National Literacy and Numeracy Strategies: Guidance on Teaching Able Children
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Music Learning and Mathematics Achievement: a Real-World Study in English Primary Schools
Music Learning and Mathematics Achievement: A Real-World Study in English Primary Schools Edel Marie Sanders Supervisor: Dr Linda Hargreaves This final thesis is submitted for the degree of Doctor of Philosophy. Faculty of Education University of Cambridge October 2018 Music Learning and Mathematics Achievement: A Real-World Study in English Primary Schools Edel Marie Sanders Abstract This study examines the potential for music education to enhance children’s mathematical achievement and understanding. Psychological and neuroscientific research on the relationship between music and mathematics has grown considerably in recent years. Much of this, however, has been laboratory-based, short-term or small-scale research. The present study contributes to the literature by focusing on specific musical and mathematical elements, working principally through the medium of singing and setting the study in five primary schools over a full school year. Nearly 200 children aged seven to eight years, in six school classes, experienced structured weekly music lessons, congruent with English National Curriculum objectives for music but with specific foci. The quasi-experimental design employed two independent variable categories: musical focus (form, pitch relationships or rhythm) and mathematical teaching emphasis (implicit or explicit). In all other respects, lesson content was kept as constant as possible. Pretests and posttests in standardised behavioural measures of musical, spatial and mathematical thinking were administered to all children. Statistical analyses (two-way mixed ANOVAs) of student scores in these tests reveal positive significant gains in most comparisons over normative progress in mathematics for all musical emphases and both pedagogical conditions with slightly greater effects in the mathematically explicit lessons. -
Public Recognition and Media Coverage of Mathematical Achievements
Journal of Humanistic Mathematics Volume 9 | Issue 2 July 2019 Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Sepulcre, J. "Public Recognition and Media Coverage of Mathematical Achievements," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 93-129. DOI: 10.5642/ jhummath.201902.08 . Available at: https://scholarship.claremont.edu/jhm/vol9/iss2/8 ©2019 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre Department of Mathematics, University of Alicante, Alicante, SPAIN [email protected] Synopsis This report aims to convince readers that there are clear indications that society is increasingly taking a greater interest in science and particularly in mathemat- ics, and thus society in general has come to recognise, through different awards, privileges, and distinctions, the work of many mathematicians. -
Chapter 1: Teaching Mathematics
TEACHING MATHEMATICS IN THE SECONDARY SCHOOL 00_CHAMBERS_FM.indd 1 23/01/2019 5:17:30 PM DEVELOPING AS A REFLECTIVE SECONDARY TEACHER SERIES The core textbooks in this series provide practical guidance and support to student teachers through their training and beyond. These comprehensive guides help trainee teachers develop a more reflective and critical approach to their own practice. The series offers students: • An introduction to national subject frameworks • Support on all aspects of subject teaching, including planning creative lessons, how to improve classroom performance, classroom management, differentiation and teaching strategies • Examples of good practice and teacher commentaries • A research-based section demonstrating M-level work • Critical and analytical reflection on practice They are essential reading for student teachers following school-based or university- based routes into teaching. Reflective Teaching and Learning in the Secondary School, second edition Edited by Sue Dymoke Teaching English Carol Evans, Alyson Midgley, Phil Rigby, Lynne Warham and Peter Woolnough Teaching Computing, second edition Carl Simmons and Claire Hawkins Teaching History Ian Phillips Teaching Science Tony Liversidge, Matt Cochrane, Bernie Kerfoot and Judith Thomas 00_CHAMBERS_FM.indd 2 23/01/2019 5:17:31 PM THIRD EDITION TEACHING MATHEMATICS IN THE SECONDARY SCHOOL PAUL CHAMBERS AND ROBERT TIMLIN 00_CHAMBERS_FM.indd 3 23/01/2019 5:17:31 PM SAGE Publications Ltd © Paul Chambers and Robert Timlin 2019 1 Oliver’s Yard 55 City Road First edition -
What Is Specific About Research in Adult Numeracy and Mathematics Education?
What is specific about research in adult numeracy and mathematics education? Diana Coben King’s College London, UK <[email protected]> Abstract After decades of neglect, adult numeracy and mathematics education are coming to be recognised as worthy of serious research but the area is beset by conceptual difficulties. Adult numeracy and mathematics may at last be ‘on the educational research map’, but where exactly are they on the map? This article explores the question of what is specific about research in adult numeracy and mathematics education. It reviews ways of conceptualising adult numeracy and mathematics education for research purposes and considers the implications of these conceptualisations for research and for the development of the field. Key words: conceptualisations, adult numeracy, mathematics education, policy, research, development frameworks Introduction In the latest International Handbook of Research on Mathematics Education, it is suggested that: • ….adult mathematics teaching and learning deserve attention in their own right; • practice and research in adult mathematics education demand a broad conception of mathematics that is not limited to specialized mathematics…; • there is a coalition of interests in the field across a wide spectrum of related or contributing disciplines; • there is a recognition that research must be closely linked with practice in a field where development and improvement in practice have priority status; and • the community of researchers is truly international... (FitzSimons, Coben, & O'Donoghue, 2003, p.117) The inclusion of an adult-focussed chapter in the International Handbook attests to the growing international recognition of the importance of research and development in this area. While most research about mathematics education focuses on children (Dossey, 1992), adult mathematics teaching and learning both deserve, and are beginning to receive attention in their own right. -
Individual Differences in Arithmetic: Implications for Psychology, Neuroscience, and Education/Ann Dowker
Individual Differences in Arithmetic Standards in numeracy are a constant concern to educational policy makers. However, why are differences in arithmetical performance so marked? In Individual Differences in Arithmetic, Ann Dowker seeks to provide a better understanding of why these differences in ability exist, encouraging a more informed approach to tackling numeracy difficulties. This book reviews existing research by the author and by others on the subject of arithmetical ability and presents strong evidence to support a componential view of arithmetic. Focusing primarily on children, but including discussion of arithmetical cognition in healthy adult and neuro-psychological patients, each of the central components of arithmetic is covered. Within this volume, findings from developmental, educational, cognitive and neuropsychological studies are integrated in a unique approach. This book covers subjects such as: • Counting and the importance of individual differences. • Arithmetic facts, procedures and different forms of memory. • Causes of, and interventions with, mathematical difficulties. • The effects of culture, language and experience. The educational implications of these findings are discussed in detail, revealing original insights that will be of great interest to those studying or researching in the areas of education, neuroscience and developmental and cognitive psychology. Ann Dowker is a University Research Lecturer in the Department of Experimental Psychology, University of Oxford. Individual Differences in Arithmetic -
Teaching and Learning Geometry 11-19 Report of a Royal Society / Joint Mathematical Council Working Group Teaching and Learning Geometry 11-19
JMC Teaching and learning geometry 11-19 Report of a Royal Society / Joint Mathematical Council working group Teaching and learning geometry 11-19 Contents page Preparation of this report v Chairman’s preface vii Summary xi 1 Introduction 1 2 Geometry and its teaching and learning 3 3 The place of geometry in the curriculum 5 4 The 11-16 curriculum 7 5 The development of the curriculum 9 6 Status and allocation of time for geometry 13 7 Geometry 16-19 15 8 The role of assessment 17 9 Teaching of geometry 19 10 Improving the take up of mathematics 21 11 Conclusion 23 12 References and glossary 25 Contents (continued) Appendix 1 The working group 27 Appendix 2 National and international contexts for mathematics 31 Appendix 3 Some recent government initiatives in education 35 Appendix 4 Expectations of geometry in education 37 Appendix 5 Geometry in history and society 41 Appendix 6 Geometry in the current 11-16 curriculum 45 Appendix 7 Geometry in the Key Stage 3 mathematics strategy 49 Appendix 8 Spatial thinking and visualisation 55 Appendix 9 Proof – ‘why and what?’ 57 Appendix 10 Examples of applications of geometry 65 Appendix 11 3-dimensional geometry 69 Appendix 12 Frameworks for developing schemes of work for the curriculum 75 Appendix 13 Integrated approaches to geometry teaching 81 Appendix 14 Bibliography and guide to resources 87 © The Royal Society 2001 Requests to reproduce all or part of this document should be submitted to: Education Manager The Royal Society 6 Carlton House Terrace London SW1Y 5AG Preparation of this report This report has been endorsed by the Council of the Royal Society and the JMC. -
Mathematics: Shaping Australia Proceedings of the Eighteenth Biennial Conference of the Australian Association of Mathematics Teachers Inc
Proceedings of the Eighteenth Biennial Conference of The Australian Association of Mathematics Teachers Inc. 15–19 January 2001 Australian National University, Canberra ACT Mathematics: Shaping Australia Proceedings of the Eighteenth Biennial Conference of The Australian Association of Mathematics Teachers Inc. © The Australian Association of Mathematics Teachers Inc. 2001 ISBN 1 875900 47 0 Published by The Australian Association of Mathematics Teachers Inc. GPO Box 1729 Adelaide South Australia 5001 Telephone (08) 8363 0288 Facsimile (08) 8362 9288 Email [email protected] Internet http://www.aamt.edu.au All papers in these proceedings were subject to a blind review process. Mathematics: Shaping Australia Contents PAPERS No More (Red-Pen) Marking!............................................................................................ 8 Tony Allan Learning about Learning in Mathematics ...................................................................... 15 Anna Austin Mathematics Education in Thailand: From Kindergarten to Graphics Calculators .................................................................. 29 Nittayaporn Bunyasiri and Peter Jones Unsolved Problems and the Mathematics Challenge for Young Australians............. 38 John Dowsey and Mike Newman I Can Do Maths Too — Count Me In! ............................................................................. 45 Rhonda Faragher Reading the World with Math: Goals for a Criticalmathematical Literacy Curriculum....................................................................................................................... -
2009Catalog.Pdf
ANNUAL CATALOG 2009 New . 1 Brain Fitness and Mathematics Classic Monographs . 10 In recent months, I have seen public television programs devoted to brain fitness. They Business Mathematics . 11 point out the great benefits of continuing to learn as we age, in particular the benefits Transition to Advanced Mathematics/ of keeping our brains healthy. Many of the exercises in brain fitness programs that I have seen have a strong mathematical component, with considerable emphasis on Analysis . 12 pattern recognition. These programs are expensive, often running between $300-$400. Analysis/Applied Mathematics/ As a mathematician, you are good at pattern recognition and related habits of mind, Calculus . 13 and as you age it’s important that you continue to exercise your brain by learning more Calculus . 14 mathematics, your favorite subject. You can do that through research, reading, and solving problems. Books and journals of the MAA can assist in building brain fitness by Careers/Combinatorics/Cryptology . 15 providing stimulating mathematical reading and problems. Moreover, for considerably Game Theory/Geometry . 16 less than $400, you can purchase more than ten exemplary books from the MAA that Geometry/Topology . 17 will contribute to keeping your brain fit and expanding your knowledge of mathematics at the same time. It’s a really a no-brainer if given the choice between purchasing a General Education/Quantitative brain fitness program and MAA books. For starters, reading an MAA book is more Literacy/History. 19 enjoyable than using a brain fitness program. A Celebration of the Life and Work of All of us want to keep our most important possession–our brains–healthy, and the Leonhard Euler . -
Application of Number. Teaching and Learning. INSTITUTION Learning and Skills Development Agency, London (England)
DOCUMENT RESUME ED 473 200 CE 084 455 AUTHOR Bove, Francis TITLE Application of Number. Teaching and Learning. INSTITUTION Learning and Skills Development Agency, London (England). SPONS AGENCY Department for Education and Skills, London (England).; European Social Fund, Dublin (Ireland). ISBN ISBN-1-85338-823-8 PUB DATE 2003-00-00 NOTE 54p.; Part of the Key Skills Support Programme. AVAILABLE FROM Learning and Skills Development Agency, Regent Arcade House, 19-25 Argyll Street, London W1F 7LS, United Kingdom (Ref. No. 1347; 5 British pounds). Tel: 020 7297 9000; Fax: 020 7297 9001; Web site: http://www.lsda.org.uk/home.asp. For full text: http://www.lsda.org.uk/files/ PDF/1347.pdf. PUB TYPE Guides Classroom Teacher (052) EDRS PRICE EDRS Price MF01/PC03 Plus Postage. DESCRIPTORS Postsecondary Education; Academic Achievement; Academic Standards; Adult Educators; Adult Students; Arithmetic; Basic Skills; Beginning Teachers; Behavioral Objectives; College Students; Computation; Core Curriculum; Course Content; Curriculum Guides; Developed Nations; Educational Needs; Educational Objectives; Employment Opportunities; Employment Potential; Estimation (Mathematics); Foreign Countries; High School Students; Instructional Materials; Job Skills; Learning Activities; Learning Strategies; *Mathematical Applications; Mathematical Concepts; Mathematics Achievement; Mathematics Curriculum; Mathematics Education; Mathematics Instruction; Mathematics Materials; *Mathematics Skills; Mental Computation; Minimum Competencies; Nontraditional Students; *Number -
Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante
Journal of Humanistic Mathematics Volume 9 | Issue 2 July 2019 Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Sepulcre, J. "Public Recognition and Media Coverage of Mathematical Achievements," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 93-129. DOI: 10.5642/jhummath.201902.08 . Available at: https://scholarship.claremont.edu/jhm/vol9/ iss2/8 ©2019 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The de itorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre Department of Mathematics, University of Alicante, Alicante, SPAIN [email protected] Synopsis This report aims to convince readers that there are clear indications that society is increasingly taking a greater interest in science and particularly in mathemat- ics, and thus society in general has come to recognise, through different awards, privileges, and distinctions, the work of many mathematicians. -
Adult Numeracy: Review of Research and Related Literature
Research Review Adult numeracy: review of research and related literature Diana Coben, University of Nottingham with contributions by: Dhamma Colwell; Sheila Macrae; Jo Boaler, Margaret Brown and Valerie Rhodes; King’s College, London November 2003 This report is funded by the Department for Education and Skills as part of Skills for Life: the national strategy for improving adult literacy and numeracy skills. The views expressed are those of the author(s) and do not necessarily reflect those of the Department. Published by the National Research and Development Centre for Adult Literacy and Numeracy This report may be downloaded as a PDF document from the NRDC website at www.nrdc.org.uk We welcome feedback on the content and accessibility of this publication. This should be sent to: Publications NRDC Institute of Education 20 Bedford Way London WC1H 0AL. Telephone: +44 (0)20 7612 6476 Fax: +44 (0)20 7162 6671 email: [email protected] ISBN 0 9546492 0 6 © Crown Copyright 2003 Extracts from this publication may be used or reproduced for non-commercial, research, teaching or training purposes on condition that the source is acknowledged. NRDC is a consortium of partners led by the Institute of Education, University of London (see back cover for a list of members) and is part of the Bedford Group for Lifecourse and Statistical Studies at the IoE. www.ioe.ac.uk/bedfordgroup Design: chapmandesign Photography: Phillip Meech Print: Bradell Adult numeracy: review of research and related literature Diana Coben, University of Nottingham with -
NEWSLETTER Issue: 483 - July 2019
i “NLMS_483” — 2019/6/21 — 14:12 — page 1 — #1 i i i NEWSLETTER Issue: 483 - July 2019 50 YEARS OF MATHEMATICS EXACT AND THERMODYNAMIC AND MINE APPROXIMATE FORMALISM DETECTION COMPUTATIONS i i i i i “NLMS_483” — 2019/6/21 — 14:12 — page 2 — #2 i i i EDITOR-IN-CHIEF COPYRIGHT NOTICE Iain Moatt (Royal Holloway, University of London) News items and notices in the Newsletter may [email protected] be freely used elsewhere unless otherwise stated, although attribution is requested when reproducing whole articles. Contributions to EDITORIAL BOARD the Newsletter are made under a non-exclusive June Barrow-Green (Open University) licence; please contact the author or photog- Tomasz Brzezinski (Swansea University) rapher for the rights to reproduce. The LMS Lucia Di Vizio (CNRS) cannot accept responsibility for the accuracy of Jonathan Fraser (University of St Andrews) information in the Newsletter. Views expressed Jelena Grbic´ (University of Southampton) do not necessarily represent the views or policy Thomas Hudson (University of Warwick) of the Editorial Team or London Mathematical Stephen Huggett (University of Plymouth) Society. Adam Johansen (University of Warwick) Bill Lionheart (University of Manchester) ISSN: 2516-3841 (Print) Mark McCartney (Ulster University) ISSN: 2516-385X (Online) Kitty Meeks (University of Glasgow) DOI: 10.1112/NLMS Vicky Neale (University of Oxford) Susan Oakes (London Mathematical Society) Andrew Wade (Durham University) NEWSLETTER WEBSITE Early Career Content Editor: Vicky Neale The Newsletter is freely available electronically News Editor: Susan Oakes at lms.ac.uk/publications/lms-newsletter. Reviews Editor: Mark McCartney MEMBERSHIP CORRESPONDENTS AND STAFF Joining the LMS is a straightforward process.