SSLW Team 3 Report
Total Page:16
File Type:pdf, Size:1020Kb
Design Report Littoral Warfare Submarine (SSLW) VT Total Ship Systems Engineering ATLAS Advanced Tactics Littoral Alternative Submarine Ocean Engineering Design Project AOE 4065/4066 Fall 2004 – Spring 2005 Virginia Tech Team ATLAS Kristen Shingler – Team Leader ___________________________________________ 20578 Darren Goff ___________________________________________ 22933 Donald Shrewsbury ___________________________________________ 20884 Jay Borthen ___________________________________________ 19872 Jesse Geisbert ___________________________________________ 29714 Contract Deliverables Requirements LIST (CDRL) Design Report Requirement Pages Concept Selection/initial definition and sizing 43-45 Table of Principal Characteristics 45 Hull form development and Lines Drawing 47-48 General Arrangements 65-72 Arrangement sketches for typical officer/CPO/crew berthing, messing & sanitary 70-72 spaces Curves of form, hydrostatic curves, floodable length curve 48 66,69, Area/Volume summary and tank capacity plan 93-98 Structural design and midship section drawing 48-53 Propulsion plant trade-off study 13-20 47, 66- Machinery Arrangement 67 Electrical Load Analysis/electric plant sizing 61 Major H, M, & E systems and equipment characteristics and description 62-64 73-75, Weight Estimate (lt. ship & (2) load conditions) 91-92 Trim and intact stability analysis 74-75 Damage stability analysis 75 Speed/power analysis 53-56 Endurance Calculations 61-62 Seakeeping analysis 75 Manning Estimate 64-65 Cost analysis 75-77 Risk assessment 78-79 SSLW Design – VT Team ATLAS Page 3 Executive Summary This report describes the Concept Exploration and Submarine Development of a Littoral Warfare Submarine (SSLW) for the Characteristic Value United States Navy. This concept design was completed in a two- LOA 129 ft semester ship design course at Virginia Tech. The SSLW requirement is based on the need for a Beam 22 ft technologically advanced, covert, and small submarine capable of Depth 22 ft entering the littoral area. Mission requirements include Special Displacement 28088 ft3 Forces delivery, extraction and support , mine laying and Lightship weight 603.61 lton countermeasures, defensive ASW, Search & Salvage, and AUV support. The submarine is required to have multiple and flexible Full load weight 715.9 lton mission packages. Sustained Speed 26.5 knots Concept Exploration trade-off studies and design space Endurance Speed 10 knots exploration are accomplished using a Multi-Objective Genetic Optimization (MOGO) after significant technology research and Sprint Range 31 nm definition. Objective attributes for this optimization are cost, risk Endurance Range 1004 nm (technology, cost, schedule and performance) and military 250 kW PEM w/ Reformer, 2 Nickel effectiveness. The product of this optimization is a series of cost- Cadmium battery banks w/ 2700 kW- risk-effectiveness frontiers which are used to select alternative Propulsion and Power hr each, designs and define Operational Requirements (ORD1) based on the 1 AC Synchronous Permanent Magnet customer’s preference for cost, risk and effectiveness. Propulsion Motor connected to an 11 SSLW ATLAS is a high risk, two-deck alternative from the ft. diameter propeller. non-dominated frontier. The design was chosen to provide a BHP 332 kW challenging design project. With a cost well within requirements, it ereq is a highly effective submarine. SSLW ATLAS characteristics are Personnel 16 listed below. ATLAS has an axisymmetric hullform. Its significant OMOE (Effectiveness) 0.724 automation keeps Navy personnel out of harms way and reduces OMOR (Risk) 0.783 cost. Small size allows it to be a versatile design capable of entering areas previously inaccessible. Three payload interface modules Basic Cost of $ 293.5M Construction (BCC) allow ATLAS to be highly upgradeable and able to carry out many different missions. Meant for covert operations, it is still able to Number of Payload 3 defend itself with 8 Mark 50 Torpedoes if necessary. Interface Modules Concept Development included hull form development, Combat Systems Passive ranging sonar, flank array structural finite element analysis, propulsion and power system (Modular and Core) sonar, integrated bow array sonar, 2 development and arrangement, general arrangements, machinery inboard torpedo tubes, 6 external arrangements, combat system definition and arrangement, torpedoes, countermeasure launchers, equilibrium polygon analysis, cost and producibility analysis and UAV mast launch, Shrike mast, MMA, risk analysis. The final concept design satisfies critical operational mine avoidance sonar, side scan sonar, requirements in the ORD within cost and risk constraints with degaussing, 2- four man lock-out trunk additional work required to assess shallow water motion in waves; assess maneuvering and control; better define and assess operations Manning and Automation 0.51 with payload packages and mother ship; reassess battery power Reduction Factor characteristics; and better refine the structure external to the pressure hull. SSLW Design – VT Team ATLAS Page 4 Table of Contents EXECUTIVE SUMMARY.................................................................................................................................................................... 3 TABLE OF CONTENTS ...................................................................................................................................................................... 4 1 INTRODUCTION, DESIGN PROCESS AND PLAN.................................................................................................................. 6 1.1 INTRODUCTION.............................................................................................................................................................. 6 1.2 DESIGN PHILOSOPHY, PROCESS, AND PLAN............................................................................................................. 6 1.3 WORK BREAKDOWN..................................................................................................................................................... 8 1.4 RESOURCES.................................................................................................................................................................... 8 2 MISSION DEFINITION............................................................................................................................................................ 9 2.1 CONCEPT OF OPERATIONS........................................................................................................................................... 9 2.2 PROJECTED OPERATIONAL ENVIRONMENT (POE) AND THREAT .......................................................................... 9 2.3 OPERATIONS AND MISSIONS ....................................................................................................................................... 9 2.4 REQUIRED OPERATIONAL CAPABILITIES................................................................................................................. 10 3 CONCEPT EXPLORATION................................................................................................................................................... 11 3.1 TRADE-OFF STUDIES, TECHNOLOGIES, CONCEPTS AND DESIGN VARIABLES................................................... 11 3.1.1 Hull Form Alternatives.................................................................................................................................11 3.1.2 Sustainability Alternatives............................................................................................................................12 3.1.3 Propulsion and Electrical Machinery Alternatives..................................................................................12 3.1.4 Automation and Manning Parameters.......................................................................................................18 3.1.5 Combat System Alternatives.........................................................................................................................19 3.1.6 Payload Interface Modules..........................................................................................................................25 3.2 DESIGN SPACE............................................................................................................................................................. 27 3.3 SHIP SYNTHESIS MODEL............................................................................................................................................ 28 3.4 MULTI-OBJECTIVE GENETIC OPTIMIZATION (MOGO)......................................................................................... 32 3.4.1 Overall Measure of Effectiveness (OMOE)...............................................................................................32 3.4.2 Overall Measure of Risk (OMOR) ..............................................................................................................36 3.4.3 Cost...................................................................................................................................................................38 3.5 OPTIMIZATION RESULTS............................................................................................................................................ 39 3.6 ATLAS BASELINE CONCEPT DESIGN.....................................................................................................................