Supplemental Tables Table S1: Taxonomy of Keystone Otus (Those in the 99Th Percentile of Importance for a Network and Networks I

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Tables Table S1: Taxonomy of Keystone Otus (Those in the 99Th Percentile of Importance for a Network and Networks I Biotic and Environmental Drivers of Plant Microbiomes Across a Permafrost Thaw Gradient Item Type Article Authors Hough, Moira; McClure, Amelia; Bolduc, Benjamin; Dorrepaal, Ellen; Saleska, Scott; Klepac-Ceraj, Vanja; Rich, Virginia Citation Hough, M., McClure, A., Bolduc, B., Dorrepaal, E., Saleska, S., Klepac-Ceraj, V., & Rich, V. (2020). Biotic and environmental drivers of plant microbiomes across a permafrost thaw gradient. Frontiers in Microbiology, 11, 796. DOI 10.3389/fmicb.2020.00796 Publisher FRONTIERS MEDIA SA Journal FRONTIERS IN MICROBIOLOGY Rights Copyright © 2020 Hough, McClure, Bolduc, Dorrepaal, Saleska, Klepac-Ceraj and Rich. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). Download date 25/09/2021 11:20:15 Item License https://creativecommons.org/licenses/by/4.0/ Version Final published version Link to Item http://hdl.handle.net/10150/649227 Supplemental Tables Table S1: Taxonomy of keystone OTUs (those in the 99th percentile of importance for a network and networks in which they attained this level of importance). Functional OTU Domain Phylum Class Order Family Genus Phyllosphere Rhizosphere Peat Habitat Group 12 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae C. rotundata Bog A.polifolia, 14 Bacteria Acidobacteria DA052 Ellin6513 A. polifolia E.vaginatum Palsa 15 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Acidocella Sphagnum sp Palsa 16 Bacteria Acidobacteria Holophagae Holophagales Holophagaceae E. vaginatum (bog) E. angustifolium (fen) Bog/Fen 21 Bacteria Proteobacteria Betaproteobacteria SBla14 A. polifolia Bog C. rotundata 22 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Methylocystaceae (bog) A. polifolia (bog) C. rotundata (fen) Bog/Fen Methanotroph E. angustifolium 23 Bacteria Verrucomicrobia [Pedosphaerae] [Pedosphaerales] auto67 (fen) E. vaginatum (bog) Bog/Fen A.polifolia (bog), 24 Bacteria Acidobacteria DA052 Ellin6513 Sphagnum sp (palsa) E.vaginatum (bog) Bog/Palsa R.chamaemorus, 25 Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae E.vaginatum Palsa 31 Bacteria Bacteroidetes Bacteroidia Bacteroidales C. rotundata Fen C. rotundata (bog), 32 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae E.angustifolium (fen) Bog/Fen A. polifolia (bog, A. polifolia (palsa), E. 35 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae palsa) vaginatum (bog) Palsa/Bog 36 Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobacterium E. vaginatum Bog Methanogen E. vaginatum 39 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae E. vaginatum (palsa) (palsa,bog) Palsa/Bog R.chamaemorus(palsa), 40 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bradyrhizobium E.angustifolim (fen) Palsa/Fen R.chamaemorus (palsa), 41 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Burkholderia A.polifolia (bog) Palsa/Bog A.polifolia (bog), 43 Bacteria Actinobacteria Actinobacteria Actinomycetales A.polifolia (palsa) E.vaginatum (bog) Palsa/Bog 46 Bacteria Armatimonadetes Armatimonadia FW68 Sphagnum sp C.rotundata Bog 48 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Acidocella Sphagnum sp Palsa/Bog C. rotundata, 53 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae Candidatus Koribacter E.angustifolium Fen 54 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Rhodoferax C. rotundata Fen Sphagnum sp (palsa), 55 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae A. polifolia (bog) Palsa/Bog 58 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae Sphagnum sp Palsa E. vaginatum R. chamaemorus 59 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae (bog) A. polifolia (palsa) (palsa) Palsa/Bog 61 Bacteria WPS-2 E. vaginatum Bog 62 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Paludibacter E. angustifolium Fen 63 Bacteria Acidobacteria Holophagae Holophagales Holophagaceae Geothrix C. rotundata (fen) C. rotundata (bog) Bog/Fen 66 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae E. vaginatum Bog 70 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae E. vaginatum Palsa A.polifolia (palsa), C. 72 Bacteria Verrucomicrobia [Methylacidiphilae] Methylacidiphilales rotundata (bog) Palsa/Bog Methanotroph 73 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Acidocella C. rotundata Bog 78 Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae E. vaginatum Palsa A. polifolia, R. chamaemorus, E. 90 Bacteria Acidobacteria DA052 Ellin6513 vaginatum Palsa 104 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae E. angustifolium Fen C. rotundata, 105 Bacteria Fibrobacteres E.angustifolium Fen 110 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Sphagnum sp Bog 117 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae E. vaginatum Bog 120 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae Sphagnum sp Palsa 123 Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia A. polifolia Bog 125 Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae A. polifolia Bog 128 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae E. angustifolium C. rotundata Fen 133 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae Sphagnum sp Palsa 136 Bacteria Acidobacteria Solibacteres Solibacterales Sphagnum sp Palsa 137 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae A. polifolia Bog E.vaginatum (palsa), 145 Bacteria Actinobacteria Acidimicrobiia Acidimicrobiales Sphagnum sp (bog) Palsa/Bog 146 Bacteria Proteobacteria Deltaproteobacteria Myxococcales C. rotundata Fen A. polifolia, 167 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Methylocystaceae E.vaginatum Palsa Methanotroph A.polifolia, E.vaginatum, 171 Bacteria Proteobacteria Gammaproteobacteria Methylococcales Sphagnum sp Bog 178 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae R. chamaemorus Palsa 197 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae E. vaginatum Palsa 200 Bacteria Verrucomicrobia [Pedosphaerae] [Pedosphaerales] auto67 C. rotundata Bog 203 Bacteria Proteobacteria Deltaproteobacteria Desulfuromonadales Geobacteraceae Geobacter E. vaginatum Bog 246 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Paludibacter Sphagnum sp Bog 264 Bacteria Chloroflexi Ellin6529 C. rotundata Fen C. rotundata (bog), 274 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae Edaphobacter E.angustifolium (fen) Bog/Fen 306 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae E. vaginatum Palsa 311 Bacteria Bacteroidetes Bacteroidia Bacteroidales C. rotundata Fen 320 Bacteria Proteobacteria Gammaproteobacteria Methylococcales Crenotrichaceae Crenothrix E. angustifolium Fen Methanotroph 371 Bacteria Bacteroidetes Cytophagia Cytophagales Cytophagaceae Hymenobacter C. rotundata Fen 390 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae E. vaginatum Bog 489 Bacteria Proteobacteria Deltaproteobacteria Myxococcales E. angustifolium Fen 505 Bacteria Acidobacteria Solibacteres Solibacterales Solibacteraceae Candidatus Solibacter C. rotundata Fen 530 Bacteria Proteobacteria Alphaproteobacteria A. polifolia Bog 590 Bacteria Actinobacteria Thermoleophilia Gaiellales C. rotundata Fen 732 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Paludibacter C. rotundata Bog 737 Bacteria Actinobacteria Actinobacteria Actinomycetales Nakamurellaceae C. rotundata Fen 772 Bacteria Proteobacteria E. angustifolium Fen 985 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae C. rotundata Bog 3373 Bacteria Verrucomicrobia Opitutae Opitutales Opitutaceae Opitutus A. polifolia Bog 3519 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae E. angustifolium Fen 5321 Bacteria Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae Chromobacterium C. rotundata Bog 5950 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae A. polifolia Bog 7027 Bacteria Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae Sphagnum sp Bog 9433 Bacteria Verrucomicrobia [Pedosphaerae] [Pedosphaerales] auto67 C. rotundata Bog Table S2: Number of keystone OTUs found in each network type Phyllosphere Rhizosphere Peat Palsa A. polifolia 2 4 3 R. chamaemorus 3 - 4 E. vaginatum 2 4 5 Sphagnum sp 3 4 - Bog A. polifolia 4 5 5 C. rotundata 2 5 6 E. vaginatum 2 5 7 Sphagnum sp 2 5 - Fen C. rotundata 3 5 6 E. angustifolium 3 6 5 Table S3: Putative methanotrophs Domain Phylum Class Order Family Genus Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Other Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Beijerinckia Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae unknown Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Devosia Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Hyphomicrobium Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Rhodoplanes Bacteria Proteobacteria Alphaproteobacteria
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Novel Bacterial Lineages Associated with Boreal Moss Species Hannah
    bioRxiv preprint doi: https://doi.org/10.1101/219659; this version posted November 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Novel bacterial lineages associated with boreal moss species 2 Hannah Holland-Moritz1,2*, Julia Stuart3, Lily R. Lewis4, Samantha Miller3, Michelle C. Mack3, Stuart 3 F. McDaniel4, Noah Fierer1,2* 4 Affiliations: 5 1Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, 6 Boulder, CO, USA 7 2Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, 8 USA 9 3Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ USA 10 4Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA 11 *Corresponding Author 12 13 Abstract 14 Mosses are critical components of boreal ecosystems where they typically account for a large 15 proportion of net primary productivity and harbor diverse bacterial communities that can be the major 16 source of biologically-fixed nitrogen in these ecosystems. Despite their ecological importance, we have 17 limited understanding of how microbial communities vary across boreal moss species and the extent to 18 which local environmental conditions may influence the composition of these bacterial communities. 19 We used marker gene sequencing to analyze bacterial communities associated with eight boreal moss 20 species collected near Fairbanks, AK USA. We found that host identity was more important than site in 21 determining bacterial community composition and that mosses harbor diverse lineages of potential N2- 22 fixers as well as an abundance of novel taxa assigned to understudied bacterial phyla (including 23 candidate phylum WPS-2).
    [Show full text]
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • High Quality Draft Genome of Nakamurella Lactea Type Strain, a Rock Actinobacterium, and Emended Description of Nakamurella Lactea
    Nouioui et al. Standards in Genomic Sciences (2017) 12:4 DOI 10.1186/s40793-016-0216-0 SHORTGENOMEREPORT Open Access High quality draft genome of Nakamurella lactea type strain, a rock actinobacterium, and emended description of Nakamurella lactea Imen Nouioui1, Markus Göker2, Lorena Carro1, Maria del Carmen Montero-Calasanz1*, Manfred Rohde3, Tanja Woyke4, Nikos C. Kyrpides4,5 and Hans-Peter Klenk1 Abstract Nakamurella lactea DLS-10T, isolated from rock in Korea, is one of the four type strains of the genus Nakamurella. In this study, we describe the high quality draft genome of N. lactea DLS-10T and its annotation. A summary of phenotypic data collected from previously published studies was also included. The genome of strain DLS-10T presents a size of 5.82 Mpb, 5100 protein coding genes, and a C + G content of 68.9%. Based on the genome analysis, emended description of N. lactea in terms of G + C content was also proposed. Keywords: Frankineae, Rare actinobacteria, Nakamurellaceae, Bioactive natural product, Next generation sequencing Introduction The availability of the genome of one more species in The genus Nakamurella, belong to the order Nakamur- the genus will provide vital baseline information for bet- ellales [1] and is one of the rare genera in the class ter understanding of the ecology of these rare actinobac- Actinobacteria [2]. The genus Nakamurella is the sole teria and their potential as source of bioactive natural and type genus of the family Nakamurellaceae,which products. In the present study, we summarise the replaced the family Microsphaeraceae [2] in 2004 [3]. phenotypic, physiological and chemotaxonomic, features The genus and family names were assigned in honour of N.
    [Show full text]
  • Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship Between Total Bacterial Diversity and Actinobacteria Diversity
    Mar. Drugs 2014, 12, 899-925; doi:10.3390/md12020899 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity Katherine Duncan 1, Bradley Haltli 2, Krista A. Gill 2 and Russell G. Kerr 1,2,* 1 Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; E-Mail: [email protected] 2 Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; E-Mails: [email protected] (B.H.); [email protected] (K.A.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-902-566-0565; Fax: +1-902-566-7445. Received: 13 November 2013; in revised form: 7 January 2014 / Accepted: 21 January 2014 / Published: 13 February 2014 Abstract: Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x̄ = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H’ = 5.4 to 6.7).
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Deep Divergence and Rapid Evolutionary Rates in Gut-Associated Acetobacteraceae of Ants Bryan P
    Brown and Wernegreen BMC Microbiology (2016) 16:140 DOI 10.1186/s12866-016-0721-8 RESEARCH ARTICLE Open Access Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants Bryan P. Brown1,2 and Jennifer J. Wernegreen1,2* Abstract Background: Symbiotic associations between gut microbiota and their animal hosts shape the evolutionary trajectories of both partners. The genomic consequences of these relationships are significantly influenced by a variety of factors, including niche localization, interaction potential, and symbiont transmission mode. In eusocial insect hosts, socially transmitted gut microbiota may represent an intermediate point between free living or environmentally acquired bacteria and those with strict host association and maternal transmission. Results: We characterized the bacterial communities associated with an abundant ant species, Camponotus chromaiodes. While many bacteria had sporadic distributions, some taxa were abundant and persistent within and across ant colonies. Specially, two Acetobacteraceae operational taxonomic units (OTUs; referred to as AAB1 and AAB2) were abundant and widespread across host samples. Dissection experiments confirmed that AAB1 and AAB2 occur in C. chromaiodes gut tracts. We explored the distribution and evolution of these Acetobacteraceae OTUs in more depth. We found that Camponotus hosts representing different species and geographical regions possess close relatives of the Acetobacteraceae OTUs detected in C. chromaiodes. Phylogenetic analysis revealed that AAB1 and AAB2 join other ant associates in a monophyletic clade. This clade consists of Acetobacteraceae from three ant tribes, including a third, basal lineage associated with Attine ants. This ant-specific AAB clade exhibits a significant acceleration of substitution rates at the 16S rDNA gene and elevated AT content.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Taxonomy JN869023
    Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]