Building the Foundation: Whole Numbers in the Primary Grades

Total Page:16

File Type:pdf, Size:1020Kb

Building the Foundation: Whole Numbers in the Primary Grades New ICMI Study Series Maria G. Bartolini Bussi Xu Hua Sun Editors Building the Foundation: Whole Numbers in the Primary Grades The 23rd ICMI Study New ICMI Study Series Published under the auspices of the International Commission on Mathematical Instruction (ICMI) Series Editors: Jill Adler, ICMI President Ferdinando Arzarello, ICMI Past President Abraham Arcavi, ICMI Secretary General Information on the ICMI Study programme and on the resulting publications can be obtained at the ICMI website http://www.mathunion.org/ICMI/ or by contacting the ICMI Secretary General, whose email address is available on that website. More information about this series at http://www.springer.com/series/6351 Maria G. Bartolini Bussi • Xu Hua Sun Editors Building the Foundation: Whole Numbers in the Primary Grades The 23rd ICMI Study Editors Maria G. Bartolini Bussi Xu Hua Sun Department of Education and Humanities Faculty of Education University of Modena and Reggio Emilia University of Macau Modena, Italy Macao, China Additional material to this book can be downloaded from http://extras.springer.com. ISSN 1387-6872 ISSN 2215-1745 (electronic) New ICMI Study Series ISBN 978-3-319-63554-5 ISBN 978-3-319-63555-2 (eBook) https://doi.org/10.1007/978-3-319-63555-2 Library of Congress Control Number: 2017960195 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Foreword The International Commission on Mathematical Instruction (ICMI) was established at the Fourth International Congress of Mathematicians held in Rome in 1908. It was initiated to support active interests in school education which were widespread among mathematicians at the time. ICMI is crucial for the International Mathematical Union (IMU), because education and research cannot be separated from each other. ICMI and the IMU function together for mathematics like the two wheels of a cart, since ICMI develops education systems which enable mathematics to prevail in society, while the IMU contributes to society through the development of pure and applied mathematical sciences. I have been serving the IMU as President since January 2015. Since I served the IMU previously (1995–2002), I have noticed that ICMI and the IMU are working together to establish collaborations given that mathematics education is a major preoccupation of most scientific organisations nowadays. My first physical involvement with ICMI as IMU President started with my par- ticipation in the ICMI Study 23 Conference in Macao in May/June 2015. The ICMI Study 23 was planned and run jointly by its local and foreign co-chairs, with support from the University of Macau. The International Program Committee (IPC) meeting of ICMI Study 23 in Berlin was also supported by the IMU Secretariat. I saw that the support and cooperation of ICMI and the IMU have been essential throughout these activities. I was very pleased to learn that ICMI Study 23 addressed, for the first time, mathematics teaching and learning in primary school (and pre-school as well) for all, and I believe that it will have a larger impact for later mathematics knowing. I hope the volume supports the whole of mathematics education. Kyoto University Shigefumi Mori Kyoto, Japan v Preface I am particularly proud of the publication of this 23rd volume in the series of ICMI Studies, not only since this means that a long scientific and organisational work has been happily accomplished, but also for the outstanding quality of its content and for the absolute relevance of the theme. ICMI Study 23 fully realises the objectives of ICMI ‘to offer a forum for promoting reflection, collaboration and the exchange and dissemination of ideas on the teaching and learning of mathematics from pri- mary to university level’. Concentrating on whole numbers in primary grades repre- sents a relevant signal of interest for a crucial moment in educational programmes everywhere in the world. Never as in this case it is truer that the study addresses a theme of particular significance to contemporary mathematics education. The content of the volume is in perfect consonance with the overall ICMI pro- grammes, according to which ‘ICMI works to stimulate the creation, improvement and dissemination of recent research findings and of the available resources for instruction (e.g curricular materials, pedagogical methods, the appropriate use of technology, etc.). The objective is of providing links among educational research- ers, curriculum designers, educational policy makers, teachers of mathematics, mathematicians, mathematics educators and others interested in mathematical edu- cation around the world’. The people of this study have worked on a project that is challenging both scien- tifically and culturally: the topics in the chapters and in the panel reports of the book, the commentaries on them written by eminent scholars, and the two appendi- ces face a large horizon of themes that go well beyond mathematics and show how focusing on the learning and teaching of whole numbers is an immensely demand- ing task that requires a wide range of competencies in addition to mathematics, from linguistics to ethnomathematics, to neuroscience and more. The processes according to which kids learn and elaborate whole numbers and their properties are incredibly rich and intermingled with the culture where they live and with which they can speak and think, as well as with the artefacts, which the tradition of their countries or the most recent technology allows them to use. vii viii Preface The book builds, in this sense, a real-world map of whole number arithmetic: even if it is far from being complete, it does cover many regions of the world, from East to West, from North to South, including many non-affluent countries. The con- tributions from the different cultures illustrate the fascinating enterprise of the mathematics teachers at the primary level, who from the one side speak the univer- sal language of mathematics, but from the other side can link it to the specific lan- guage and cultural environment of their own countries, in order to make it accessible to their students. This amazing synthesis emerges clearly from the research and practice described in the volume, which has the not-common capacity of intertwin- ing the rigour of mathematics, linguistics, cognitive sciences, etc. with the extraor- dinary different ways according to which numbers are alive in the different regions. It is particularly significant that the study and the volume also had the contribu- tions of invited people from another relevant IMU-ICMI programme, the ‘Capacity and Networking Project (CANP)’, aimed to enhance mathematics education at all levels in developing countries so that their people are capable of meeting the chal- lenges these countries face. Their inputs have been important, since they empha- sised the problems and the specificities of teaching whole numbers in those countries and contributed to the richness and variety of voices in the volume. The 536 pages of the book demonstrate the incredibly intense work of this study, which lasted almost five years, from the appointment of the International Program Committee and its two co-chairs at the end of 2012, to the preparation and organisa- tion of its Conference, which was held in Macao in June 2015, to the last intense work for the preparation and editing of this book, which, as it is usual for the ICMI Study volumes, does not consist of the proceedings of the meeting, but is a further elaboration of the discussions and results reached during the meeting itself. I followed all these phases, and I must say that without the incredible work of the IPC and particularly of the two co-chairs, Profs. Maria G. Bartolini Bussi and Xu Hua Sun, we could not have now so nice a book, which is really a reference and a source of inspiration for theory, research and practice to all the community of researchers, practitioners and policymakers in mathematics education, especially, but not only, those interested in mathematical education at the primary level. On behalf of the ICMI EC and of the ICMI larger family, I wish to thank all of them here for their remarkable work.
Recommended publications
  • The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
    Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g.
    [Show full text]
  • Music Learning and Mathematics Achievement: a Real-World Study in English Primary Schools
    Music Learning and Mathematics Achievement: A Real-World Study in English Primary Schools Edel Marie Sanders Supervisor: Dr Linda Hargreaves This final thesis is submitted for the degree of Doctor of Philosophy. Faculty of Education University of Cambridge October 2018 Music Learning and Mathematics Achievement: A Real-World Study in English Primary Schools Edel Marie Sanders Abstract This study examines the potential for music education to enhance children’s mathematical achievement and understanding. Psychological and neuroscientific research on the relationship between music and mathematics has grown considerably in recent years. Much of this, however, has been laboratory-based, short-term or small-scale research. The present study contributes to the literature by focusing on specific musical and mathematical elements, working principally through the medium of singing and setting the study in five primary schools over a full school year. Nearly 200 children aged seven to eight years, in six school classes, experienced structured weekly music lessons, congruent with English National Curriculum objectives for music but with specific foci. The quasi-experimental design employed two independent variable categories: musical focus (form, pitch relationships or rhythm) and mathematical teaching emphasis (implicit or explicit). In all other respects, lesson content was kept as constant as possible. Pretests and posttests in standardised behavioural measures of musical, spatial and mathematical thinking were administered to all children. Statistical analyses (two-way mixed ANOVAs) of student scores in these tests reveal positive significant gains in most comparisons over normative progress in mathematics for all musical emphases and both pedagogical conditions with slightly greater effects in the mathematically explicit lessons.
    [Show full text]
  • Datatype Defining Rewrite Systems for Naturals and Integers
    UvA-DARE (Digital Academic Repository) Datatype defining rewrite systems for naturals and integers Bergstra, J.A.; Ponse, A. DOI 10.23638/LMCS-17(1:17)2021 Publication date 2021 Document Version Final published version Published in Logical Methods in Computer Science License CC BY Link to publication Citation for published version (APA): Bergstra, J. A., & Ponse, A. (2021). Datatype defining rewrite systems for naturals and integers. Logical Methods in Computer Science, 17(1), [17]. https://doi.org/10.23638/LMCS- 17(1:17)2021 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Logical Methods in Computer Science Volume 17, Issue 1, 2021, pp. 17:1–17:31 Submitted Jan. 15, 2020 https://lmcs.episciences.org/ Published Feb.
    [Show full text]
  • Experimental Methods and Instrumentation for Chemical Engineers Experimental Methods and Instrumentation for Chemical Engineers
    Experimental Methods and Instrumentation for Chemical Engineers Experimental Methods and Instrumentation for Chemical Engineers Gregory S. Patience AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands First edition 2013 Copyright © 2013 Elsevier B.V. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in ­evaluating and using any information, methods, compounds, or experiments
    [Show full text]
  • Chapter 1: Teaching Mathematics
    TEACHING MATHEMATICS IN THE SECONDARY SCHOOL 00_CHAMBERS_FM.indd 1 23/01/2019 5:17:30 PM DEVELOPING AS A REFLECTIVE SECONDARY TEACHER SERIES The core textbooks in this series provide practical guidance and support to student teachers through their training and beyond. These comprehensive guides help trainee teachers develop a more reflective and critical approach to their own practice. The series offers students: • An introduction to national subject frameworks • Support on all aspects of subject teaching, including planning creative lessons, how to improve classroom performance, classroom management, differentiation and teaching strategies • Examples of good practice and teacher commentaries • A research-based section demonstrating M-level work • Critical and analytical reflection on practice They are essential reading for student teachers following school-based or university- based routes into teaching. Reflective Teaching and Learning in the Secondary School, second edition Edited by Sue Dymoke Teaching English Carol Evans, Alyson Midgley, Phil Rigby, Lynne Warham and Peter Woolnough Teaching Computing, second edition Carl Simmons and Claire Hawkins Teaching History Ian Phillips Teaching Science Tony Liversidge, Matt Cochrane, Bernie Kerfoot and Judith Thomas 00_CHAMBERS_FM.indd 2 23/01/2019 5:17:31 PM THIRD EDITION TEACHING MATHEMATICS IN THE SECONDARY SCHOOL PAUL CHAMBERS AND ROBERT TIMLIN 00_CHAMBERS_FM.indd 3 23/01/2019 5:17:31 PM SAGE Publications Ltd © Paul Chambers and Robert Timlin 2019 1 Oliver’s Yard 55 City Road First edition
    [Show full text]
  • What Is Specific About Research in Adult Numeracy and Mathematics Education?
    What is specific about research in adult numeracy and mathematics education? Diana Coben King’s College London, UK <[email protected]> Abstract After decades of neglect, adult numeracy and mathematics education are coming to be recognised as worthy of serious research but the area is beset by conceptual difficulties. Adult numeracy and mathematics may at last be ‘on the educational research map’, but where exactly are they on the map? This article explores the question of what is specific about research in adult numeracy and mathematics education. It reviews ways of conceptualising adult numeracy and mathematics education for research purposes and considers the implications of these conceptualisations for research and for the development of the field. Key words: conceptualisations, adult numeracy, mathematics education, policy, research, development frameworks Introduction In the latest International Handbook of Research on Mathematics Education, it is suggested that: • ….adult mathematics teaching and learning deserve attention in their own right; • practice and research in adult mathematics education demand a broad conception of mathematics that is not limited to specialized mathematics…; • there is a coalition of interests in the field across a wide spectrum of related or contributing disciplines; • there is a recognition that research must be closely linked with practice in a field where development and improvement in practice have priority status; and • the community of researchers is truly international... (FitzSimons, Coben, & O'Donoghue, 2003, p.117) The inclusion of an adult-focussed chapter in the International Handbook attests to the growing international recognition of the importance of research and development in this area. While most research about mathematics education focuses on children (Dossey, 1992), adult mathematics teaching and learning both deserve, and are beginning to receive attention in their own right.
    [Show full text]
  • The Impact of Regular Number Talks on Mental Math Computation Abilities
    St. Catherine University SOPHIA Masters of Arts in Education Action Research Papers Education 5-2014 The Impact of Regular Number Talks on Mental Math Computation Abilities Anthea Johnson St. Catherine University, [email protected] Amanda Partlo St. Catherine University, [email protected] Follow this and additional works at: https://sophia.stkate.edu/maed Part of the Education Commons Recommended Citation Johnson, Anthea and Partlo, Amanda. (2014). The Impact of Regular Number Talks on Mental Math Computation Abilities. Retrieved from Sophia, the St. Catherine University repository website: https://sophia.stkate.edu/maed/93 This Action Research Project is brought to you for free and open access by the Education at SOPHIA. It has been accepted for inclusion in Masters of Arts in Education Action Research Papers by an authorized administrator of SOPHIA. For more information, please contact [email protected]. The Impact of Regular Number Talks on Mental Math Computation Abilities An Action Research Report By Anthea Johnson and Amanda Partlo The Impact of Regular Number Talks on Mental Math Computation Abilities By Anthea Johnson and Amanda Partlo Submitted May of 2014 in fulfillment of final requirements for the MAED degree St. Catherine University St. Paul, Minnesota Advisor _______________________________ Date _____________________ Abstract The purpose of our research was to determine what impact participating in regular number talks, informal conversations focusing on mental mathematics strategies, had on elementary students’ mental mathematics abilities. The research was conducted in two urban fourth grade classrooms over a two month period. The data sources included a pre- and post-questionnaire, surveys about students’ attitudes towards mental math, a pretest and a posttest containing addition and subtraction problems to be solved mentally, teacher reflective journals, and student interviews.
    [Show full text]
  • Individual Differences in Arithmetic: Implications for Psychology, Neuroscience, and Education/Ann Dowker
    Individual Differences in Arithmetic Standards in numeracy are a constant concern to educational policy makers. However, why are differences in arithmetical performance so marked? In Individual Differences in Arithmetic, Ann Dowker seeks to provide a better understanding of why these differences in ability exist, encouraging a more informed approach to tackling numeracy difficulties. This book reviews existing research by the author and by others on the subject of arithmetical ability and presents strong evidence to support a componential view of arithmetic. Focusing primarily on children, but including discussion of arithmetical cognition in healthy adult and neuro-psychological patients, each of the central components of arithmetic is covered. Within this volume, findings from developmental, educational, cognitive and neuropsychological studies are integrated in a unique approach. This book covers subjects such as: • Counting and the importance of individual differences. • Arithmetic facts, procedures and different forms of memory. • Causes of, and interventions with, mathematical difficulties. • The effects of culture, language and experience. The educational implications of these findings are discussed in detail, revealing original insights that will be of great interest to those studying or researching in the areas of education, neuroscience and developmental and cognitive psychology. Ann Dowker is a University Research Lecturer in the Department of Experimental Psychology, University of Oxford. Individual Differences in Arithmetic
    [Show full text]
  • Teaching and Learning Geometry 11-19 Report of a Royal Society / Joint Mathematical Council Working Group Teaching and Learning Geometry 11-19
    JMC Teaching and learning geometry 11-19 Report of a Royal Society / Joint Mathematical Council working group Teaching and learning geometry 11-19 Contents page Preparation of this report v Chairman’s preface vii Summary xi 1 Introduction 1 2 Geometry and its teaching and learning 3 3 The place of geometry in the curriculum 5 4 The 11-16 curriculum 7 5 The development of the curriculum 9 6 Status and allocation of time for geometry 13 7 Geometry 16-19 15 8 The role of assessment 17 9 Teaching of geometry 19 10 Improving the take up of mathematics 21 11 Conclusion 23 12 References and glossary 25 Contents (continued) Appendix 1 The working group 27 Appendix 2 National and international contexts for mathematics 31 Appendix 3 Some recent government initiatives in education 35 Appendix 4 Expectations of geometry in education 37 Appendix 5 Geometry in history and society 41 Appendix 6 Geometry in the current 11-16 curriculum 45 Appendix 7 Geometry in the Key Stage 3 mathematics strategy 49 Appendix 8 Spatial thinking and visualisation 55 Appendix 9 Proof – ‘why and what?’ 57 Appendix 10 Examples of applications of geometry 65 Appendix 11 3-dimensional geometry 69 Appendix 12 Frameworks for developing schemes of work for the curriculum 75 Appendix 13 Integrated approaches to geometry teaching 81 Appendix 14 Bibliography and guide to resources 87 © The Royal Society 2001 Requests to reproduce all or part of this document should be submitted to: Education Manager The Royal Society 6 Carlton House Terrace London SW1Y 5AG Preparation of this report This report has been endorsed by the Council of the Royal Society and the JMC.
    [Show full text]
  • Integer Sequences
    UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular
    [Show full text]
  • The Primordial End Calculus of Prime Numbers and Mathematics
    International Journal of Applied Mathematical Research, 2 (4) (2013) 423-438 ©Science Publishing Corporation www.sciencepubco.com/index.php/IJAMR The primordial end calculus of prime numbers and mathematics Vinoo Cameron Hope research, Athens, Wisconsin, USA E-mail:[email protected] Abstract This Manuscript on the end primordial calculus of mathematics is a new discovery of the spiral nature of the entire mathematical grid at 1:3 by the precise and absolute concordance of regular number spirals and the Prime number spirals based on numbers and their spaces by grid. It is exclusive to IJAMR which has published 8 papers of the author on this new mathematics. The manuscript has NOT been offered to any other journal in the world .The editorial board of Princeton University, USA, Annals of mathematics had been duly informed by letter of the new discovery of the concordance of prime numbers spirals with regular number spirals, but for the sake of fidelity. Mathematics is not complexity, but simplicity, the configuration of 1 is spiral .The relationship between pure mathematical numbers and empty space is a primordial relationship, and well defined by gaps, plus it has been validated by the author by the Publishing of the pure continuous Den-Otter Prime number sieve at 1/6 and 5/6 ( and 1/3 and 2/3),and these prime sieves are reversible .Thus the relationship of the configuration of 1 is in two planes that expand in the frame of (5/6 and 1/6 ) and (1/3 and 2/3)are represented by spiral configuration , expressed by these numbers, as in :All prime numbers spirals are assigned infinitely by the simple -1 offset of the two spiral numbers cords 1/3+2/3=1 5/6+1/6=1 1/3-1/6=1/6 5/6-2/3=1/6 1/3+1/6=0.5 5/6+2/3=1.5 1.5/0.5=3 Note: the above is also confirmed by Arabian numerical shown below.
    [Show full text]
  • Mathematics: Shaping Australia Proceedings of the Eighteenth Biennial Conference of the Australian Association of Mathematics Teachers Inc
    Proceedings of the Eighteenth Biennial Conference of The Australian Association of Mathematics Teachers Inc. 15–19 January 2001 Australian National University, Canberra ACT Mathematics: Shaping Australia Proceedings of the Eighteenth Biennial Conference of The Australian Association of Mathematics Teachers Inc. © The Australian Association of Mathematics Teachers Inc. 2001 ISBN 1 875900 47 0 Published by The Australian Association of Mathematics Teachers Inc. GPO Box 1729 Adelaide South Australia 5001 Telephone (08) 8363 0288 Facsimile (08) 8362 9288 Email [email protected] Internet http://www.aamt.edu.au All papers in these proceedings were subject to a blind review process. Mathematics: Shaping Australia Contents PAPERS No More (Red-Pen) Marking!............................................................................................ 8 Tony Allan Learning about Learning in Mathematics ...................................................................... 15 Anna Austin Mathematics Education in Thailand: From Kindergarten to Graphics Calculators .................................................................. 29 Nittayaporn Bunyasiri and Peter Jones Unsolved Problems and the Mathematics Challenge for Young Australians............. 38 John Dowsey and Mike Newman I Can Do Maths Too — Count Me In! ............................................................................. 45 Rhonda Faragher Reading the World with Math: Goals for a Criticalmathematical Literacy Curriculum.......................................................................................................................
    [Show full text]