Littoral Warfare Submarine (SSLW) VT Total Ship Systems Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Design Report Littoral Warfare Submarine (SSLW) VT Total Ship Systems Engineering Virginia Tech Ocean Engineering AOE 4065/4066 Fall 2004 – Spring 2005 Team SCRAP Justin Chin ___________________________________________ Davy Hansch ___________________________________________ 19058 Nate Lambeth ___________________________________________ 19605 Chris Michie ___________________________________________ 18931 Dave Owens ___________________________________________ 19*** Solomon Whalen ___________________________________________ ***** SSLW Design – VT Team 4 Page 2 Executive Summary balance between weight and volume, evaluate static and dynamic stability and seakeeping, and finalize overall structural design. This report describes the Concept Exploration and Development of a Littoral Warfare Submarine (SSLW) for the United States Navy. This concept design was completed in a two- semester ship design course at Virginia Tech. The SSLW requirement is based on the need for a small, Ship Characteristic Value maneuverable vehicle to support special warfare operations. A shallow water submarine allows the possibility of covert insertion LOA 147 ft and extraction of these forces, as well as reconnaissance to support Beam 28 ft their operations and other theater operations. An Acquisition Depth 13 ft Decision Memorandum was produced specifying small size, high maneuverability, a non-nuclear air-independent propulsion system, Submerged and the need to operate from a mother ship or sea-base concept. Displacement 1430 lton Concept Exploration trade-off studies and design space Sustained Speed 20 knots exploration are accomplished using a Multi-Objective Genetic Endurance Speed 6 knots Optimization (MOGO) after significant technology research and definition. Objective attributes for this optimization are cost, risk Sprint Range 40 nm (technology, cost, schedule and performance) and military Endurance Range 2590 nm effectiveness. The product of this optimization is a series of cost- Diving Depth 290 ft risk-effectiveness frontiers which are used to select alternative 250kW PEM Fuel Cell w/ designs and define Operational Requirements (ORD1) based on the customer’s preference for cost, risk and effectiveness. Propulsion and Power reformer, lead-acid batteries, 2 AC SSLW Design 38, presented here, achieves a high level of motors, and IPS system effectiveness while maintaining a medium level of risk by using a BHP 250 kW cutting-edge propulsion system with extremely reliable and low- 9 enlisted, 3 officer, 8 special risk lead-acid batteries. The fuel cell propulsion system along with Personnel forces/mission technician a reformer allows for extremely quiet operation completely independent of an external air source. The catamaran design gives OMOE (Effectiveness) 0.716 a large deck area and features a small molded depth well-suited for OMOR (Risk) 0.444 littoral waters. The boat’s covert features allow it to slip in and out Ship Acquisition Cost $369M of enemy waters undetected, yet it retains the ability to strike Combat Systems 4x inboard torpedo tubes, 6x enemy naval targets if the need arises. Concept Development included hull form development, (Modular and Core) external encapsulated torpedoes, 4x structural finite element analysis, propulsion and power system countermeasure launchers, passive, development and arrangement, general arrangements, machinery active, and mine avoidance sonar, arrangements, combat system definition and arrangement, cost and four man lockout trunk, 2x Zodiac producibility analysis and risk analysis. The final concept design RHIB, accommodations for 1 satisfies critical operational requirements in the ORD within cost special warfare unit, degaussing and risk constraints with additional work required to ensure a good system, and 1 8x8x20ft. Payload Interface Module (PIM) ASC Design – VT Team 2 Page 3 Table of Contents EXECUTIVE SUMMARY................................................................................................................................................................................ 2 TABLE OF CONTENTS .................................................................................................................................................................................. 3 1 INTRODUCTION, DESIGN PROCESS AND PLAN.............................................................................................................................. 5 1.1 INTRODUCTION.............................................................................................................................................................. 5 1.2 DESIGN PHILOSOPHY, PROCESS, AND PLAN............................................................................................................. 5 1.3 WORK BREAKDOWN..................................................................................................................................................... 7 1.4 RESOURCES.................................................................................................................................................................... 7 2 MISSION DEFINITION........................................................................................................................................................................ 8 2.1 CONCEPT OF OPERATIONS........................................................................................................................................... 8 2.2 PROJECTED OPERATIONAL ENVIRONMENT (POE) AND THREAT .......................................................................... 8 2.3 SPECIFIC OPERATIONS AND MISSIONS....................................................................................................................... 8 2.4 MISSION SCENARIOS.................................................................................................................................................... 8 2.5 REQUIRED OPERATIONAL CAPABILITIES................................................................................................................... 9 3 CONCEPT EXPLORATION............................................................................................................................................................... 10 3.1 STANDARDS AND SPECIFICATIONS........................................................................................................................... 10 3.2 TRADE-OFF STUDIES, TECHNOLOGIES, CONCEPTS AND DESIGN VARIABLES................................................... 10 3.2.1 Hull Form Alternatives.............................................................................................................................................10 3.2.2 Sustainability Alternatives........................................................................................................................................11 3.2.3 Propulsion and Electrical Machinery Alternatives..............................................................................................11 3.2.4 Automation and Manning Parameters...................................................................................................................17 3.2.5 Combat System Alternatives.....................................................................................................................................17 3.3 DESIGN SPACE............................................................................................................................................................. 22 3.4 SHIP SYNTHESIS MODEL............................................................................................................................................ 22 3.4.1 Input Module...............................................................................................................................................................23 3.4.2 Combat System Module............................................................................................................................................23 3.4.3 Propulsion Module....................................................................................................................................................23 3.4.4 Hull Form Module.....................................................................................................................................................23 3.4.5 Electric Module..........................................................................................................................................................24 3.4.6 Resistance Module.....................................................................................................................................................24 3.4.7 Weight and Stability Module....................................................................................................................................24 3.4.8 Tankage Module.........................................................................................................................................................24 3.4.9 Space Required Module............................................................................................................................................24 3.4.10 Feasibility Module.....................................................................................................................................................24 3.5 MULTI-OBJECTIVE OPTIMIZATION..........................................................................................................................