Mathematics: Shaping Australia Proceedings of the Eighteenth Biennial Conference of the Australian Association of Mathematics Teachers Inc

Total Page:16

File Type:pdf, Size:1020Kb

Mathematics: Shaping Australia Proceedings of the Eighteenth Biennial Conference of the Australian Association of Mathematics Teachers Inc Proceedings of the Eighteenth Biennial Conference of The Australian Association of Mathematics Teachers Inc. 15–19 January 2001 Australian National University, Canberra ACT Mathematics: Shaping Australia Proceedings of the Eighteenth Biennial Conference of The Australian Association of Mathematics Teachers Inc. © The Australian Association of Mathematics Teachers Inc. 2001 ISBN 1 875900 47 0 Published by The Australian Association of Mathematics Teachers Inc. GPO Box 1729 Adelaide South Australia 5001 Telephone (08) 8363 0288 Facsimile (08) 8362 9288 Email [email protected] Internet http://www.aamt.edu.au All papers in these proceedings were subject to a blind review process. Mathematics: Shaping Australia Contents PAPERS No More (Red-Pen) Marking!............................................................................................ 8 Tony Allan Learning about Learning in Mathematics ...................................................................... 15 Anna Austin Mathematics Education in Thailand: From Kindergarten to Graphics Calculators .................................................................. 29 Nittayaporn Bunyasiri and Peter Jones Unsolved Problems and the Mathematics Challenge for Young Australians............. 38 John Dowsey and Mike Newman I Can Do Maths Too — Count Me In! ............................................................................. 45 Rhonda Faragher Reading the World with Math: Goals for a Criticalmathematical Literacy Curriculum........................................................................................................................ 53 Marilyn Frankenstein Curriculum Integration in the Middle School: Mathematics Meets History............... 65 Merrilyn Goos and Martin Mills Mathematics and Visual Literacy in the Early Years..................................................... 77 Rachel Griffiths Information Texts: a Road to Numeracy and Literacy .................................................. 81 Rachel Griffiths Enrichment In Mathematics: Catering for Able Students in Years 4 to 6.................... 86 Anne Joshua Open-ended Questions and Investigations for Years 7 to 10....................................... 95 Anne Joshua Parent Perceptions of the Teaching and Learning of Primary School Mathematics ............................................ 109 Paulene Kibble Algebra and Technology: Emerging Issues.................................................................. 120 Barry Kissane 3 Mathematics: Shaping Australia Assessing the Impact of CAS Calculators on Mathematics Examinations ................ 131 Barry McCrae and Peter Flynn Modelling Growth and Decay with the TI-83 and Excel............................................ 140 Frank Moya Literally Teaching Literacy In Maths: The Thebarton Senior College Experience.................................................................... 149 Derek Nash Indigenous Mathematics — A Rich Diversity.............................................................. 157 Kay Owens Mathematical Expectation in Gambling and Games of Chance ................................. 168 Robert Peard Counting On: An Evaluation of the Learning and Teaching of Mathematics in Year 7 ................... 179 Bob Perry and Peter Howard Assessing Numeracy in the Middle Years — The Shape of Things to Come........... 188 Dianne Siemon and Max Stephens Numeracy for National Development .......................................................................... 201 Beth Southwell Calculators: Shaping the Way Children Think ............................................................ 209 Len Sparrow and Paul Swan How Might Computer Algebra Change Senior Mathematics: The Case of Trigonometry.............................................................................................. 217 Kaye Stacey and Lynda Ball Mathematics is Stuffed ................................................................................................... 226 Paul Swan Strategies for Going Mental ........................................................................................... 236 Paul Swan and Len Sparrow Shaping Mathematical Ideas Visually........................................................................... 245 Steve Thornton What is the Value of Professional Journals for Shaping Teacher Development? ................................................................................................................. 255 John Truran 4 Mathematics: Shaping Australia WORKSHOPS The Victorian Early Years Numeracy Strategy ............................................................ 264 Cathy Beesey and Kim Hamilton Mental Computation: Shaping Our Children’s Success in Mathematics................... 265 Janette Bobis Shaping Assessment for Effective Intervention ........................................................... 271 Rosemary Callingham and Patrick Griffin Using Literacy Strategies in Mathematics Lessons ...................................................... 281 Leslie Casey Practical Activities in the Middle School Classroom................................................... 283 Leslie Casey How Much Algebra Do We Need to Teach Our Students? ........................................ 287 David Driver Polar Bears and Popcorn: Building Confidence in Low Achievers ............................ 295 Alison Flannery The Rule of 3 Comes Alive! Graphic, Numeric, and Analytic Representations in Real Time................................. 301 Mark Howell Asia Counts — Studies of Asia and Numeracy ........................................................... 310 Jan Kiernan and Howard Reeves Activities to Support the Shaping of Number Sense ................................................... 314 Brian J. Lannen Numerical Methods in Senior Secondary Mathematics .............................................. 330 David Leigh-Lancaster and Michael Evans BoxCars Hands-On Maths Games................................................................................. 338 Sharyn Livy Using Algebra in the Early Stages of its Learning ....................................................... 341 Ken Milton and Howard Reeves The Bicentennial Conservatory in Adelaide................................................................. 350 Carol Moule Working Mathematically: What Does It Look Like in the Classroom?...................... 352 Thelma Perso 5 Mathematics: Shaping Australia Aboriginal Numeracy..................................................................................................... 357 Thelma Perso Developing Skills in Writing Proofs Throughout Secondary School ......................... 363 Diane Resek Problem Solving Approach to Teaching Mathematics................................................ 368 Katrina Sims Characteristics of a Good Mathematical Investigation................................................ 370 Beth Southwell Not Another Worksheet! — Activities for Bright Maths Students ............................ 378 Jenny Tayler Listening to Children’s Learning — Using Conversation to Shape Children’s Understanding of Mathematics................ 387 John Truran Data For Primary Classrooms: Making Shape Out Of Chaos..................................... 395 Kath Truran Shaping Primary Teachers’ Beliefs About Mathematics ............................................ 403 Kath Truran Chaos and Disorder........................................................................................................ 411 Michael Wheal Shaping Mathematical Conflict in Australian Classrooms Using Peaceful and Humorous Means ......................................................................... 428 Allan White Index of presenters ......................................................................................................... 438 6 Mathematics: Shaping Australia PAPERS 7 Mathematics: Shaping Australia No More (Red-Pen) Marking! Tony Allan Can computers be used to test students of mathematics and mark their answers? Issues include: • What hardware is available? What software? • How secure is the software/hardware configuration? • Which kinds of questions can be tested by a computer? Which cannot? • What level of difficulty can be achieved in computer testing? • What about part marks for working out? • What can computers do that mere mortals cannot? (Like giving each student different numbers in the questions). This paper describes one product which addresses some of these issues. No more marking (with a red pen) sounds like one of those over-blown claims for the computer age that pop up periodically in the techno sections of newspapers and from the minds of populist television pundits. The holy grail of teachers! It reminds me of the confident claim made by the IT outfit I worked for in the 1980s in England. We were at the forefront of Image Processing. The software and hardware engineers were developing circuit boards, ROM chips and programs to implement the first tools for manipulating images — on some of the very first IBM-compatible PCs that were then emerging. We demonstrated a computer with a scanner card, an Image Processing card, a high-resolution video card, an optical disk reader and a printer card. A hand-written letter was scanned in; it appeared on the screen; we moved the word ‘not’ to a different part of the letter and printed the ‘fake’. The machine got too warm to demonstrate for more than a few minutes, but on this premise we trumpeted the first steps towards the paperless office. We also dabbled in optical character recognition; I do not think voice-recognition
Recommended publications
  • Journal Abbreviations
    Abbreviations of Names of Serials This list gives the form of references used in Mathematical Reviews (MR). not previously listed ⇤ The abbreviation is followed by the complete title, the place of publication journal indexed cover-to-cover § and other pertinent information. † monographic series Update date: July 1, 2016 4OR 4OR. A Quarterly Journal of Operations Research. Springer, Berlin. ISSN Acta Math. Hungar. Acta Mathematica Hungarica. Akad. Kiad´o,Budapest. § 1619-4500. ISSN 0236-5294. 29o Col´oq. Bras. Mat. 29o Col´oquio Brasileiro de Matem´atica. [29th Brazilian Acta Math. Sci. Ser. A Chin. Ed. Acta Mathematica Scientia. Series A. Shuxue † § Mathematics Colloquium] Inst. Nac. Mat. Pura Apl. (IMPA), Rio de Janeiro. Wuli Xuebao. Chinese Edition. Kexue Chubanshe (Science Press), Beijing. ISSN o o † 30 Col´oq. Bras. Mat. 30 Col´oquio Brasileiro de Matem´atica. [30th Brazilian 1003-3998. ⇤ Mathematics Colloquium] Inst. Nac. Mat. Pura Apl. (IMPA), Rio de Janeiro. Acta Math. Sci. Ser. B Engl. Ed. Acta Mathematica Scientia. Series B. English § Edition. Sci. Press Beijing, Beijing. ISSN 0252-9602. † Aastaraam. Eesti Mat. Selts Aastaraamat. Eesti Matemaatika Selts. [Annual. Estonian Mathematical Society] Eesti Mat. Selts, Tartu. ISSN 1406-4316. Acta Math. Sin. (Engl. Ser.) Acta Mathematica Sinica (English Series). § Springer, Berlin. ISSN 1439-8516. † Abel Symp. Abel Symposia. Springer, Heidelberg. ISSN 2193-2808. Abh. Akad. Wiss. G¨ottingen Neue Folge Abhandlungen der Akademie der Acta Math. Sinica (Chin. Ser.) Acta Mathematica Sinica. Chinese Series. † § Wissenschaften zu G¨ottingen. Neue Folge. [Papers of the Academy of Sciences Chinese Math. Soc., Acta Math. Sinica Ed. Comm., Beijing. ISSN 0583-1431.
    [Show full text]
  • Music Learning and Mathematics Achievement: a Real-World Study in English Primary Schools
    Music Learning and Mathematics Achievement: A Real-World Study in English Primary Schools Edel Marie Sanders Supervisor: Dr Linda Hargreaves This final thesis is submitted for the degree of Doctor of Philosophy. Faculty of Education University of Cambridge October 2018 Music Learning and Mathematics Achievement: A Real-World Study in English Primary Schools Edel Marie Sanders Abstract This study examines the potential for music education to enhance children’s mathematical achievement and understanding. Psychological and neuroscientific research on the relationship between music and mathematics has grown considerably in recent years. Much of this, however, has been laboratory-based, short-term or small-scale research. The present study contributes to the literature by focusing on specific musical and mathematical elements, working principally through the medium of singing and setting the study in five primary schools over a full school year. Nearly 200 children aged seven to eight years, in six school classes, experienced structured weekly music lessons, congruent with English National Curriculum objectives for music but with specific foci. The quasi-experimental design employed two independent variable categories: musical focus (form, pitch relationships or rhythm) and mathematical teaching emphasis (implicit or explicit). In all other respects, lesson content was kept as constant as possible. Pretests and posttests in standardised behavioural measures of musical, spatial and mathematical thinking were administered to all children. Statistical analyses (two-way mixed ANOVAs) of student scores in these tests reveal positive significant gains in most comparisons over normative progress in mathematics for all musical emphases and both pedagogical conditions with slightly greater effects in the mathematically explicit lessons.
    [Show full text]
  • Public Recognition and Media Coverage of Mathematical Achievements
    Journal of Humanistic Mathematics Volume 9 | Issue 2 July 2019 Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Sepulcre, J. "Public Recognition and Media Coverage of Mathematical Achievements," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 93-129. DOI: 10.5642/ jhummath.201902.08 . Available at: https://scholarship.claremont.edu/jhm/vol9/iss2/8 ©2019 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre Department of Mathematics, University of Alicante, Alicante, SPAIN [email protected] Synopsis This report aims to convince readers that there are clear indications that society is increasingly taking a greater interest in science and particularly in mathemat- ics, and thus society in general has come to recognise, through different awards, privileges, and distinctions, the work of many mathematicians.
    [Show full text]
  • Chapter 1: Teaching Mathematics
    TEACHING MATHEMATICS IN THE SECONDARY SCHOOL 00_CHAMBERS_FM.indd 1 23/01/2019 5:17:30 PM DEVELOPING AS A REFLECTIVE SECONDARY TEACHER SERIES The core textbooks in this series provide practical guidance and support to student teachers through their training and beyond. These comprehensive guides help trainee teachers develop a more reflective and critical approach to their own practice. The series offers students: • An introduction to national subject frameworks • Support on all aspects of subject teaching, including planning creative lessons, how to improve classroom performance, classroom management, differentiation and teaching strategies • Examples of good practice and teacher commentaries • A research-based section demonstrating M-level work • Critical and analytical reflection on practice They are essential reading for student teachers following school-based or university- based routes into teaching. Reflective Teaching and Learning in the Secondary School, second edition Edited by Sue Dymoke Teaching English Carol Evans, Alyson Midgley, Phil Rigby, Lynne Warham and Peter Woolnough Teaching Computing, second edition Carl Simmons and Claire Hawkins Teaching History Ian Phillips Teaching Science Tony Liversidge, Matt Cochrane, Bernie Kerfoot and Judith Thomas 00_CHAMBERS_FM.indd 2 23/01/2019 5:17:31 PM THIRD EDITION TEACHING MATHEMATICS IN THE SECONDARY SCHOOL PAUL CHAMBERS AND ROBERT TIMLIN 00_CHAMBERS_FM.indd 3 23/01/2019 5:17:31 PM SAGE Publications Ltd © Paul Chambers and Robert Timlin 2019 1 Oliver’s Yard 55 City Road First edition
    [Show full text]
  • What Is Specific About Research in Adult Numeracy and Mathematics Education?
    What is specific about research in adult numeracy and mathematics education? Diana Coben King’s College London, UK <[email protected]> Abstract After decades of neglect, adult numeracy and mathematics education are coming to be recognised as worthy of serious research but the area is beset by conceptual difficulties. Adult numeracy and mathematics may at last be ‘on the educational research map’, but where exactly are they on the map? This article explores the question of what is specific about research in adult numeracy and mathematics education. It reviews ways of conceptualising adult numeracy and mathematics education for research purposes and considers the implications of these conceptualisations for research and for the development of the field. Key words: conceptualisations, adult numeracy, mathematics education, policy, research, development frameworks Introduction In the latest International Handbook of Research on Mathematics Education, it is suggested that: • ….adult mathematics teaching and learning deserve attention in their own right; • practice and research in adult mathematics education demand a broad conception of mathematics that is not limited to specialized mathematics…; • there is a coalition of interests in the field across a wide spectrum of related or contributing disciplines; • there is a recognition that research must be closely linked with practice in a field where development and improvement in practice have priority status; and • the community of researchers is truly international... (FitzSimons, Coben, & O'Donoghue, 2003, p.117) The inclusion of an adult-focussed chapter in the International Handbook attests to the growing international recognition of the importance of research and development in this area. While most research about mathematics education focuses on children (Dossey, 1992), adult mathematics teaching and learning both deserve, and are beginning to receive attention in their own right.
    [Show full text]
  • Individual Differences in Arithmetic: Implications for Psychology, Neuroscience, and Education/Ann Dowker
    Individual Differences in Arithmetic Standards in numeracy are a constant concern to educational policy makers. However, why are differences in arithmetical performance so marked? In Individual Differences in Arithmetic, Ann Dowker seeks to provide a better understanding of why these differences in ability exist, encouraging a more informed approach to tackling numeracy difficulties. This book reviews existing research by the author and by others on the subject of arithmetical ability and presents strong evidence to support a componential view of arithmetic. Focusing primarily on children, but including discussion of arithmetical cognition in healthy adult and neuro-psychological patients, each of the central components of arithmetic is covered. Within this volume, findings from developmental, educational, cognitive and neuropsychological studies are integrated in a unique approach. This book covers subjects such as: • Counting and the importance of individual differences. • Arithmetic facts, procedures and different forms of memory. • Causes of, and interventions with, mathematical difficulties. • The effects of culture, language and experience. The educational implications of these findings are discussed in detail, revealing original insights that will be of great interest to those studying or researching in the areas of education, neuroscience and developmental and cognitive psychology. Ann Dowker is a University Research Lecturer in the Department of Experimental Psychology, University of Oxford. Individual Differences in Arithmetic
    [Show full text]
  • Teaching and Learning Geometry 11-19 Report of a Royal Society / Joint Mathematical Council Working Group Teaching and Learning Geometry 11-19
    JMC Teaching and learning geometry 11-19 Report of a Royal Society / Joint Mathematical Council working group Teaching and learning geometry 11-19 Contents page Preparation of this report v Chairman’s preface vii Summary xi 1 Introduction 1 2 Geometry and its teaching and learning 3 3 The place of geometry in the curriculum 5 4 The 11-16 curriculum 7 5 The development of the curriculum 9 6 Status and allocation of time for geometry 13 7 Geometry 16-19 15 8 The role of assessment 17 9 Teaching of geometry 19 10 Improving the take up of mathematics 21 11 Conclusion 23 12 References and glossary 25 Contents (continued) Appendix 1 The working group 27 Appendix 2 National and international contexts for mathematics 31 Appendix 3 Some recent government initiatives in education 35 Appendix 4 Expectations of geometry in education 37 Appendix 5 Geometry in history and society 41 Appendix 6 Geometry in the current 11-16 curriculum 45 Appendix 7 Geometry in the Key Stage 3 mathematics strategy 49 Appendix 8 Spatial thinking and visualisation 55 Appendix 9 Proof – ‘why and what?’ 57 Appendix 10 Examples of applications of geometry 65 Appendix 11 3-dimensional geometry 69 Appendix 12 Frameworks for developing schemes of work for the curriculum 75 Appendix 13 Integrated approaches to geometry teaching 81 Appendix 14 Bibliography and guide to resources 87 © The Royal Society 2001 Requests to reproduce all or part of this document should be submitted to: Education Manager The Royal Society 6 Carlton House Terrace London SW1Y 5AG Preparation of this report This report has been endorsed by the Council of the Royal Society and the JMC.
    [Show full text]
  • Abbreviations of Names of Serials
    Abbreviations of Names of Serials This list gives the form of references used in Mathematical Reviews (MR). ∗ not previously listed The abbreviation is followed by the complete title, the place of publication x journal indexed cover-to-cover and other pertinent information. y monographic series Update date: January 30, 2018 4OR 4OR. A Quarterly Journal of Operations Research. Springer, Berlin. ISSN xActa Math. Appl. Sin. Engl. Ser. Acta Mathematicae Applicatae Sinica. English 1619-4500. Series. Springer, Heidelberg. ISSN 0168-9673. y 30o Col´oq.Bras. Mat. 30o Col´oquioBrasileiro de Matem´atica. [30th Brazilian xActa Math. Hungar. Acta Mathematica Hungarica. Akad. Kiad´o,Budapest. Mathematics Colloquium] Inst. Nac. Mat. Pura Apl. (IMPA), Rio de Janeiro. ISSN 0236-5294. y Aastaraam. Eesti Mat. Selts Aastaraamat. Eesti Matemaatika Selts. [Annual. xActa Math. Sci. Ser. A Chin. Ed. Acta Mathematica Scientia. Series A. Shuxue Estonian Mathematical Society] Eesti Mat. Selts, Tartu. ISSN 1406-4316. Wuli Xuebao. Chinese Edition. Kexue Chubanshe (Science Press), Beijing. ISSN y Abel Symp. Abel Symposia. Springer, Heidelberg. ISSN 2193-2808. 1003-3998. y Abh. Akad. Wiss. G¨ottingenNeue Folge Abhandlungen der Akademie der xActa Math. Sci. Ser. B Engl. Ed. Acta Mathematica Scientia. Series B. English Wissenschaften zu G¨ottingen.Neue Folge. [Papers of the Academy of Sciences Edition. Sci. Press Beijing, Beijing. ISSN 0252-9602. in G¨ottingen.New Series] De Gruyter/Akademie Forschung, Berlin. ISSN 0930- xActa Math. Sin. (Engl. Ser.) Acta Mathematica Sinica (English Series). 4304. Springer, Berlin. ISSN 1439-8516. y Abh. Akad. Wiss. Hamburg Abhandlungen der Akademie der Wissenschaften xActa Math. Sinica (Chin. Ser.) Acta Mathematica Sinica.
    [Show full text]
  • Collection Assessment : Computational and Applied Mathematics, USFSP, 2017
    University of South Florida Scholar Commons All-Library Assessments Reports, Summaries & Library Assessment Reports, Summaries, and Misc Reports Misc Reports 8-1-2017 Collection Assessment : Computational and Applied Mathematics, USFSP, 2017 Patricia Pettijohn Nelson Poynter Memorial Library. Follow this and additional works at: https://scholarcommons.usf.edu/npml_collection_assessments Scholar Commons Citation Pettijohn, Patricia and Nelson Poynter Memorial Library., "Collection Assessment : Computational and Applied Mathematics, USFSP, 2017" (2017). All-Library Assessments Reports, Summaries & Misc Reports. 24. https://scholarcommons.usf.edu/npml_collection_assessments/24 This Other is brought to you for free and open access by the Library Assessment Reports, Summaries, and Misc Reports at Scholar Commons. It has been accepted for inclusion in All-Library Assessments Reports, Summaries & Misc Reports by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Library Assessment: Computational & Applied Mathematics August 2017 Nelson Poynter Memorial Library University of South Florida St. Petersburg Prepared by Patricia Pettijohn Overview of Library The Nelson Poynter Memorial Library, University of South Florida St. Petersburg (USFSP), houses an extensive collection of materials that supports the educational, research, and service missions of USF St. Petersburg. USF St. Petersburg faculty, staff, and student have on-site access to the Poynter Library’s collection of over 221,620 items, including monographs, current periodical and serial subscriptions, newspaper subscriptions, and audiovisual titles, as well as to the shared electronic resources of the USF System, providing USFSP students unlimited access to the vast holdings of a Carnegie Research 1 doctoral institution. This includes 1,934 journals in mathematics, over 1,800 journals in information technology, and core mathematics and computational sciences databases, e-book collections and reference resources.
    [Show full text]
  • 2009Catalog.Pdf
    ANNUAL CATALOG 2009 New . 1 Brain Fitness and Mathematics Classic Monographs . 10 In recent months, I have seen public television programs devoted to brain fitness. They Business Mathematics . 11 point out the great benefits of continuing to learn as we age, in particular the benefits Transition to Advanced Mathematics/ of keeping our brains healthy. Many of the exercises in brain fitness programs that I have seen have a strong mathematical component, with considerable emphasis on Analysis . 12 pattern recognition. These programs are expensive, often running between $300-$400. Analysis/Applied Mathematics/ As a mathematician, you are good at pattern recognition and related habits of mind, Calculus . 13 and as you age it’s important that you continue to exercise your brain by learning more Calculus . 14 mathematics, your favorite subject. You can do that through research, reading, and solving problems. Books and journals of the MAA can assist in building brain fitness by Careers/Combinatorics/Cryptology . 15 providing stimulating mathematical reading and problems. Moreover, for considerably Game Theory/Geometry . 16 less than $400, you can purchase more than ten exemplary books from the MAA that Geometry/Topology . 17 will contribute to keeping your brain fit and expanding your knowledge of mathematics at the same time. It’s a really a no-brainer if given the choice between purchasing a General Education/Quantitative brain fitness program and MAA books. For starters, reading an MAA book is more Literacy/History. 19 enjoyable than using a brain fitness program. A Celebration of the Life and Work of All of us want to keep our most important possession–our brains–healthy, and the Leonhard Euler .
    [Show full text]
  • Application of Number. Teaching and Learning. INSTITUTION Learning and Skills Development Agency, London (England)
    DOCUMENT RESUME ED 473 200 CE 084 455 AUTHOR Bove, Francis TITLE Application of Number. Teaching and Learning. INSTITUTION Learning and Skills Development Agency, London (England). SPONS AGENCY Department for Education and Skills, London (England).; European Social Fund, Dublin (Ireland). ISBN ISBN-1-85338-823-8 PUB DATE 2003-00-00 NOTE 54p.; Part of the Key Skills Support Programme. AVAILABLE FROM Learning and Skills Development Agency, Regent Arcade House, 19-25 Argyll Street, London W1F 7LS, United Kingdom (Ref. No. 1347; 5 British pounds). Tel: 020 7297 9000; Fax: 020 7297 9001; Web site: http://www.lsda.org.uk/home.asp. For full text: http://www.lsda.org.uk/files/ PDF/1347.pdf. PUB TYPE Guides Classroom Teacher (052) EDRS PRICE EDRS Price MF01/PC03 Plus Postage. DESCRIPTORS Postsecondary Education; Academic Achievement; Academic Standards; Adult Educators; Adult Students; Arithmetic; Basic Skills; Beginning Teachers; Behavioral Objectives; College Students; Computation; Core Curriculum; Course Content; Curriculum Guides; Developed Nations; Educational Needs; Educational Objectives; Employment Opportunities; Employment Potential; Estimation (Mathematics); Foreign Countries; High School Students; Instructional Materials; Job Skills; Learning Activities; Learning Strategies; *Mathematical Applications; Mathematical Concepts; Mathematics Achievement; Mathematics Curriculum; Mathematics Education; Mathematics Instruction; Mathematics Materials; *Mathematics Skills; Mental Computation; Minimum Competencies; Nontraditional Students; *Number
    [Show full text]
  • Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante
    Journal of Humanistic Mathematics Volume 9 | Issue 2 July 2019 Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Sepulcre, J. "Public Recognition and Media Coverage of Mathematical Achievements," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 93-129. DOI: 10.5642/jhummath.201902.08 . Available at: https://scholarship.claremont.edu/jhm/vol9/ iss2/8 ©2019 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The de itorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre Department of Mathematics, University of Alicante, Alicante, SPAIN [email protected] Synopsis This report aims to convince readers that there are clear indications that society is increasingly taking a greater interest in science and particularly in mathemat- ics, and thus society in general has come to recognise, through different awards, privileges, and distinctions, the work of many mathematicians.
    [Show full text]