Reflections in the Glasswort Genus Salicornia (Amaranthaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Salicornia L. Samphire; Glasswort; Saltwort Pls Mostly , Occ ; Infl A
5/11/2020: Sarcocornia synonymized within Salicornia; Salicornia pacifica correct name for perennial w N Am plants. Salicornia L. Samphire; Glasswort; Saltwort Pls mostly ⚥, occ ♀♂; infl a fleshy, spicate, terminal thyrse with opp, scalelike, connate bracts; fls in cymes of 3–13 fls, sessile and sunken in depressions at joints of spike; perianth 3–4-lobed, ± pyramidal in outline, saccate below, nearly closed above, but with shallowly lobe-margined, puckered, and slitlike opening through which the 1–2 stamens often protrude; stigmas 2–3; fr utriclelike, strongly compressed laterally; seeds vertical, hairy to rugose; embryo folded; halophytic ann or short-lived per herbs, subshrubs, or shrubs, glab, with succulent, decussate, basally fused, highly reduced opp leaves adnate to st and forming fleshy segms. (L salsus, salt, and cornu, horn, in reference to habitat and to hornlike appearance of brs). (Sarcocornia). 1a Pls per, gen matted with prostrate, ± woody sts rooting at nodes, and erect, sparingly br sts gen 10–20 cm; fertile spikes with 7–14 fertile segms, joints 3–4 mm diam; anthers 0.7–1 mm; seeds with hooked or curled hairs; salt marshes and beaches along coast; AK to Baja Cal; pickelweed, woody g. (Sal. perennis and Sar. perennis misapplied). 1. S. pacifica Standl. 1b Pls taprooted ann 1a 2a Joints of spike (2–)2.5–4 × ca 2(–3) mm; upper margin of c fl 0.5–1 mm below node above; anthers exserted, dehiscing after exsertion; coastal, in salt marshes; AK to CA, also on Atl; low g. (Sal. europaea misapplied) 1 S. depressa Standl. -
Feedstock List (As of 3/2018)
Feedstock List (as of 3/2018) FOG: Fats / Oils / Greases Wastes / Oil Seeds Algae / Aquatic Species Industrial Aloe (Aloe vera) Meadowfoam (Limnanthes alba) Brown grease Cyanobacteria Babassu (Attalea speciosa) Mustard (Sinapis alba) Crude glycerine Halophytes (e.g., Salicornia bigelovii) *Camelina (Camelina sativa)* Nuts Fish oil Lemna (Lemna spp.) *Canola, winter (Brassica napus[occasionally rapa Olive (Olea europaea) Industrial effluent (palm) Macroalgae or campestris])* *Carinata (Brassica carinata)* Palm (Elaeis guineensis) Shrimp oil (Caridea) Mallow (Malva spp.) Castor (Ricinus communis) Peanut, Cull (Arachis hypogaea) Tall oil pitch Microalgae Citrus (Citron spp.) Pennycress (Thlaspi arvense) Tallow / Lard Spirodela (Spirodela polyrhiza) Coconut (Cocos nucifera) Pongamia (Millettia pinnata) White grease Wolffia (Wolffia arrhiza) Corn, inedible (Zea mays) Poppy (Papaver rhoeas) Waste vegetable oil Cottonseed (Gossypium) *Rapeseed (Brassica napus)* Yellow grease Croton megalocarpus Oryza sativa Croton ( ) Rice Bran ( ) Cuphea (Cuphea viscossisima) Safflower (Carthamus tinctorius) Flax / Linseed (Linum usitatissimum) Sesame (Sesamum indicum) Gourds / Melons (Cucumis melo) Soybean (Glycine max) Grapeseed (Vitis vinifera) Sunflower (Helianthus annuus) Hemp seeds (Cannabis sativa) Tallow tree (Triadica sebifera) Jojoba (Simmondsia chinensis) Tobacco (Nicotiana tabacum) Jatropha (Jatropha curcas) Calophyllum inophyllum Kamani ( ) Lesquerella (Lesquerella fenderi) Cellulose Woody Grasses Residues Other Types: Arundo (Arundo donax) Bagasse -
Effect of Salinity and Waterlogging on Growth and Survival of Salicornia Europaea L., and Inland Halophyte
Effect of Salinity and Waterlogging on Growth and Survival of Salicornia europaea L., an Inland Halophyte1 CAROLYN HOWES KEIFFER, BRIAN C. MCCARTFIY, AND IRWIN A. UNGAR, Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 ABSTRACT. Salicornia europaea seedlings were exposed to various salinity and water depths for 11 weeks under controlled, growth chamber conditions. Weekly measurements were made of height, number of nodes, and number of branches per plant. Growth and survival of plants grown with the addition of NaCl were significantly greater (P <0.0001) than for plants which were not given a salt treatment. Although there were no significant (P >0.05) growth differences among plants under different water level conditions within the salt treatment group, plants which were grown without NaCl demonstrated significant decreases in growth in higher water levels, with the greatest growth occurring in the low water treatment group. All plants given a salt treatment survived until the end of the experiment. However, high mortality occurred among the plants that were not salt-treated, with all plants grown under waterlogged conditions dying by week six. The high mortality exhibited by this treatment group indicates that Salicornia, which is typically found in low marsh or inland salt marsh situations, was unable to overcome the combined stress of being continuously waterlogged in a freshwater environment. OHIO J. SCI. 94 (3): 70-73, 1994 INTRODUCTION matter and methane formation is the terminal process in The distribution of plant species in saline environments fresh water marshes (Van Diggelen 1991). Therefore, of inland North America is closely associated with soil plants living in saline waterlogged soils face four major water potentials and other factors influencing the level of problems: 1) inhibition of aerobic root respiration which salinity stress, including microtopography, precipitation, may interfere with the uptake and transport of nutrients and depth of the water table (Ungar et al. -
Southwestern Rare and Endangered Plants
The Importance of Competition in the Isolation and Establishment of Helianthus Paradoxus (Asteraceae) 1 OSCAR W. VAN AUKEN AND JANIS. K. BUSH Department of Earth and Environmental Sciences, University of Texas at San Antonio, San Antonio, TX 78249 1Author for correspondence and reprints. FAX 210-458-5658; E-mail [email protected] ABSTRACT: Helianthus paradoxus (the Pecos or puzzle sunflower) is a threatened, federally listed annual species that is found in a few locations in west Texas and New Mexico. Two greenhouse experiments were conducted to evaluate the ability of H. paradoxus to compete with its progenitors and a with potential ecosystem competitor, Distichlis spicata (saltgrass) in simulated salt marsh and non-salt marsh environments. The results were usually dependent on soil salinity. Helianthus paradoxus was the better competitor in high saline soil and its progenitor H. annuus (common sunflower) was the better competitor in low saline soil. However, H. paradoxus was the better competitor in both high and low saline soils when compared to it progenitor H. petiolaris (plains sunflower) and to D. spicata, an ecosystem competitor. The ability of H. paradoxus to tolerate higher saline conditions, and perhaps even restrict the more geographically widespread H. annuus in saline soils may have allowed H. paradoxus to establish, become genetically isolated and survive as a species in inland salt marshes. Data presented here indicate that while H. paradoxus can grow in low saline soil, interference from H. annuus in low saline soils could restrict H. paradoxus to saline environments within salt marshes. The ability of H. paradoxus to out-compete D. -
B a N I S T E R I A
B A N I S T E R I A A JOURNAL DEVOTED TO THE NATURAL HISTORY OF VIRGINIA ISSN 1066-0712 Published by the Virginia Natural History Society The Virginia Natural History Society (VNHS) is a nonprofit organization dedicated to the dissemination of scientific information on all aspects of natural history in the Commonwealth of Virginia, including botany, zoology, ecology, archaeology, anthropology, paleontology, geology, geography, and climatology. The society’s periodical Banisteria is a peer-reviewed, open access, online-only journal. Submitted manuscripts are published individually immediately after acceptance. A single volume is compiled at the end of each year and published online. The Editor will consider manuscripts on any aspect of natural history in Virginia or neighboring states if the information concerns a species native to Virginia or if the topic is directly related to regional natural history (as defined above). Biographies and historical accounts of relevance to natural history in Virginia also are suitable for publication in Banisteria. Membership dues and inquiries about back issues should be directed to the Co-Treasurers, and correspondence regarding Banisteria to the Editor. For additional information regarding the VNHS, including other membership categories, annual meetings, field events, pdf copies of papers from past issues of Banisteria, and instructions for prospective authors visit http://virginianaturalhistorysociety.com/ Editorial Staff: Banisteria Editor Todd Fredericksen, Ferrum College 215 Ferrum Mountain Road Ferrum, Virginia 24088 Associate Editors Philip Coulling, Nature Camp Incorporated Clyde Kessler, Virginia Tech Nancy Moncrief, Virginia Museum of Natural History Karen Powers, Radford University Stephen Powers, Roanoke College C. L. Staines, Smithsonian Environmental Research Center Copy Editor Kal Ivanov, Virginia Museum of Natural History Copyright held by the author(s). -
Broad-Spectrum Antimicrobial Properties of Medicinally Important Plant Jatropha Curcas L
Volume 4, Issue 3, September – October 2010; Article 002 ISSN 0976 – 044X BROAD-SPECTRUM ANTIMICROBIAL PROPERTIES OF MEDICINALLY IMPORTANT PLANT JATROPHA CURCAS L. Amit Sharma*, Sonal Saxena, Uzma Rani, Shilpa Rajore, Amla Batra Plant Biotechnology Laboratory, Department of Botany, University of Rajasthan, Jaipur, India Email: [email protected] ABSTRACT In the present study the effectiveness of Jatropha curcas on inactivation of some microorganisms i.e. Escherichia coli, Pseudomonas fluorescens, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis were determined. The filter paper disc method was used for screening of crude ethanolic extract of leaves for antimicrobial activity. The paper discs saturated with extract were placed on the surface of the sterilized nutrient agar medium that had been inoculated with the test organisms by using a sterile swab. The diameters of microbial inhibition zones were measured after 24 hours of incubation at 37°C. According to the methodology used, it was possible to conclude that the ethanolic extract presented antimicrobial activity against Escherichia coli, Pseudomonas fluorescens, Pseudomonas aeruginosa and Staphylococcus aureus. No antimicrobial activity was found against Bacillus subtilis. Ethanolic extract of Jatropha leaves presented the largest inhibition zones (i.e. 11mm.) against E. coli. Keywords: Jatropha curcas L., Ethanolic extract, E. coli, P. fluorescens, P. aeruginosa, S. aureus, B. subtilis. INTRODUCTION MATERIALS AND METHODS Human beings have been utilizing plants for basic Plant material preventive and curative health care since time Plant material used for this study was collected from immemorial. Recent estimations suggest that over 9,000 University Botanical Garden, Botany Department, plants have been known for medicinal applications in University of Rajasthan, Jaipur, India. -
Common Edible Seaweeds in the Gulf of Alaska
eliciousor millennia, Alaska edible Natives have seaweedssubsisted COMMON EDIBLE Don the wild edibles—plants, animals, and F seaweeds—found in abundance along Alaska’s shores. In this book, Dr. Dolly Garza, a Haida-Tlingit Indian, shows you how to look for, identify, harvest, preserve, and prepare several species of seaweeds SEAWEEDS and one plant for tasty snacks or for the dinner table. IN THE GULF OF ALASKA A University of Alaska Fairbanks professor emerita, Dolly was raised in southeast Alaska Second Edition where her family routinely harvested seaweeds as a diet staple, a practice they continue today. Dolly enjoys sharing her traditional Native knowledge through presentations to Elderhostel groups, youth groups, and others. In this book she shares with you her lifetime of first-hand knowledge about the pleasures of harvesting, preparing, and eating some of the most common and delectable wild edibles found along Gulf of Alaska shores. US $10.00 CAN $10.00 DOLLY GARZA Seaweeds book cover.indd 1 3/28/12 9:30 AM COMMON EDIBLE SEAWEEDS IN THE GULF OF ALASKA Second Edition DOLLY GARZA Published by Alaska Sea Grant, University of Alaska Fairbanks SG-ED-46 Elmer E. Rasmuson Library Cataloging in Publication Data Garza, Dolly A. Common edible seaweeds in the Gulf of Alaska / Dolly Garza. — Fair- banks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks. p. : ill. ; cm. - (Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46) 1. Marine algae as food—Alaska—Alaska, Gulf of. 2. Cookery (Marine algae) I. Title. II. Series: Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-46. -
Cactodera Salina N. Sp. from the Estuary Plant, Salicornia Bigelovii, in Sonora, Mexico 1
Journal of Nematology 29(4):465-473. 1997. © The Society of Nematologists 1997. Cactodera salina n. sp. from the Estuary Plant, Salicornia bigelovii, in Sonora, Mexico 1 J. G. BALDWIN, 2 M. MUNDO-OCAMPO, 2 AND M. A. McCLURE B Abstract: Cactodera salina n. sp. (Heteroderinae) is described from roots of the estuary plant Salicornia bigelovii (Chenopodiaceae), in Puerto Pefiasco, Sonora, Mexico, at the northern tip of the Sea of Cortez. The halophyte host is grown experimentally for oilseed in plots flooded daily with seawater. Infected plants appear to be adversely affected by C. salina relative to plants in noninfested plots. Cactodera salina extends the moi-phological limits of the genus. Females and cysts have a very small or absent terminal cone and deep cuticular folds in a zigzag pattern more typical of Heterodera mad Globodev'a than of Cactodera spp. Many Cactodera spp. have a tuberculate egg surface, whereas C. salina shares the character of a smooth egg with C. amaranthi, C. weissi, and C. acnidae. Only C. miUeri and C. acnidae have larger cysts than C. salina. Face patterns of males and second-stage juveniles, as viewed with scanning electron microscopy, reveal the full complement of six lip sectors as in other Cactodera spp. Circumfenestrae of C. salina are typical for the genus. Key words: Cactodera salina, cyst nematodes, halophyte, Heteroderinae, nematode, new species, Sali- co~zia bigelovii, scanning electron microscopy, Sea of Cortez, taxonomy. Cactodera Krall and Krall, 1978 (Hetero- y Oceanos (CEDO) in Puerto Pefiasco, So- derinae Filipjev and Schuurmans Stek- nora, Mexico, at the northern tip of the Sea hoven, sensu Luc et al., 1988) includes nine of Cortez. -
A Cu/Zn Superoxide Dismutase from Jatropha Curcas Enhances Salt Tolerance of Arabidopsis Thaliana
A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana Z.B. Liu1, W.J. Zhang1, X.D. Gong3, Q. Zhang4 and L.R. Zhou2,3 1Key Laboratory of Bio-Resources and Eco-Environment, Ministry Education, College of Life Sciences, Sichuan University, Chengdu, China 2Architecture & Environment Department, Sichuan University, Chengdu, Sichuan, China 3Civil Engineering Department, University of British Columbia, Vancouver, BC, Canada 4Panzhihua University, Panzhihua, Sichuan, China Corresponding author: L.R. Zhou E-mail: [email protected] Genet. Mol. Res. 14 (1): 2086-2098 (2015) Received April 9, 2014 Accepted October 23, 2014 Published March 20, 2015 DOI http://dx.doi.org/10.4238/2015.March.20.19 ABSTRACT. Superoxide dismutases (SODs) are involved in protecting plants against diverse biotic and abiotic stresses. In the present study, a novel Cu/Zn-SOD gene (JcCu/Zn-SOD) was cloned from Jatropha curcas L. Quantitative reverse transcription-polymerase chain reaction analysis revealed that JcCu/Zn-SOD is constitutively expressed in different tissues of J. curcas and induced under NaCl treatment. To characterize the function of this gene with respect to salt tolerance, the construct p35S:JcCu/Zn-SOD was developed and transformed into Arabidopsis using Agrobacterium-mediated transformation. Compared with wild-type, transgenic plants over-expressing JcCu/Zn-SOD showed enhanced tolerance to salt stress during germination, seedling establishment, and growth in terms of longer root, larger rosette area, and a larger number of leaves in addition to higher SOD activity levels Genetics and Molecular Research 14 (1): 2086-2098 (2015) ©FUNPEC-RP www.funpecrp.com.br SOD from Jatropha curcas enhances salt tolerance 2087 under NaCl stress. -
Salicornia L., Chenopodiaceae)
TAXON 56 (4) • November 2007: 1143–1170 Kadereit & al. • Phylogeny and biogeography of Salicornia A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae) Gudrun Kadereit1*, Peter Ball2, Svetlana Beer3, Ladislav Mucina4, Dmitry Sokoloff 5, Patrick Teege1, Ahmet E. Yaprak5 & Helmut Freitag6 1 Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany 2 Biology Department, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada 3 Higher Plants Department, Moscow State University, 119992 Moscow, Russia 4 Dept. of Botany & Zoology, Evolutionary Plant Biology & Conservation Group, Stellenbosch University, 7602 Matieland, South Africa 5 Ankara University, Science Faculty, Department of Biology, Besevler/Ankara, Turkey 6 Arbeitsgruppe Systematik und Morphologie der Pflanzen, Universität Kassel, 34109 Kassel, Germany * Author for correspondence ([email protected]) In this study we analysed ETS sequence data of 164 accessions belonging to 31 taxa of Salicornia, a wide- spread, hygrohalophytic genus of succulent, annual herbs of Chenopodiaceae subfam. Salicornioideae, to investigate phylogenetic and biogeographical patterns and hypothesise about the processes that shaped them. Furthermore, our aim was to understand the reasons for the notorious taxonomic difficulties in Salicornia. Salicornia probably originated during the Miocene somewhere between the Mediterranean and Central Asia from within the perennial Sarcocornia -
Edible Halophytes of the Mediterranean Basin Potential
Trends in Food Science & Technology 74 (2018) 69–84 Contents lists available at ScienceDirect Trends in Food Science & Technology journal homepage: www.elsevier.com/locate/tifs Review Edible halophytes of the Mediterranean basin: Potential candidates for novel T food products ∗ ∗∗ S.A. Petropoulosa, , A. Karkanisa, N. Martinsb, I.C.F.R. Ferreirab, a Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446, Nea Ionia, Magnesia, Greece b Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal ARTICLE INFO ABSTRACT Keywords: Background: Recent trends in the food science industry and consumers’ preferences for diversified diets suggest Edible greens the consumption of wild greens not only as diet complements but also as healthy and functional foods for Halophytic species targeted conditions, rendering its commercial cultivation of major importance in order to avoid irrational Mediterranean diet gathering and genetic erosion threats. The Mediterranean basin abounds in wild edible species which have been Native plants used for food and medicinal purposes by human throughout the centuries. Many of these species can be found Underutilized species near coastal areas and usually grow under saline conditions, while others can adapt in various harsh conditions Wild greens including high salinity. Scope and approach: The aim of this review focuses on listing and describing the most important halophyte species that traditionally have been gathered by rural communities of the Mediterranean basin, while special interest will be given on their chemical composition and health promoting components. Cases of commercially cultivated halophytes will be also presented to highlight their potential as alternative cash crops, while results from in vitro and in vivo health effects will be presented. -
Pharmacological Insights Into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief and Antibiotics-Type Mechanisms
molecules Review Pharmacological Insights into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief and Antibiotics-Type Mechanisms Rocco Giordano 1,† , Zeinab Saii 1,†, Malthe Fredsgaard 2,†, Laura Sini Sofia Hulkko 2,†, Thomas Bouet Guldbæk Poulsen 1 , Mikkel Eggert Thomsen 1, Nanna Henneberg 1 , Silvana Maria Zucolotto 3 , Lars Arendt-Nielsen 1 , Jutta Papenbrock 4 , Mette Hedegaard Thomsen 2 and Allan Stensballe 1,* 1 Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; [email protected] (R.G.); [email protected] (Z.S.); [email protected] (T.B.G.P.); [email protected] (M.E.T.); [email protected] (N.H.); [email protected] (L.A.-N.) 2 Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; [email protected] (M.F.); [email protected] (L.S.S.H.); [email protected] (M.H.T.) 3 Center of Health Sciences, Department of Pharmaceutical Science, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040–970 Florianópolis, Brazil; [email protected] 4 Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany; [email protected] * Correspondence: [email protected]; Tel.: +45-61608786 † These authors contributed equally to this work. Citation: Giordano, R.; Saii, Z.; Abstract: The pharmacological activities in bioactive plant extracts play an increasing role in sustain- Fredsgaard, M.; Hulkko, L.S.S.; able resources for valorization and biomedical applications. Bioactive phytochemicals, including Poulsen, T.B.G.; Thomsen, M.E.; natural compounds, secondary metabolites and their derivatives, have attracted significant attention Henneberg, N.; Zucolotto, S.M.; for use in both medicinal products and cosmetic products.