To blossom as a department with excellence in the field of Chemical Sciences through academic and research programmes in cutting-edge areas. MISSION To provide knowledge and skill in Chemical Sciences through post graduate and doctoral programmes. To undertake research in emerging areas of Chemical Sciences and transform the findings for the benefit of the society.
    [Show full text]
  • Limitation of Crystal Field Theory the Main Drawback of the Crystal Field Theory Is That It Does Not Consider the Covalent Character in Metal-Ligand Bonding at All
    CHAPTER 7 Metal-Ligand Bonding: Limitation of Crystal Field Theory The main drawback of the crystal field theory is that it does not consider the covalent character in metal-ligand bonding at all. It treats the metal-ligand interaction in a purely electrostatic framework which is pretty far from reality. All the effects which originate from covalence cannot be explained by this theory. Therefore, the main limitations of crystal field theory can be concluded only after knowing the causes and magnitude of the covalence in the metal-ligand bonds. Evidences for the Covalent Character in Metal–Ligand Bond The crystal field theory considers the metal center as well as surrounding ligands as point charges and assumes that the interaction between them is 100% ionic. However, quite strong experimental evidences have proved that there is some covalent character too which cannot be ignored. Some of those experimental evidences are as follows: 1. The nephelauxetic effect: The electrons present in the partially filled d-orbitals of the metal center repel each other to produce a number of energy levels. The placement of these levels on the energy scale depends upon the arrangement of filled electrons. The energy of these levels can be given in terms of “Racah parameters” B and C (a measure of interelectronic repulsion). The energy difference between same multiplicity states is expressed in B and Dq while between different multiplicity states is given in term of B, Dq and C. It has been observed that the complexation of metal center always results in a decrease in interelectronic repulsion parameters which in turn also advocates a decrease in the repulsion between d-electron density.
    [Show full text]
  • Searching Coordination Compounds
    CAS ONLINEB Available on STN Internationalm The Scientific & Technical Information Network SEARCHING COORDINATION COMPOUNDS December 1986 Chemical Abstracts Service A Division of the American Chemical Society 2540 Olentangy River Road P.O. Box 3012 Columbus, OH 43210 Copyright O 1986 American Chemical Society Quoting or copying of material from this publication for educational purposes is encouraged. providing acknowledgment is made of the source of such material. SEARCHING COORDINATION COMPOUNDS prepared by Adrienne W. Kozlowski Professor of Chemistry Central Connecticut State University while on sabbatical leave as a Visiting Educator, Chemical Abstracts Service Table of Contents Topic PKEFACE ............................s.~........................ 1 CHAPTER 1: INTRODUCTION TO SEARCHING IN CAS ONLINE ............... 1 What is Substructure Searching? ............................... 1 The Basic Commands .............................................. 2 CHAPTEK 2: INTKOOUCTION TO COORDINATION COPPOUNDS ................ 5 Definitions and Terminology ..................................... 5 Ligand Characteristics.......................................... 6 Metal Characteristics .................................... ... 8 CHAPTEK 3: STKUCTUKING AND REGISTKATION POLICIES FOR COORDINATION COMPOUNDS .............................................11 Policies for Structuring Coordination Compounds ................. Ligands .................................................... Ligand Structures........................................... Metal-Ligand
    [Show full text]