Redalyc.Extraction and Characterization of Lipids From

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Extraction and Characterization of Lipids From Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil COSTA, CÉSAR S.B.; VICENTI, JULIANO R.M.; MORÓN-VILLARREYES, JOAQUÍN A.; CALDAS, SERGIANE; CARDOSO, LIZIANE V.; FREITAS, RICARDO F.; D’OCA, MARCELO G.M. Extraction and characterization of lipids from Sarcocornia ambigua meal: a halophyte biomass produced with shrimp farm effluent irrigation Anais da Academia Brasileira de Ciências, vol. 86, núm. 2, junio, 2014, pp. 935-943 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32731288035 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2014) 86(2): 935-943 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420130022 www.scielo.br/aabc Extraction and characterization of lipids from Sarcocornia ambigua meal: a halophyte biomass produced with shrimp farm effluent irrigation CÉSAR S.B. COSTA1, JULIANO R.M. VICENTI2, JOAQUÍN A. MORÓN-VILLARREYES2, SERGIANE CALDAS2, LIZIANE V. CARDOSO2, RICARDO F. FREITAS1 and MARCELO G.M. D’OCA2 1Instituto de Oceanografia, Laboratório de Biotecnologia de Halófitas, Universidade Federal do Rio Grande/FURG, Av. Itália, Km 08, 96203-900 Rio Grande, RS, Brasil 2Escola de Química e Alimentos, Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande/FURG, Av. Itália, Km 08, 96203-900 Rio Grande, RS, Brasil Manuscript received on January 18, 2013; accepted for publication on July 15, 2013 ABSTRACT Sarcocornia ambigua is a perennial glasswort, native of South America and a potential new seed-oil crop and forage for direct irrigation with salt water. Small seeds develop inside fertile segments of its cylindrical leafless shoots and, at the harvest, seeds are typically mixed with remnant cellulose material difficult to separate. This work evaluated different extraction methods and the composition of total esterified fatty acids in a meal of ground fertile shoots of S. ambigua, seeking for an alternative primary matter and larger yield of total lipids. The highest lipid yield was obtained with a chloroform:methanol mixture (2:1)(v/v) (5.2% of dry weight). The most abundant polyunsaturated fatty acids in the meal were linoleic acid (C18:2; 21.4%) and oleic acid (C18:1; 18.3%). Fifty six percent of the lipids in S. ambigua meal were saturated and palmitic acid (C16:0) was the main fraction (19.8%). Long-chain fatty acids (≥ C20) represented 29.5% of the lipids. Most abundant long-chain fatty acids were behenic acid (C22:0; 7.1%), lignoceric acid (C24:0; 5.3%) and montanic acid (C28:0; 4.0%). The percentage of saturated lipids in S. ambigua meal was higher than that of vegetable oils with a MUFA nutritional profile and some of these lipids have known bioactive properties. Key words: Lipids, Long chain fatty acids, Palmitic acid, Polar solvent, ω6 acid. INTRODUCTION irrigation with salt water (Costa 2006, 2011, D'Oca Sarcocornia ambigua (Michx.) Alonso & Crespo et al. 2012). An experimental crop of S. ambigua (subfamily Salicornioideae, family Chenopo- in northeastern Brazil, irrigated with saline effluent diaceae) is the most widely distributed perennial from a shrimp farm, yielded an average of 8.9 fresh species in South America of a genus of small weight tons/hectare of aerial shoot biomass after succulent halophytic shrubs, common in coastal three months of cultivation (Costa 2006, 2011). marshes, mangroves and salt deserts (Isacch et Recently, a production of 23.4 fresh-weight tons/ al. 2006, Alonso and Crespo 2008), but it is also hectare was achieved under plentiful irrigation and a potential new seed-oil crop and forage for direct saline effluent of high nitrogen content in southern Brazil (state of Rio Grande do Sul; RS) (Costa et Correspondence to: César Serra Bonifácio Costa E-mail: [email protected] al. 2011). These yields are within the same order as An Acad Bras Cienc (2014) 86 (2) 936 CÉSAR S.B. COSTA et al. the results obtained with the closely related species phospholipids consist of two fatty acids bonded Salicornia bigelovii (Clark 1994, El-Mallah et al. to a glycerol, whereas triglyceride molecules 1994, Anwar et al. 2002, Zerai et al. 2010). Members have three fatty acids linked by ester bonds to of Salicornioideae share physiological aspects and a glycerol. Differently from triglycerides and the morphology of cylindrical leafless shoots, and other non-polar fatty acids common in seed oil, are commonly called glassworts. S. bigelovii is an glycolipids and phospholipids are essential polar annual glasswort commercially cultivated in the lipids with a polar head and a non-polar tail. United States, Mexico, Saudi Arabia, the United Since the polarity of lipids affects the solubility in Arab Emirates, Egypt, Eritrea and Pakistan, not solvents, it is necessary to find the most efficient only for seed oil production (Glenn et al. 1998, extraction method to dissolve the non-polar and El-Mallah et al. 1994, Anwar et al. 2002, Zerai polar lipids present in plant tissue. et al. 2010), but also for forage, as a by-products There are a few studies about the quantity rich in protein and carbohydrates used for feeding and composition of lipids in glasswort shoots. chickens (Attia et al. 1997), fish (Belal and Al- Shimizu et al. (2001) found 4.9% of total lipids Dosari 1999) and sheep (Kraidees et al. 1998), and in Salicornia herbacea shoots, whereas Kulis et in addition to being used in the human diet as well al. (2010), depending on the extraction method, (Ventura et al. 2011). obtained between 3.2% and 7.1% of total lipids The ellipsoid seeds of S. ambigua are small from shoots of Salicornia europaea and Salicornia (0.10 ± 0.04 mg) and their hexane extract yielded virginica (sin. Sarcocornia perennis). Similar to 13% of total lipids (D'Oca et al. 2012). The seeds their seeds, fatty acid composition of shoots of develop inside fertile segments of the succulent Salicornia and Sarcocornia species is dominated green shoots, and are only available after the by polyunsaturated acids with 16 and 18 carbons, senescence of shoots. At the harvest, seeds are but a significant amount of saturated acids are typically mixed with debris such as soil and also present (Imai et al. 2004, Kulis et al. 2010, remnant cellulose material, which are difficult to Ventura et al. 2011), and most of the lipids found separate. It results in a clear reduction of seed oil in shoots are phospholipids (Ivanova et al. 2000, yield and in an increased effort with preprocessing 2009). EPAGRI (2008) reported the presence to remove debris. However, fatty acids in seed of β-sitosterol and stigmasterol in shoots of S. oil are not the only lipids in plant material. ambigua. Furthermore, the cake obtained after Lipids can also be found in wax esters (surface lipids extraction from S. ambigua shoots could be shoots and leaves), glycolipids (membranes of used for animal feed, due to their high percentages photosynthetic tissues), phospholipids (in cellular of protein (8%) and ashes (27-30%)(Augusto-Ruiz membranes) and triglycerides (stored mostly et al. 2000, Costa 2006, Medina et al. 2008), as in seeds and plant tissues) (Misra et al. 1987, well as the presence of several phenolic compounds Ivanova et al. 2000, Kulis et al. 2010), all feasible (Costa et al. 2006). for synthetic biofuel and supplementation of This work aimed at evaluating different animal feeding (Kulis et al. 2010). Thus, a larger extraction methods, and both qualitative and amount of total lipids per hectare of S. ambigua quantitative compositions of total esterified fatty crop might be obtained from the utilization of acids in a meal of ground fertile shoots of the fertile shoot segments (with seeds) as primary perennial glasswort S. ambigua cultivated with matter, rather than only by seed oil extraction. saline effluent from a Litopennaeus vannamei The molecular structures of glycolipids and shrimp tank in southern Brazil. An Acad Bras Cienc (2014) 86 (2) LIPIDS FROM Sarcocornia ambigua MEAL 937 MATERIALS AND METHODS collected and the solvent evaporated under reduced pressure. The lipid fraction was dried to constant PLANT MATERIAL weight in an oven at 60°C. Total lipids was also In April 2010, at the Marine Aquaculture Laboratory quantified according to the methodology of Bligh (EMA-FURG, RS, Brazil; 32° 12' 19'' S, 52° 10' 45'' and Dyer (1959) for samples of S. ambigua meal W), shoots of seven-month-old S. ambigua were washed (M6) and not washed with distilled water harvested at ground level from a 10-m by 20-m plot (M7) before the extractions. Each meal sample was irrigated with saline effluent from a Litopennaeus put in a 12-mL mixture of chloroform:methanol vannamei shrimp tank. Plants were grown spaced (2:1)(v/v), placed in a test tube, then stirred (700 40 cm apart and watered by filling up drainage rpm) at room temperature for 20 minutes. Later the ditches once a day with 2,000 litres of effluent. sample was centrifuged at 2000 rpm for 5 minutes. During the growth period, about 740 mm of rainfall The organic phase was carefully collected and accumulated and average values (± standard error) the solvent evaporated under reduced pressure. of soil surface (0-5 cm deep), electrical conductivity The lipid fraction was dried to constant weight in and moisture content were 5.7 ± 2.9 dS/m and 7.8 ± an oven at 60°C.
Recommended publications
  • Salicornia L. Samphire; Glasswort; Saltwort Pls Mostly , Occ ; Infl A
    5/11/2020: Sarcocornia synonymized within Salicornia; Salicornia pacifica correct name for perennial w N Am plants. Salicornia L. Samphire; Glasswort; Saltwort Pls mostly ⚥, occ ♀♂; infl a fleshy, spicate, terminal thyrse with opp, scalelike, connate bracts; fls in cymes of 3–13 fls, sessile and sunken in depressions at joints of spike; perianth 3–4-lobed, ± pyramidal in outline, saccate below, nearly closed above, but with shallowly lobe-margined, puckered, and slitlike opening through which the 1–2 stamens often protrude; stigmas 2–3; fr utriclelike, strongly compressed laterally; seeds vertical, hairy to rugose; embryo folded; halophytic ann or short-lived per herbs, subshrubs, or shrubs, glab, with succulent, decussate, basally fused, highly reduced opp leaves adnate to st and forming fleshy segms. (L salsus, salt, and cornu, horn, in reference to habitat and to hornlike appearance of brs). (Sarcocornia). 1a Pls per, gen matted with prostrate, ± woody sts rooting at nodes, and erect, sparingly br sts gen 10–20 cm; fertile spikes with 7–14 fertile segms, joints 3–4 mm diam; anthers 0.7–1 mm; seeds with hooked or curled hairs; salt marshes and beaches along coast; AK to Baja Cal; pickelweed, woody g. (Sal. perennis and Sar. perennis misapplied). 1. S. pacifica Standl. 1b Pls taprooted ann 1a 2a Joints of spike (2–)2.5–4 × ca 2(–3) mm; upper margin of c fl 0.5–1 mm below node above; anthers exserted, dehiscing after exsertion; coastal, in salt marshes; AK to CA, also on Atl; low g. (Sal. europaea misapplied) 1 S. depressa Standl.
    [Show full text]
  • WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 8/37 (2006.01) A61Q 19/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 31/215 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US2016/058591 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 25 October 2016 (25.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/247,803 29 October 20 15 (29. 10.20 15) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: GLAXOSMITHKLINE CONSUMER TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, HEALTHCARE HOLDINGS (US) LLC [US/US]; 271 1 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Centerville Road, Suite 400, Wilmington, DE 19808 (US).
    [Show full text]
  • Modeling the Effect of Heat Treatment on Fatty Acid Composition in Home-Made Olive Oil Preparations
    Open Life Sciences 2020; 15: 606–618 Research Article Dani Dordevic, Ivan Kushkevych*, Simona Jancikova, Sanja Cavar Zeljkovic, Michal Zdarsky, Lucia Hodulova Modeling the effect of heat treatment on fatty acid composition in home-made olive oil preparations https://doi.org/10.1515/biol-2020-0064 refined olive oil in PUFAs, though a heating temperature received May 09, 2020; accepted May 25, 2020 of 220°C resulted in similar decrease in MUFAs and fi Abstract: The aim of this study was to simulate olive oil PUFAs, in both extra virgin and re ned olive oil samples. ff fi use and to monitor changes in the profile of fatty acids in The study showed di erences in fatty acid pro les that home-made preparations using olive oil, which involve can occur during the culinary heating of olive oil. repeated heat treatment cycles. The material used in the Furthermore, the study indicated that culinary heating experiment consisted of extra virgin and refined olive oil of extra virgin olive oil produced results similar to those fi samples. Fatty acid profiles of olive oil samples were of the re ned olive oil heating at a lower temperature monitored after each heating cycle (10 min). The out- below 180°C. comes showed that cycles of heat treatment cause Keywords: virgin olive oil, refined olive oil, saturated significant (p < 0.05) differences in the fatty acid profile fatty acids, monounsaturated fatty acids, polyunsatu- of olive oil. A similar trend of differences (p < 0.05) was rated fatty acids, cross-correlation analysis found between fatty acid profiles in extra virgin and refined olive oils.
    [Show full text]
  • Improvement of Lipid Production from an Oil-Producing Filamentous Fungus, Penicillium Brevicompactum NRC 829, Through Central Composite Statistical Design
    Ann Microbiol (2017) 67:601–613 DOI 10.1007/s13213-017-1287-x ORIGINAL ARTICLE Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design Thanaa H. Ali1 & Mamdouh S. El-Gamal2 & Dina H. El-Ghonemy1 & Ghada E. Awad3 & Amir E. Tantawy1 Received: 12 March 2017 /Accepted: 13 July 2017 /Published online: 7 August 2017 # Springer-Verlag GmbH Germany and the University of Milan 2017 Abstract In the present study, 13 filamentous fungi were commercial development for the production of LA by fer- screened for their lipid production and an oleaginous fun- mentation using cheap raw material. gus, Penicillium brevicompactum NRC 829, was found to be the highest lipid producer. Screening of various agro- Keywords Linoleic acid . Penicillium brevicompactum NRC industrial residues was performed and sunflower oil cake 829 . Response surface methodology . Unsaturated fatty acids proved to be the best substrate for lipid production. A central composite design was employed to investigate the optimum concentrations of the most significant medi- Introduction um components required to improve the lipid production by P. brevicompactum. The results clearly revealed that Polyunsaturated fatty acids (PUFAs) are long-chain fatty − the maximal lipid production of 8.014 ± 0.06 gL 1 acids containing two or more double bonds in their acyl (representing 57.6% lipid/dry biomass) was achieved by chains. Biosynthesis of PUFAs involves both methyl- the fungus when grown for 6 days at 30 °C under static directed and carboxyl-directed desaturases. The primary condition in a medium containing sunflower oil cake, product of fatty acid biosynthesis in oilseed crops is the NaNO3 and KCl at final concentrations of 8, 0.75 and 18-carbon monounsaturated oleic acid (C18:1–9).
    [Show full text]
  • ( Vaccinium Myrtillus L . ) And
    Food Chemistry 354 (2021) 129517 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant Priyanka Trivedi a,1, Nga Nguyen a,1, Linards Klavins b, Jorens Kviesis b, Esa Heinonen c, Janne Remes c, Soile Jokipii-Lukkari a, Maris Klavins b, Katja Karppinen d, Laura Jaakola d,e, Hely Haggman¨ a,* a Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland b Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia c Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland d Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway e NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway ARTICLE INFO ABSTRACT Keywords: In this study, cuticular wax load, its chemical composition, and biosynthesis, was studied during development of Cuticular wax wild type (WT) bilberry fruit and its natural glossy type (GT) mutant. GT fruit cuticular wax load was comparable Fruit cuticle with WT fruits. In both, the proportion of triterpenoids decreased during fruit development concomitant with Gene expression increasing proportions of total aliphatic compounds. In GT fruit, a higher proportion of triterpenoids in cuticular Glossy type mutant wax was accompanied by a lower proportion of fatty acids and ketones compared to WT fruit as well as lower Triterpenoids Wax composition density of crystalloid structures on berry surfaces. Our results suggest that the glossy phenotype could be caused Chemical compounds studied in this article: by the absence of rod-like structures in GT fruit associated with reduction in proportions of ketones and fatty β-Amyrin (PubChem CID: 73145) acids in the cuticular wax.
    [Show full text]
  • Component, Fatty Acid and Mineral Composition of Rice Bran Oil Extracted by Multistage with Hexane and Ethanol
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 6, ISSUE 11, NOVEMBER 2017 ISSN 2277-8616 Component, Fatty Acid And Mineral Composition Of Rice Bran Oil Extracted By Multistage With Hexane And Ethanol Fajriyati Mas’ud, Meta Mahendradatta, Amran Laga, Zainal Zainal Abstract: Rice bran oil (RBO) has been extracted from Celebes rice bran by multistage extraction with hexane solvent followed by ethanol to see the component, profile of fatty acids and mineral contained in both of them. As a comparison, RBO directly extracted with ethanol was also presented. Extraction process was performed using reflux method at 55oC, for 5 hours with bran and solvent ratio of 1:7. Analysis of components and fatty acids of RBO was conducted with GC-MS QP 2010 Shimadzu. Oleic, linoleic and palmitic were found dominant in first stage extraction by hexane with concentration of 3716.56, 1630.78 and 1021.89 mg/L, respectively. Palmitic (6.34 mg/L), lauric (4.78 mg/L), and linoleic (3.52 mg/L) were dominant in the second stage extraction by ethanol. Linoleic (28.85 mg/L), stearic (2.88 mg/L) and myristic (2.02 mg/L) were found in extracted directly by ethanol. RBO extracted with hexane had 18.6% of saturated fatty acid and 81.4% of unsaturated fatty acids, with ratio of saturated fatty acids : monounsaturated fatty acids: polyunsaturated fatty acids of approximately 1: 2.3 : 1.3. It contained about 56.7% of monounsaturated, 24.7% of polyunsaturated, and 18.6% of saturated fatty acids. In the present paper, we provide also an analysis of mineral composition of RBO by X-ray Spectrometer and melting point of RBO by Differential Scanning Calorimeter (DSC) instrument.
    [Show full text]
  • Biochemistry Prologue to Lipids
    Paper : 05 Metabolism of Lipids Module: 01 Prologue to Lipids Principal Investigator Dr. Sunil Kumar Khare, Professor, Department of Chemistry, IIT-Delhi Paper Coordinator and Dr. Suaib Luqman, Scientist (CSIR-CIMAP) Content Writer & Assistant Professor (AcSIR) CSIRDr. Vijaya-CIMAP, Khader Lucknow Dr. MC Varadaraj Content Reviewer Prof. Prashant Mishra, Professor, Department of Biochemical Engineering and Biotechnology, IIT-Delhi 1 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids DESCRIPTION OF MODULE Subject Name Biochemistry Paper Name 05 Metabolism of Lipids Module Name/Title 01 Prologue to Lipids 2 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids 1. Objectives To understand what is lipid Why they are important How they occur in nature 2. Concept Map LIPIDS Fatty Acids Glycerol 3. Description 3.1 Prologue to Lipids In 1943, the term lipid was first used by BLOOR, a German biochemist. Lipids are heterogeneous group of compounds present in plants and animal tissues related either actually or potentially to the fatty acids. They are amphipathic molecules, hydrophobic in nature originated utterly or in part by thioesters (carbanion-based condensations of fatty acids and/or polyketides etc) or by isoprene units (carbocation-based condensations of prenols, sterols, etc). Lipids have the universal property of being: i. Quite insoluble in water (polar solvent) ii. Soluble in benzene, chloroform, ether (non-polar solvent) 3 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids Thus, lipids include oils, fats, waxes, steroids, vitamins (A, D, E and K) and related compounds, such as phospholipids, triglycerides, diglycerides, monoglycerides and others, which are allied more by their physical properties than by their chemical assests.
    [Show full text]
  • Common Edible Seaweeds in the Gulf of Alaska
    eliciousor millennia, Alaska edible Natives have seaweedssubsisted COMMON EDIBLE Don the wild edibles—plants, animals, and F seaweeds—found in abundance along Alaska’s shores. In this book, Dr. Dolly Garza, a Haida-Tlingit Indian, shows you how to look for, identify, harvest, preserve, and prepare several species of seaweeds SEAWEEDS and one plant for tasty snacks or for the dinner table. IN THE GULF OF ALASKA A University of Alaska Fairbanks professor emerita, Dolly was raised in southeast Alaska Second Edition where her family routinely harvested seaweeds as a diet staple, a practice they continue today. Dolly enjoys sharing her traditional Native knowledge through presentations to Elderhostel groups, youth groups, and others. In this book she shares with you her lifetime of first-hand knowledge about the pleasures of harvesting, preparing, and eating some of the most common and delectable wild edibles found along Gulf of Alaska shores. US $10.00 CAN $10.00 DOLLY GARZA Seaweeds book cover.indd 1 3/28/12 9:30 AM COMMON EDIBLE SEAWEEDS IN THE GULF OF ALASKA Second Edition DOLLY GARZA Published by Alaska Sea Grant, University of Alaska Fairbanks SG-ED-46 Elmer E. Rasmuson Library Cataloging in Publication Data Garza, Dolly A. Common edible seaweeds in the Gulf of Alaska / Dolly Garza. — Fair- banks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks. p. : ill. ; cm. - (Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46) 1. Marine algae as food—Alaska—Alaska, Gulf of. 2. Cookery (Marine algae) I. Title. II. Series: Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46.
    [Show full text]
  • Aroma Volatile Biosynthesis in Apples Affected by 1-MCP and Methyl Jasmonate
    Postharvest Biology and Technology 36 (2005) 61–68 Aroma volatile biosynthesis in apples affected by 1-MCP and methyl jasmonate S. Kondo a, ∗, S. Setha a, D.R. Rudell b, D.A. Buchanan b, J.P. Mattheis b a Graduate School of Applied Biosciences, Hiroshima Prefectural University, Shobara, Hiroshima 727-0023, Japan b Tree Fruit Research Lab, United States Department of Agriculture—ARS, Wenatchee, WA 98801, USA Received 13 August 2004; received in revised form 8 November 2004; accepted 24 November 2004 Abstract Effects of 1-methylcyclopropene (1-MCP), 2-chloroethyl phosphonic acid (ethephon), and methyl jasmonate (MeJA) on production of aroma volatile compounds and ethylene by ‘Delicious’ and ‘Golden Delicious’ apples [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] during ripening were investigated. Forty-four volatile compounds in ‘Delicious’ and 40 compounds in ‘Golden Delicious’ were detected. Among volatiles classified as alcohols, esters, ketones, aldehydes, acetic acid, and ␣-farnesene, esters were the most prevalent compounds, followed by alcohols. Aroma volatile production was high in untreated controls and ethephon treatment. Volatile production by 1-MCP-treated fruit was lower compared with untreated controls throughout the evaluation period. The impact of MeJA application on volatile production was cultivar dependent. The combination of ethephon with MeJA reduced volatile production by ‘Delicious’ compared with ethephon only, but this treatment combination stimulated volatile production by ‘Golden Delicious’ with the exception of esters. In general, the effect of MeJA on volatile production was related to the effect of MeJA on internal ethylene concentration. The results suggest that the effect of MeJA on aroma volatiles in apple fruit may be mediated by ethylene.
    [Show full text]
  • Role of Fatty Acid Omega-Hydroxylase 1 and Abscisic Acid in Potato Tuber Suberin Formation
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 5-18-2016 12:00 AM Role of Fatty Acid omega-Hydroxylase 1 and Abscisic Acid in Potato Tuber Suberin Formation Meg Haggitt The University of Western Ontario Supervisor Dr. Mark Bernards The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Meg Haggitt 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Plant Biology Commons Recommended Citation Haggitt, Meg, "Role of Fatty Acid omega-Hydroxylase 1 and Abscisic Acid in Potato Tuber Suberin Formation" (2016). Electronic Thesis and Dissertation Repository. 4074. https://ir.lib.uwo.ca/etd/4074 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Role of Fatty Acid omega-Hydroxylase 1 (FAωH1) and Abscisic Acid in Potato Tuber Suberin Formation Thesis format: Integrated-Article By Meghan L. Haggitt Department of Biology, Faculty of Science A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES THE UNIVERSITY OF WESTERN ONTARIO LONDON, ONTARIO, CANADA © Meghan L. Haggitt 2016 Abstract Suberin is a complex biopolymer composed of two distinct but covalently-linked domains. The first domain is composed of polymerized phenolic monomers, whereas the second domain is predominately fatty acid derivatives esterified with glycerol.
    [Show full text]
  • Graham Centre Monograph No. 4
    Long-chain omega-3 polyunsaturated fatty acids in ruminant nutrition: benefits to animals and humans Edward H. Clayton Livestock Research Officer – Ruminant Nutrition NSW Department of Primary Industries, Wagga Wagga Agricultural Institute Pine Gully Rd, Wagga Wagga NSW 2650 Graham Centre Monograph No. 4 Edited by: Toni Nugent and Catriona Nicholls August 2014 © State of New South Wales through Department of Trade and Investment, Regional Infrastructure and Services 2014 This publication is copyright. You may download, display, print and reproduce this material in an unaltered form only (retaining this notice) for your personal use or for non-commercial use within your organisation. To copy, adapt, publish, distribute or commercialise any of this publication you will need to seek permission from the NSW Department of Primary Industries. Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (August 2014). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check currency of the information with the appropriate officer of the NSW Department of Primary Industries or the user’s independent advisor. All sources of information in the current publication are acknowledged in the text. No further reproduction should be made without first obtaining prior written approval of the copyright owner. For updates to this publication, check www.grahamcentre.net/ Published by the NSW Department of Primary Industries. First published August 2014 ISBN 978 1 74256 678 8 Cover design by: Sharon Kiss Cover photo by: Toni Nugent, Graham Centre for Agricultural Innovation Author’s Contact: Dr Edward Clayton, Livestock Research Officer, NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Rd, Wagga Wagga NSW 2650 Email: [email protected] Citation: Clayton EH (2014).
    [Show full text]
  • Molecular Tracers and Untargeted Characterization of Water Soluble Organic Compounds in Polar Ice for Climate Change Studies
    PhD Thesis in SCIENCE AND MANAGEMENT OF CLIMATE CHANGE Molecular tracers and untargeted characterization of water soluble organic compounds in polar ice for climate change studies. PhD Candidate Ornela Karroca Supervisor Prof. Andrea Gambaro Co-Supervisor Dr. Roberta Zangrando 1 GLOSSARY 1. ABSTRACT ........................................................................................................................................ 4 2. INTRODUCTION ............................................................................................................................... 5 3. THESIS GOALS ................................................................................................................................ 15 4. EXPERIMENTAL SECTION ............................................................................................................... 16 4.1 Reagents and standard solutions ............................................................................................ 16 4.2 Quantitative analyses .............................................................................................................. 17 4.2.1 Instrumentation and working conditions .......................................................................... 17 4.2.2 Amino acids and phenolic compounds: Method validation .............................................. 21 4.2.2.1 Chromatographic separation ..................................................................................... 21 4.2.2.2 Quality control...........................................................................................................
    [Show full text]