The ICONOSCOPE

Total Page:16

File Type:pdf, Size:1020Kb

The ICONOSCOPE Wireless World, September ist, 1933 197 The ICONOSCOPE cell of average sensitivity, say, ro micro- America's amperes per lumen, a single picture ele- ment would produce a current of the order of 1.43 x ro -11 ampere. In the time Latest available this would produce a charge of 1 x 10-'7 coulomb, corresponding to about Television 63 electrons. All this means that tre- mendous amplification is necessary if an The Iconoscope, consisting of cathode ray tube containing the mosaic screen, and outdoor scene is to be transmitted success- the external deflecting coils. Favourite fully. The trouble with the scanning disc sys- tem of taking the picture apart is that the N interesting step towards practical according to the flow of current, and the Ight from a single point of the scene television at a picture is thus translated into an electro- was announced affects the photocell for such a short space recent convention held in Chicago static screen made up of many thousand of time. If the photocell could see all of by the Institute of Radio Engi- electrical charges, each condenser being the picture all of the time, as is true of neers ; the ` ` Iconoscope of charged according to the intensity of the " Vladimir the human eye, the efficiency or light Zworykin relating use of a light falling upon its photocell. to the cathode gathering power compared to that of a ray tube in place of a disc. The Within the same glass bulb as the scanning disc scanner would increase as the num- Iconoscope is to be several thou- mosaic is the electron gun which throws a claimed ber of picture elements. Thus with 70,000 sand times as efficient as disc beam of electrons at this screen and which the scanning elements the Iconoscope, which accom- . even when, it is working far below its is made to sweep across the screen hori- plishes this seeing -all -at -once, is theoretic- theoretical maximum efficiency. It makes zontally and vertically by means of deflect- ally 70,000 times as efficient as the scan- it possible to or ing coils, as in an ray transmit twenty pictures, ordinary cathode ning disc and hence the amplification may more, per second, with a detail corre- tube. Whenever an electron hits a photo- be reduced to a vast degree. Actually the sponding to as as lines per cell it neutralises of charge on the many 25o part the efficiency of the Zworykin device does not square inch. The most feature associated condenser. This discharge cur- important reach this figure, but it is stated to be of the device, however, is its power of rent is picked up, amplified, and trans- several thousand times as imitating mitted to receiving good as the the human eye in regarding a the cathode ray beam scanning disc. picture continuously and in possessing a which is moving across a fluourescent certain degree of retentivity. It replaces screen in synchronism with the scanning mechanical scanning and several stages of beam. The varying discharge currents MOSAt C SIGNAL PLATE amplification ; it is entirely electrical and modulate this receiving beam and hence ELECTRON BEAM P has no moving parts. the screen at the receiver. The Iconoscope consists of two devices -a photoelectric mosaic on which the Increase in Light Values ,z,n, picture is focused by a lens system, and ; Á a cathode ray gun which fires at this The Iconoscope apparently solves one screen a stream of electron projectiles. of the worst problems of television, that The elements of' the device are shown in of getting sufficient light from each point the drawing of. Fig. 1. The signal plate so that the resulting photocurrent can be upon which the picture is focused may effectively amplified. for use at the re- ELECTRON GUN be about 4 x 5 inches in dimensions and ceiver. In his description Dr. Zworykin DEFLECTING COILS on its surface are millions of small photo- states that a desirable picture would in- cells, each consisting of a minute silver volve some 70,000 picture elements. It Fig. I.-Elements of the Iconoscope device. globule sensitised by caesium. These there are twenty pictures per second, the minute photocells like a mosaic are de- time of transmission of each element The mosaic of photocells has the entire posited on an insulating plate, such as a would be 1 /1,400,000 of a second. This picture focused upon it, resulting in the thin sheet of mica, and the back of this is unimportant provided that the light in- continuous emission of electrons accord- plate is made conductive by a metal coat- tensity is sufficient to actuate the photo- ing to the degree of light and shade in the ing. Since both the photocell and the cell in this small time. This is where the picture. once in each repetition of the metal coating are conductors, and they are difficulty lies, however, for the photocell picture the charge on the condenser ac- insulated from one another by mica, each delivers a current depending upon the pro- quired by each element of the mosaic is individual photocell forms a small con- duct of the light intensity and the time released by the cathode ray beam. denser with the metal plate. This capa- during which this light acts. If the time The fact that the transmitting screen is city amounts to several hundred micro- be decreased, the current is reduced. 4 x 5 inches in size is no indication that microfarads per square centimetre, and With a scanning disc the current falls as the receiving screen is limited to this size. the sensitivity of the photocells is equal to the square of the number of picture ele- In fact, Zworykin claims methods of pro- that of the modern caesium oxide type ments because the time decreases for any jecting the picture from the fluourescent cells. increase in the number of holes. It has end of the cathode ray tube upon a larger been virtually impossible, therefore, to external screen by lenses and mirrors. How the Image is Translated televise outdoor scenes because of the diffi- Dr. Zworykin's paper, when available culty of getting enough light. for publication, will contain many most Now, suppose a scene, say, of a well - Again following Dr. Zworykin's reason- interesting facts with reference to the lighted outdoor landscape is focused ing, suppose it be desired to televise this composition of the mosaic, the size of the upon this plate. Since there are varying outdoor scene. A camera with a lens cathode ray beam when it hits the screen, degrees of light and shade, there are vary- working at a speed of F 4.5 would focus the detail secured, etc. In the opinion of ing currents flowing from the individual on a plate about r / 10 lumen. Now, if a well-known American engineers it marks photocells. These currents charge the scanning disc were used to take this another landmark in the history of tele- condensers associated with the photocells picture apart and transmit it into a photo- vision. www.americanradiohistory.com.
Recommended publications
  • Basic Electronics
    14 Basic Electronics In this chapter, we lead you through a study of the basics of electronics. After completing the chapter, you should be able to Understand the physical structure of semiconductors. Understand the essence of the diode function. Understand the operation of diodes. Realize the applications of diodes and their use in the design of rectifiers. Understand the physical operation of bipolar junction transistors. Realize the applications of bipolar junction transistors. Understand the physical operation of field-effect transistors. Realize the application of field-effect transistors. Perform rapid analysis of transistor circuits. REFERENCES 1. Giorgio Rizzoni, Principles and Applications of Electrical Engineering, McGraw Hill, 2003. 2. J. R. Cogdel, Foundations of Electronics, Prentice Hall, 1999. 3. Donald A., Neaman, Electronic Circuit Analysis and Design, McGraw Hill, 2001. 4. Sedra/Smith, Microelectronic Circuits, Oxford, 1998. 1 Basic Electronics 2 14.1 INTRODUCTION Electronics is one of the most important fields in existence today. It has greatly influenced everything since early 1900s. Everyone nowadays realize the impact of electronics on our daily life. Table 14-1 shows many important areas with tremendous impact of electronics. Table 14-1 Various Application Areas of Electronics Area Examples of Applications Automotives Electronic ignition system, antiskid braking system, automatic suspension adjustment, performance optimization. Aerospace Airplane controls, spacecrafts, space missiles. Telecommunications Radio, television, telephones, mobile and cellular communications, satellite communications, military communications. Computers Personal computers, mainframe computers, supercomputers, calculators, microprocessors. Instrumentation Measurement equipment such as meters and oscilloscopes, medical equipment such as MRI, X- ray machines, etc. Microelectronics Microelectronic circuits, microelectromechanical systems. Power electronics Converters, Radar Air traffic control, security systems, military systems, police traffic radars.
    [Show full text]
  • 1999-2017 INDEX This Index Covers Tube Collector Through August 2017, the TCA "Data Cache" DVD- ROM Set, and the TCA Special Publications: No
    1999-2017 INDEX This index covers Tube Collector through August 2017, the TCA "Data Cache" DVD- ROM set, and the TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual.................................................................
    [Show full text]
  • Tabulation of Published Data on Electron Devices of the U.S.S.R. Through December 1976
    NAT'L INST. OF STAND ms & TECH R.I.C. Pubii - cations A111D4 4 Tfi 3 4 4 NBSIR 78-1564 Tabulation of Published Data on Electron Devices of the U.S.S.R. Through December 1976 Charles P. Marsden Electron Devices Division Center for Electronics and Electrical Engineering National Bureau of Standards Washington, DC 20234 December 1978 Final QC— U.S. DEPARTMENT OF COMMERCE 100 NATIONAL BUREAU OF STANDARDS U56 73-1564 Buraev of Standard! NBSIR 78-1564 1 4 ^79 fyr *'• 1 f TABULATION OF PUBLISHED DATA ON ELECTRON DEVICES OF THE U.S.S.R. THROUGH DECEMBER 1976 Charles P. Marsden Electron Devices Division Center for Electronics and Electrical Engineering National Bureau of Standards Washington, DC 20234 December 1978 Final U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary / Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director - 1 TABLE OF CONTENTS Page Preface i v 1. Introduction 2. Description of the Tabulation ^ 1 3. Organization of the Tabulation ’ [[ ] in ’ 4. Terminology Used the Tabulation 3 5. Groups: I. Numerical 7 II. Receiving Tubes 42 III . Power Tubes 49 IV. Rectifier Tubes 53 IV-A. Mechanotrons , Two-Anode Diode 54 V. Voltage Regulator Tubes 55 VI. Current Regulator Tubes 55 VII. Thyratrons 56 VIII. Cathode Ray Tubes 58 VIII-A. Vidicons 61 IX. Microwave Tubes 62 X. Transistors 64 X-A-l . Integrated Circuits 75 X-A-2. Integrated Circuits (Computer) 80 X-A-3. Integrated Circuits (Driver) 39 X-A-4. Integrated Circuits (Linear) 89 X- B.
    [Show full text]
  • Inventing Television: Transnational Networks of Co-Operation and Rivalry, 1870-1936
    Inventing Television: Transnational Networks of Co-operation and Rivalry, 1870-1936 A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy In the faculty of Life Sciences 2011 Paul Marshall Table of contents List of figures .............................................................................................................. 7 Chapter 2 .............................................................................................................. 7 Chapter 3 .............................................................................................................. 7 Chapter 4 .............................................................................................................. 8 Chapter 5 .............................................................................................................. 8 Chapter 6 .............................................................................................................. 9 List of tables ................................................................................................................ 9 Chapter 1 .............................................................................................................. 9 Chapter 2 .............................................................................................................. 9 Chapter 6 .............................................................................................................. 9 Abstract ....................................................................................................................
    [Show full text]
  • Sept. 25, 1956 A. R. KNIGHT V
    Sept. 25, 1956 A. R. KNIGHT 2, 764,698 CONTROL SYSTEM Filed Nov. 23', 1942 3 Sheets-Sheet 1 F/ ‘6. .2. /MM a“F E C MM V a, a.1 Em C m0 W k m d ,a b 5J WWW/1%? FIG. 3. F76; 4 . TIME 7/045 F 16.5 . 77,15 Sept. 25, 1956 A. R. KNIGHT 2,764,698 CONTROL SYSTEM Filed NOV. 25, 1942 5 Sheets—Sheet 2 m+ _ lzvve/vraq 42 TH up 2 K/waw 7 United States Patent '0 2,764,698 Patented Sept- 25, 1956 2 Figure 21is a sirnilar‘view of 'a reference image on an other iconoscope for purposes that will appear later. 2,764,698 Figure "3 illustrates the ‘relationship of'lig'ht- intensity with‘respect to time ‘fortheiicon'oscope mosaic of Fig CONTROL SYSTEM ure '1. 1 Arthur¢R.‘=Kniglit, Dayton,‘ Ohio Figure 4"il1u'stra-tes the relationship ‘of the'light' intensity with respect 'toltime ‘for‘th‘e iconoscope‘mosaic .of Fig Application November 23, 1942, Serial ~No.-.466,972 ure 2. ~ . ‘Figure 5 illustrates the differential light intensity with 8‘Cla'ims. (Cl; 250-214) I 10 ‘respect to‘ time (of the two iconoscope mosaics represented (Granted under Title 35, U.:S. Code ‘(1952), sec. .266) in Figures 1'and'2. Figure 6 illustrates‘the circuit diagram of one form of my invention. Figure 7 illustrates the. time relationshiprof the square The invention described herein may be-manufactured vwave voltage of the circuit, the sweep voltages of the and .usedby or ‘for vthe Government for governmental iconoscope, and the differential output voltages ‘of the purposes, without .the payment to='me of any royalty two iconoscopes.
    [Show full text]
  • Photosensitive Camera Tubes and Devices Handbook
    11.2 PHOTOSENSITIVE CAMERA TUBES AND DEVICES 11.1 PHOTOSENSITIVITY / 11.2 11.1.1 Photoemitters / 11.2 11.1.2 Photoconductors / 11.5 11.2 PHOTOELECTRIC-INDUCED TELEVISION SIGNAL GENERATION / 11.5 11.2.1 Photoemission-Induced Charge Images / 11.5 11.2.2 Secondary-Emission-Induced Charge Images / 11.6 11.2.3 Electron-Bombardment-Induced Conductivity / 11.8 11.2.4 Photoconductive-Generated Charge Images / 11.9 11.2.5 Generation of Video Signals by Scanning / 11.11 11.2.6 Low-Velocity Scanning / 11.11 11.2.7 Return-Beam Signal Generation / 11.13 11.2.8 High-Velecity Scanning / 11.14 11.3 EVOLUTION AND DEVELOPMENT OF TELEVISION CAMERA TUBES / 11.14 11.3.1 Nonstorage Tubes / 11.14 11.3.2 Storage Tubes / 11.15 11.4 VIDICON-TYPE CAMERA TUBES / 11.26 11.4.1 Antimony Trisulfide Photoconductor / 11.26 11.4.2 Lead Oxide Photoconductor / 11.28 11.4.3 Selenium Photoconductor / 11.30 11.4.4 Silicon-Diode Photoconductive Target / 11.31 11.4.5 Cadmium Selenide Photoconductor / 11.32 11.4.6 Zinc Selenide Photoconductor / 11.32 11.5 INTERFACE WITH THE CAMERA / 11.33 11.5.1 Optical Input / 11.34 11.5.2 Operating Voltages / 11.34 11.5.3 Dynamic Focusing / 11.36 11.5.4 Beam Blanking / 11.36 11.5.5 Beam Trajectory Control / 11.38 11.5.6 Video Output / 11.40 11.5.7 Deflecting Coils and Circuits / 11.42 11.5.8 Magnetic Shielding / 11.42 11.5.9 Anti-Comet-Tail Tube / 11.42 11.6 CAMERA TUBE PERFORMANCE CHARACTERISTICS / 11.43 11.6.1 Sensitivity and Output / 11.44 11.6.2 Resolution / 11.45 11.6.3 Lag / 11.49 11.6.4 Lag-Reduction Techniques / 11.50 11.7 SINGLE-TUBE COLOR CAMERA SYSTEMS / 11.54 11.7.1 Single-Output-Signal Tubes / 11.55 11.7.2 Multiple-Output-Signal Tubes / 11.58 11.8 SOLID-STATE IMAGER DEVELOPMENT / 11.60 11.8.1 Early Imager Devices / 11.60 11.8.2 Improvements in Signal-to-Noise Ratio / 11.60 11.8.3 CCD Structures / 11.61 11.8.4 New Developments / 11.63 REFERENCES / 11.64 PHOTOSENSITIVITY 11.3 11.1 PHOTOSENSITIVITY A photosensitive camera tube is the light-sensitive device utilized in a television camera to develop the video signal.
    [Show full text]
  • Introduction
    Cambridge University Press 978-1-107-14550-4 — Applied Nanophotonics Sergey V. Gaponenko , Hilmi Volkan Demir Excerpt More Information 1 Introduction 1.1 FROM PASSIVE VISION TO ACTIVE HARNESSING OF LIGHT Light plays a major role in our perceptual cognition through vision, which occurs in the very narrow spectral range of electromagnetic radiation from approximately 400 nm (violet) to approximately 700 nm (red), whereas the whole wealth of electromagnetic wavelengths extends from picometers (gamma rays) to kilometers (long radiowaves) and beyond. In the early stages of technology, humans strived for enhancement of visual per- ception. Major highlights are: the invention of eye glasses (Salvino D’Armate, Italy, at the end of the thirteenth century); the invention of the microscope c. 1590 by two Dutch spectacle makers, Zacharias Jansen and his father Hans; and the invention of the telescope in 1608 by Hans Lippershey, also a Dutch eyeglass maker ( Figure 1.1 ). These devices only enhanced our passive vision by means of light coming from the sun or another source, e.g., a candle or an oven, and scattered toward our eyes. At that time no attempt had been made to generate light other than through the use of fi re, or to store images in any fashion. Much later, in 1839, Louis Daguerre introduced the fi rst photocamera (daguerreotype) in which a light-sensitive AgI-coated plate was used for image recording. This was the fi rst manmade optical processing device. In 1873–1875, Willoughby Smith in the USA and Ernst Werner Siemens (Siemens 1875 ) in Germany described the remarkable sensitivity of a selenium fi lm conductivity to light illumination, thus creating a basis for photoelectric detectors.
    [Show full text]
  • A 24-Ee-C. 4, 4-Ce 1727 Apaavars 1 Sept
    Sept. 25, 1956 A. R. KNIGHT 2,764,698 CONTROL, SYSTEM Filed Nov. 23, 1942 3. Sheets-Sheet . a F/s, 2. 1aaaaasacas May-seat AfaaczeoMcS2a2My MM G. s. a / es. 42. al af 2 C a/ e 7 y 2 C2 7Mya O 72M-7a 1FM e.a. af y a 1% 17a7a-7 U/ae / M7// Ga-2 a 24-ee-c. 4, 4-ce 1727 apaavars 1 Sept. 25, 1956 A. R. KNIGHT 2,764,698 .CONTROL SYSTEM 1727 a 74/a McMawata/7 as 12-tea/Vass/ 2,764,698 United States Patent Office Patented Sept. 25, 1956 2 Figure 2 is a similar view of a reference image on an other iconoscope for purposes that will appear later. 2,764,698 Figure 3 illustrates the relationship of light intensity with respect to time for the iconoscope mosaic of Fig CONTROL SYSTEM ure 1. Arthur R. Knight, Dayton, Ohio Figure 4 illustrates the relationship of the light-intensity with respect to time for the iconoscope mosaic of Fig Application November 23, 1942, Serial No. 466,972 ure 2. - Figure 5 illustrates the differential light intensity with 8 Claims. (C. 250-214) () respect to time of the two iconoscope mosaics represented (Granted under Title 35, U.S. Code (1952), sec. 266) in Figures 1 and 2. Figure 6 illustrates the circuit diagram of one form of my invention. Figure 7 illustrates the time relationship. of the square The invention described herein may be manufactured wave voltage of the circuit, the sweep voltages of the and used by or for the Government for governmental iconoscope, and the differential output voltages of the purposes, without the payment to me of any royalty two iconoscopes.
    [Show full text]
  • R&D Report 1958-22
    RESEARCH OEPARfMfMT TELEVISION SIGNAL STORAGE USING IMAGE ICONOSCOPE Report Mo, T~070 ( 1958/22) GcF, "ewell, A.I'o1,LEEo PcHoCc Legate Thi. Report i. the propert1 of the Briti.h BroadcastiDg CorporatioD aDd aa1 Dot be reproduoed in an1 form without the writteD perai •• ioD of the Corporation. Report No. T-070 TELEVISION SIGNAL STORAGE USING IMAGE ICONOSCOPE Section Title Page SUMMARY 0 0 • • • • • 0 0 • 0 C • • " • 0 0 • • 0 • 0 • , • co, 0 •• 1 1 1 INTRODUCTION .. • '" f) 0 ,., .. .. • • ., • c .. '" .. '" " () • C '" ~ r <i" .. • ,. .. 2 DESCRIPTION OF THE SYSTEM 1 1 2.1- General. 0 0 2.2. Production of the Charge Pattern 2 2 2.3. "Reading off" the Stored Signal 0 3 2.4. Inherent Advantages of the System 3 3 PRACTICAL IMPERFECTIONS IN THE SYSTEM. 0 ••• 0 , • 0 • 0 0 •• 3.1. The Non-uniform Effect of the Potential Gradient between the Final Anode and the Mosaic Elements 3 3.2. "Whi te-crushing" • • • • • • • • • • • 3 4 3.3. Spurious Charge Patterns • e. • 3.4. Shadow Effects due to "Over-Writing" 4 4 3.5. "Black-crushing" . 0 • • • • • , 5 3.6. Possible Remedy for these Defects 3.7. Possible Damage to Photocathode • 5 5 4 DESCRIPTION OF EXPERIMENTAL SYSTEM • • 0 • • • • • • • • • • • • • • • I 8 I 5 RESULTS OF INVESTIGATION .. .. " Cl " " 0 0 ,~ • '" e .. '" e @ '" • .. ., .. " .. ( J 8 6 CONCLUSIONS 0 , • • • 0 , 0 • • 0 , • 0 0 9 7 REFERENCES () <, " 0 ::) 0 " " .. (., [} 0 f) .. " 0 " .. .. .. G " Cl " .. 0 0 0 0 " Report No. T-070 August 1958 (1958/22) TELEVISION SIGNAL STORAGE USING IMAGE ICONOSCOPE SUMMARY This report describes an investigation of a system of television storage using the image section of an image-iconoscope camera tube.
    [Show full text]
  • 1999-2019 INDEX This Index Covers Tube Collector Through April 2019, the TCA "Data Cache" DVD-ROM Set, and the Following TCA Special Publications: No
    1999-2019 INDEX This index covers Tube Collector through April 2019, the TCA "Data Cache" DVD-ROM set, and the following TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual.................................................................
    [Show full text]
  • Modeling of Electron Emission : Its Physics and Novel Applications
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Modeling of electron emission : its physics and novel applications Wu, Lin 2009 Wu, L. (2009). Modeling of electron emission : its physics and novel applications. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/15554 https://doi.org/10.32657/10356/15554 Downloaded on 01 Oct 2021 16:57:43 SGT ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library MODELING OF ELECTRON EMISSION: MODELING ITS PHYSICS AND NOVEL APPLICATIONS ITS PHYSICS AND MODELING OF ELECTRON EMISSION: ITS PHYSICS AND NOVEL APPLICATIONS WU LI N WU LIN SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING 2009 2009 ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library MODELING OF ELECTRON EMISSION: ITS PHYSICS AND NOVEL APPLICATIONS WU LIN School of Electrical & Electronic Engineering A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2009 ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library ACKNOWLEDGEMENTS First and foremost, I would like to express my gratitude to my advisor Professor Ang Lay Kee Ricky, for his valuable guidance, consistent support and encouragement throughout the course of my graduate study at Nanyang Technological University in Singapore. From the start of my graduate course till the submission of this dissertation, Dr Ang has been inspirational and is the role model of a hardworking and creative young scientist, who has exhibited lots of passion in his work both in the teaching duties and research.
    [Show full text]
  • Aperture Compensation for an RCA Type 6326 Vidicon Camera Tube
    Aperture compensation for an RCA type 6326 Vidicon camera tube Item Type text; Thesis-Reproduction (electronic) Authors Enloe, Louis Henry, 1933- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 14:23:36 Link to Item http://hdl.handle.net/10150/319717 APERTURE COMPENSATION FOR AN RCA TYPE 6326 VIDICON CAMERA TUBE by Louis H. Enloe A Thesis submitted to the faculty of the Department of Electrical Engineering in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in the Graduate College, University of Arizona 1956 Approved ^ J Din^g£or of Thesis Date This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Request for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major depart­ ment or the dean of the Graduate College when in their judgment the proposed use of the material is in the intere&s of scholarship. In all other instances, however, per­ mission must be obtained'-from: the author.
    [Show full text]