The Acetobacteraceae: Extending the Spectrum of Human Pathogens David Fredricks, Lalita Ramakrishnan

Total Page:16

File Type:pdf, Size:1020Kb

The Acetobacteraceae: Extending the Spectrum of Human Pathogens David Fredricks, Lalita Ramakrishnan Editorial The Acetobacteraceae: Extending the Spectrum of Human Pathogens David Fredricks, Lalita Ramakrishnan atients with chronic proposed, Koch’s postulates, so named disseminated disease in patients with granulomatous disease (CGD) by the students of Robert Koch, remain neutropenia, but it is also a common P get recurrent infections with a the gold standard for proving that a colonizer of the gastrointestinal tract variety of bacterial and fungal microbe is the cause of a disease. In one of immunocompetent humans in whom pathogens as a consequence of of the most influential papers in the it does not produce disease. Further phagocyte defects in production of history of microbiology, ‘‘Die complicating matters, not every antimicrobial reactive oxygen Aetiologie der Tuberkulose’’ (‘‘The episode of neutropenic fever is caused metabolites. Patients with CGD often Etiology of Tuberculosis’’), presented by C. albicans, as other fungi, bacteria, present with clinical syndromes, such as before the Physiological Society of and viruses are also pathogens in this pneumonia or lymphadenitis, for which Berlin in 1882, Koch tried to convince setting. Koch’s postulates were no credible pathogen is identified, his colleagues that a novel bacterium, conceptualized at a time when our leading to empirical broad-spectrum Mycobacterium tuberculosis, was the cause attention was focused on clinical antibacterial and antifungal therapy. of tuberculosis [2]. syndromes such as anthrax and The question beleaguering the clinician The elements of Koch’s postulates pulmonary tuberculosis, which were so in this scenario is whether the patient is are summarized in Box 1, and it is clear distinct that they were easily infected with a common microbe (e.g., that the authors have left no stone recognizable even by the laity. Many Aspergillus fumigatus, Nocardia asteroides, unturned to fulfill these postulates to infectious syndromes in today’s Staphylococcus aureus) that has eluded provide a causal link between their practice are without hallmark detection, or a novel fastidious new, isolated organism and the CGD symptoms and signs. Not surprisingly, microbe. episode in this patient. In considering then, the authors’ attempt to address In this issue of PLoS Pathogens, David them one by one, it is important to elements 1 and 2 by examining the Greenberg, Steven Holland, and note that elements 1 and 2 were reactivity of serum from patients with colleagues [1] have isolated and problematic even in Koch’s time: he CGD and from controls to the new characterized a new bacterium, noted difficulties in fitting all microbe– bacterium led to ambiguous results: Granulobacter bethesdensis, from the disease associations to his causal three of 19 patients with CGD versus lymph nodes of a patient with CGD and paradigm—for instance, in the case of one of 20 controls were positive. These recurrent idiopathic lymphadenitis. Vibrio cholerae, wherein some subjects results are difficult to interpret given They have shown that G. bethesdensis were found to be colonized with the that we do not know if the organism is represents a new genus and species in bacterium without having the an occasional transient human the Acetobacteraceae family. The characteristic cholera disease [3]. commensal, and do not know how long bacterium was repeatedly isolated in Advances in microbiology since the immunoreactivity is maintained after charcoal–yeast extract medium from 19th century have demonstrated the exposure. Encouragingly, the authors several lymph nodes of the patient over important contributions of the host several months. The patient’s serum (immunity), vector, and environment to from prior to the current episode had disease susceptibility and response, and Citation: Fredricks D, Ramakrishnan L (2006) The been banked, allowing them to these elements are not considered in acetobacteraceae: Extending the spectrum of human demonstrate seroconversion by whole Koch’s original postulates. Indeed, even pathogens. PLoS Pathog 2(4): e36. DOI: 10.1371/ journal.ppat.0020036 lysate immunoblot and in the case of tuberculosis, many immunoelectron microscopy. asymptomatic individuals harbor M. DOI: 10.1371/journal.ppat.0020036 Furthermore, the patient’s G. tuberculosis for prolonged periods Copyright: Ó 2006 Fredricks and Ramakrishnan. This bethesdensis isolate produced a similar without suffering from the disease. In is an open-access article distributed under the terms of the Creative Commons Attribution License, which pyogranulomatous lymphadenitis in recent decades, elements 1 and 2 have permits unrestricted use, distribution, and mouse models of CGD but not in become ever more complex as the reproduction in any medium, provided the original control mice. Finally, the 16S rRNA distinction between commensal and author and source are credited. gene sequence of the bacterium pathogen has further blurred as a result Abbreviation: CGD, chronic granulomatous disease reisolated from infected mouse tissues of modern medical advances such as David Fredricks is at the Fred Hutchinson Cancer was identical to the sequence from the cytotoxic cancer therapies and Research Center, Seattle, Washington, United States of America, and in the Department of Medicine, bacterium originally isolated from the immunosuppression related to University of Washington, Seattle, Washington, patient. Do these data prove that G. transplantation. Increasingly, one United States of America. E-mail: [email protected]. bethesdensis is a cause of lymphadenitis person’s commensal may be another Lalita Ramakrishnan is in the Departments of Microbiology, Immunology, and Medicine, University in patients with CGD? person’s pathogen. For instance, of Washington, Seattle, Washington, United States of Some 124 years after they were Candida albicans can produce America. Email: [email protected]. PLoS Pathogens | www.plospathogens.org0249 April 2006 | Volume 2 | Issue 4 | e36 and nucleic acid sequence information source used by these bacteria in vivo? Box 1. Koch’s Guidelines for (Fredricks and Relman) [4]. Greenberg From the point of view of treatment, it Determining if Etiologic Microbes at al. have used immunological and is disturbing to note the high-level Are the Cause of Disease sequence evidence to nicely bolster resistance of the bacteria to virtually all their case for causation. classes of antibiotics and treatment 1. Should be found in every case of the disease 2. Should not be found in individuals without Bacteria in the Acetobacteraceae failure with the two antibiotics disease family are not common human (doxycycline and trimethoprim- 3. Should be isolated in pure culture on lifeless pathogens, but are commonly found in sulfamethoxazole) to which the media and be capable of causing the soil and associated with plants. The bacteria were transiently susceptible characteristic disease anew upon inoculation acetobacteraceae are known to convert upon isolation. This result highlights in a susceptible host ethanol to acetic acid and are the grim problem of antibiotic 4. Should be reisolated from the susceptible responsible for the conversion of wine resistance, either intrinsic to the host to vinegar. Asaia bogorensis is the only bacterium or induced by antibiotic other bacterium in this family that has therapy. The authors propose to obtain report the recent isolation of been associated with human disease a whole genome sequence of the molecularly distinct isolates of G. and isolated from the peritoneal fluid bacterium, which may begin to answer bethesdensis from two other patients of a patient undergoing peritoneal some of these questions. “ with CGD presenting with a similar dialysis [6]. Both A. bogorensis and G. bethesdensis were identified by syndrome. Acknowledgments The authors have done an sequencing their 16S rRNA genes and outstanding job addressing elements 3 performing phylogenetic analysis. The Funding. The authors received no specific and 4. In this regard, they were increasing use of sequence-based funding for this article. tenacious in pursuing different growth methods for the identification of Competing interests. The authors have declared that no competing interests exist. media and were fortunate that one of microbial pathogens in the clinical them was hospitable for the pathogen’s microbiology laboratory is likely to References growth. However, the application of greatly expand our understanding of 1. Greenberg DE, Ding L, Zelazny AM, Stock F, these elements of Koch’s postulates can the diversity of microbes pathogenic Wong A, et al. (2006) A novel bacterium associated with lymphadenitis in a patient with also present practical problems. For for humans. It will serve the chronic granulomatous disease. PLoS Pathog instance, not every pathogen is capable microbiological community well if the 2: DOI: 10.1371/journal.ppat.0020028 of propagation in the laboratory on discoverers of these novel microbes 2. Koch R (1882) Die aetiologie der tuberkulose. Berliner Klinische Wochenschrift 19: 221–230. lifeless (cell-free) medium, and some of apply the same rigor toward 3. Evans AS (1993) Causation and disease. New these pathogens include Mycobacterium establishing causality that was York: Plenum Medical Book Company. 238 p. leprae, Treponema pallidum, and all demonstrated by Greenberg at al. 4. Fredricks DN, Relman DA (1996) Sequence- based identification of microbial pathogens: A viruses. Thus, modifications have been Finally, the data presented in the reconsideration of Koch’s postulates. Clin proposed to make Koch’s postulates
Recommended publications
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Deep Divergence and Rapid Evolutionary Rates in Gut-Associated Acetobacteraceae of Ants Bryan P
    Brown and Wernegreen BMC Microbiology (2016) 16:140 DOI 10.1186/s12866-016-0721-8 RESEARCH ARTICLE Open Access Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants Bryan P. Brown1,2 and Jennifer J. Wernegreen1,2* Abstract Background: Symbiotic associations between gut microbiota and their animal hosts shape the evolutionary trajectories of both partners. The genomic consequences of these relationships are significantly influenced by a variety of factors, including niche localization, interaction potential, and symbiont transmission mode. In eusocial insect hosts, socially transmitted gut microbiota may represent an intermediate point between free living or environmentally acquired bacteria and those with strict host association and maternal transmission. Results: We characterized the bacterial communities associated with an abundant ant species, Camponotus chromaiodes. While many bacteria had sporadic distributions, some taxa were abundant and persistent within and across ant colonies. Specially, two Acetobacteraceae operational taxonomic units (OTUs; referred to as AAB1 and AAB2) were abundant and widespread across host samples. Dissection experiments confirmed that AAB1 and AAB2 occur in C. chromaiodes gut tracts. We explored the distribution and evolution of these Acetobacteraceae OTUs in more depth. We found that Camponotus hosts representing different species and geographical regions possess close relatives of the Acetobacteraceae OTUs detected in C. chromaiodes. Phylogenetic analysis revealed that AAB1 and AAB2 join other ant associates in a monophyletic clade. This clade consists of Acetobacteraceae from three ant tribes, including a third, basal lineage associated with Attine ants. This ant-specific AAB clade exhibits a significant acceleration of substitution rates at the 16S rDNA gene and elevated AT content.
    [Show full text]
  • Transition from Unclassified Ktedonobacterales to Actinobacteria During Amorphous Silica Precipitation in a Quartzite Cave Envir
    www.nature.com/scientificreports OPEN Transition from unclassifed Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment D. Ghezzi1,2, F. Sauro3,4,5, A. Columbu3, C. Carbone6, P.‑Y. Hong7, F. Vergara4,5, J. De Waele3 & M. Cappelletti1* The orthoquartzite Imawarì Yeuta cave hosts exceptional silica speleothems and represents a unique model system to study the geomicrobiology associated to silica amorphization processes under aphotic and stable physical–chemical conditions. In this study, three consecutive evolution steps in the formation of a peculiar blackish coralloid silica speleothem were studied using a combination of morphological, mineralogical/elemental and microbiological analyses. Microbial communities were characterized using Illumina sequencing of 16S rRNA gene and clone library analysis of carbon monoxide dehydrogenase (coxL) and hydrogenase (hypD) genes involved in atmospheric trace gases utilization. The frst stage of the silica amorphization process was dominated by members of a still undescribed microbial lineage belonging to the Ktedonobacterales order, probably involved in the pioneering colonization of quartzitic environments. Actinobacteria of the Pseudonocardiaceae and Acidothermaceae families dominated the intermediate amorphous silica speleothem and the fnal coralloid silica speleothem, respectively. The atmospheric trace gases oxidizers mostly corresponded to the main bacterial taxa present in each speleothem stage. These results provide novel understanding of the microbial community structure accompanying amorphization processes and of coxL and hypD gene expression possibly driving atmospheric trace gases metabolism in dark oligotrophic caves. Silicon is one of the most abundant elements in the Earth’s crust and can be broadly found in the form of silicates, aluminosilicates and silicon dioxide (e.g., quartz, amorphous silica).
    [Show full text]
  • Glucanoacetobacter
    GLUCANOACETOBACTER INTRODUCTION Glucanoacetobacter is a genuine in the phylum proto bacteria. It is like rod shape and circular ends. It can be classified as gram negative bacterium. The bacterium is known for stimulating plant growth and being tolerant to acetic acid with one to three lateral flagella and known to be found on sugar cane. Gluconacetobacter diazotrophicus was discovered in Brazil by Bladimir A Cavalcante and Johannna/Dobereiner. Domain: Bacteria Phylum: Proteobacteria Class :Alphaproteobacteria Order : Rhodospirillales Family: Acetobacteraceae Genus:Gluconacetobacter Species:G.diazotrophicus CHARACTERISTICS Originally found in Alagoas, Brazil, Gluconacetobacter diazotrophicus is a bacterium that has several interesting features and aspects which are important to note. The bacterium was first discovered by Vladimir A. Cavalcante and Johanna Dobereiner while analyzing sugarcane in Brazil. Gluconacetobacter diazotrophicus is a part of the Acetobacteraceae family and started out with the name, Saccharibacter nitrocaptans, however, the bacterium is renamed as Acetobacter diazotrophicus because the bacterium is found to belong with bacteria that are able to tolerate acetic acid. Again, the bacterium’s name was changed to Gluconacetobacter diazotrophicus when its taxonomic position was resolved using 16s ribosomal RNA analysis. In addition to being a part of the Acetobacter family, Gluconacetobacter azotrophicus belongs to the Proteobacteria phylum, the Alphaprotebacteria class, and the Gluconacetobacter genus while being a part of the Rhodosprillales order. Other nitrogen-fixing species in this same genus include Gluconacetobacter azotocaptans and Gluconacetobacter johannae. Gluconacetobacter diazotrophicus cells are shaped like rods, have ends that are circular or round, and have anywhere from one to three flagella that are lateral. Based on these descriptions of the cell, Gluconacetobacter diazotrophicus can be classified with the bacillus genus.
    [Show full text]
  • Roseomonas Aerofrigidensis Sp. Nov., Isolated from an Air Conditioner
    TAXONOMIC DESCRIPTION Hyeon and Jeon, Int J Syst Evol Microbiol 2017;67:4039–4044 DOI 10.1099/ijsem.0.002246 Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner Jong Woo Hyeon and Che Ok Jeon* Abstract A Gram-stain-negative, strictly aerobic bacterium, designated HC1T, was isolated from an air conditioner in South Korea. Cells were orange, non-motile cocci with oxidase- and catalase-positive activities and did not contain bacteriochlorophyll a. Growth of strain HC1T was observed at 10–45 C (optimum, 30 C), pH 4.5–9.5 (optimum, pH 7.0) and 0–3 % (w/v) NaCl T (optimum, 0 %). Strain HC1 contained summed feature 8 (comprising C18 : 1!7c/C18 : 1!6c), C16 : 0 and cyclo-C19 : 0!8c as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unknown aminolipid were detected as the major polar lipids. The major carotenoid was hydroxyspirilloxanthin. The G+C content of the genomic DNA was 70.1 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain HC1T formed a phylogenetic lineage within the genus Roseomonas. Strain HC1T was most closely related to the type strains of Roseomonas oryzae, Roseomonas rubra, Roseomonas aestuarii and Roseomonas rhizosphaerae with 98.1, 97.9, 97.6 and 96.8 % 16S rRNA gene sequence similarities, respectively, but the DNA–DNA relatedness values between strain HC1T and closely related type strains were less than 70 %. Based on phenotypic, chemotaxonomic and molecular properties, strain HC1T represents a novel species of the genus Roseomonas, for which the name Roseomonas aerofrigidensis sp.
    [Show full text]
  • Acetobacteraceae Sp., Strain AT-5844 Catalog No
    Product Information Sheet for HM-648 Acetobacteraceae sp., Strain AT-5844 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-648 Growth Conditions: For research use only. Not for human use. Media: Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% sheep blood or Chocolate agar or Carey-Ann Burnham, Ph.D., Medical Director of equivalent Microbiology, Department of Pediatrics, Washington Incubation: University School of Medicine, St. Louis, Missouri, USA Temperature: 35°C Atmosphere: Aerobic with 5% CO2 Manufacturer: Propagation: BEI Resources 1. Keep vial frozen until ready for use, then thaw. 2. Transfer the entire thawed aliquot into a single tube of Product Description: broth. Bacteria Classification: Rhodospirillales, Acetobacteraceae 3. Use several drops of the suspension to inoculate an agar Species: Acetobacteraceae sp. slant and/or plate. Strain: AT-5844 4. Incubate the tube, slant and/or plate at 35°C for 18-24 Original Source: Acetobacteraceae sp., strain AT-5844 was hours. isolated at the St. Louis Children’s Hospital in Missouri, USA, on May 28, 2010, from a leg wound infection of a Citation: human patient that was stepped on by a bull.1 Acknowledgment for publications should read “The following Comments: Acetobacteraceae sp., strain AT-5844 (HMP ID reagent was obtained through BEI Resources, NIAID, NIH as 9946) is a reference genome for The Human Microbiome part of the Human Microbiome Project: Acetobacteraceae Project (HMP). HMP is an initiative to identify and sp., Strain AT-5844, HM-648.” characterize human microbial flora.
    [Show full text]
  • Acetic Acid Bacteria – Perspectives of Application in Biotechnology – a Review
    POLISH JOURNAL OF FOOD AND NUTRITION SCIENCES www.pan.olsztyn.pl/journal/ Pol. J. Food Nutr. Sci. e-mail: [email protected] 2009, Vol. 59, No. 1, pp. 17-23 ACETIC ACID BACTERIA – PERSPECTIVES OF APPLICATION IN BIOTECHNOLOGY – A REVIEW Lidia Stasiak, Stanisław Błażejak Department of Food Biotechnology and Microbiology, Warsaw University of Life Science, Warsaw, Poland Key words: acetic acid bacteria, Gluconacetobacter xylinus, glycerol, dihydroxyacetone, biotransformation The most commonly recognized and utilized characteristics of acetic acid bacteria is their capacity for oxidizing ethanol to acetic acid. Those microorganisms are a source of other valuable compounds, including among others cellulose, gluconic acid and dihydroxyacetone. A number of inves- tigations have recently been conducted into the optimization of the process of glycerol biotransformation into dihydroxyacetone (DHA) with the use of acetic acid bacteria of the species Gluconobacter and Acetobacter. DHA is observed to be increasingly employed in dermatology, medicine and cosmetics. The manuscript addresses pathways of synthesis of that compound and an overview of methods that enable increasing the effectiveness of glycerol transformation into dihydroxyacetone. INTRODUCTION glucose to acetic acid [Yamada & Yukphan, 2007]. Another genus, Acetomonas, was described in the year 1954. In turn, Multiple species of acetic acid bacteria are capable of in- in the year 1984, Acetobacter was divided into two sub-genera: complete oxidation of carbohydrates and alcohols to alde- Acetobacter and Gluconoacetobacter, yet the year 1998 brought hydes, ketones and organic acids [Matsushita et al., 2003; another change in the taxonomy and Gluconacetobacter was Deppenmeier et al., 2002]. Oxidation products are secreted recognized as a separate genus [Yamada & Yukphan, 2007].
    [Show full text]
  • Asaia (Rhodospirillales: Acetobacteraceae)
    Revista Brasileira de Entomologia 64(2):e20190010, 2020 www.rbentomologia.com Asaia (Rhodospirillales: Acetobacteraceae) and Serratia (Enterobacterales: Yersiniaceae) associated with Nyssorhynchus braziliensis and Nyssorhynchus darlingi (Diptera: Culicidae) Tatiane M. P. Oliveira1* , Sabri S. Sanabani2, Maria Anice M. Sallum1 1Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia, São Paulo, SP, Brasil. 2Universidade de São Paulo, Faculdade de Medicina da São Paulo (FMUSP), Hospital das Clínicas (HCFMUSP), Brasil. ARTICLE INFO ABSTRACT Article history: Midgut transgenic bacteria can be used to express and deliver anti-parasite molecules in malaria vector mosquitoes Received 24 October 2019 to reduce transmission. Hence, it is necessary to know the symbiotic bacteria of the microbiota of the midgut Accepted 23 April 2020 to identify those that can be used to interfering in the vector competence of a target mosquito population. Available online 08 June 2020 The bacterial communities associated with the abdomen of Nyssorhynchus braziliensis (Chagas) (Diptera: Associate Editor: Mário Navarro-Silva Culicidae) and Nyssorhynchus darlingi (Root) (Diptera: Culicidae) were identified using Illumina NGS sequencing of the V4 region of the 16S rRNA gene. Wild females were collected in rural and periurban communities in the Brazilian Amazon. Proteobacteria was the most abundant group identified in both species. Asaia (Rhodospirillales: Keywords: Acetobacteraceae) and Serratia (Enterobacterales: Yersiniaceae) were detected in Ny. braziliensis for the first time Vectors and its presence was confirmed in Ny. darlingi. Malaria Amazon Although the malaria burden has decreased worldwide, the disease bites by the use of insecticide-treated bed nets, and insecticide indoor still imposes enormous suffering for human populations in the majority residual spraying (Baird, 2017; Shretta et al., 2017; WHO, 2018).
    [Show full text]
  • Molecular Mechanisms Underpinning Aggregation in Acidiphilium Sp. C61 Isolated from Iron-Rich Pelagic Aggregates
    microorganisms Article Molecular Mechanisms Underpinning Aggregation in Acidiphilium sp. C61 Isolated from Iron-Rich Pelagic Aggregates Qianqian Li 1 , Rebecca E. Cooper 1, Carl-Eric Wegner 1 and Kirsten Küsel 1,2,* 1 Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany; [email protected] (Q.L.); [email protected] (R.E.C.); [email protected] (C.-E.W.) 2 The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany * Correspondence: [email protected]; Tel.: +49-3641-949461 Received: 17 December 2019; Accepted: 23 February 2020; Published: 25 February 2020 Abstract: Iron-rich pelagic aggregates (iron snow) are hot spots for microbial interactions. Using iron snow isolates, we previously demonstrated that the iron-oxidizer Acidithrix sp. C25 triggers Acidiphilium sp. C61 aggregation by producing the infochemical 2-phenethylamine (PEA). Here, we showed slightly enhanced aggregate formation in the presence of PEA on different Acidiphilium spp. but not other iron-snow microorganisms, including Acidocella sp. C78 and Ferrovum sp. PN-J47. Next, we sequenced the Acidiphilium sp. C61 genome to reconstruct its metabolic potential. Pangenome analyses of Acidiphilium spp. genomes revealed the core genome contained 65 gene clusters associated with aggregation, including autoaggregation, motility, and biofilm formation. Screening the Acidiphilium sp. C61 genome revealed the presence of autotransporter, flagellar, and extracellular polymeric substances (EPS) production genes. RNA-seq analyses of Acidiphilium sp. C61 incubations (+/ 10 µM PEA) indicated genes involved in energy production, respiration, − and genetic processing were the most upregulated differentially expressed genes in the presence of PEA.
    [Show full text]
  • Asaia Siamensis Sp. Nov., an Acetic Acid Bacterium in the Α-Proteobacteria
    International Journal of Systematic and Evolutionary Microbiology (2001), 51, 559–563 Printed in Great Britain Asaia siamensis sp. nov., an acetic acid NOTE bacterium in the α-Proteobacteria Kazushige Katsura,1 Hiroko Kawasaki,2 Wanchern Potacharoen,3 Susono Saono,4 Tatsuji Seki,2 Yuzo Yamada,1† Tai Uchimura1 and Kazuo Komagata1 Author for correspondence: Yuzo Yamada. Tel\Fax: j81 54 635 2316. e-mail: yamada-yuzo!mub.biglobe.ne.jp 1 Laboratory of General and Five bacterial strains were isolated from tropical flowers collected in Thailand Applied Microbiology, and Indonesia by the enrichment culture approach for acetic acid bacteria. Department of Applied Biology and Chemistry, Phylogenetic analysis based on 16S rRNA gene sequences showed that the Faculty of Applied isolates were located within the cluster of the genus Asaia. The isolates Bioscience, Tokyo constituted a group separate from Asaia bogorensis on the basis of DNA University of Agriculture, 1-1-1 Sakuragaoka, relatedness values. Their DNA GMC contents were 586–597 mol%, with a range Setagaya-ku, Tokyo of 11 mol%, which were slightly lower than that of A. bogorensis (593–610 156-8502, Japan mol%), the type species of the genus Asaia. The isolates had morphological, 2 The International Center physiological and biochemical characteristics similar to A. bogorensis strains, for Biotechnology, but the isolates did not produce acid from dulcitol. On the basis of the results Osaka University, 2-1 Yamadaoka, Suita, obtained, the name Asaia siamensis sp. nov. is proposed for these isolates. Osaka 568-0871, Japan Strain S60-1T, isolated from a flower of crown flower (dok rak, Calotropis 3 National Center for gigantea) collected in Bangkok, Thailand, was designated the type strain Genetic Engineering and ( l NRIC 0323T l JCM 10715T l IFO 16457T).
    [Show full text]
  • Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications
    review ISSN 1330-9862 doi: 10.17113/ftb.56.02.18.5593 Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications Rodrigo José Gomes1, SUMMARY 2 Maria de Fatima Borges , The group of Gram-negative bacteria capable of oxidising ethanol to acetic acid is Morsyleide de Freitas called acetic acid bacteria (AAB). They are widespread in nature and play an important role Rosa2, Raúl Jorge Hernan in the production of food and beverages, such as vinegar and kombucha. The ability to Castro-Gómez1 and Wilma oxidise ethanol to acetic acid also allows the unwanted growth of AAB in other fermented Aparecida Spinosa1* beverages, such as wine, cider, beer and functional and soft beverages, causing an undesir- able sour taste. These bacteria are also used in the production of other metabolic products, 1 Department of Food Science and for example, gluconic acid, L-sorbose and bacterial cellulose, with potential applications Technology, State University of in the food and biomedical industries. The classification of AAB into distinct genera has Londrina, Celso Garcia Cid (PR 445) undergone several modifications over the last years, based on morphological, physiolog- Road, 86057-970 Londrina, PR, Brazil ical and genetic characteristics. Therefore, this review focuses on the history of taxonomy, 2 Embrapa Tropical Agroindustry, 2270 Dra. Sara Mesquita Road, 60511-110 biochemical aspects and methods of isolation, identification and quantification of AAB, Fortaleza, CE, Brazil mainly related to those with important biotechnological applications. Received: 6 November 2017 Key words: acetic acid bacteria, taxonomy, vinegar, bacterial cellulose, biotechnological Accepted: 30 January 2018 products INTRODUCTION Acetic acid bacteria (AAB) belong to the family Acetobacteraceae, which includes several genera and species.
    [Show full text]
  • Microbial Community Composition Reveals Spatial Variation and Distinctive Core Microbiome of the Weaver Ant Oecophylla Smaragdin
    www.nature.com/scientificreports OPEN Microbial Community Composition Reveals Spatial Variation and Distinctive Core Microbiome of the Received: 4 October 2017 Accepted: 22 June 2018 Weaver Ant Oecophylla smaragdina Published: xx xx xxxx in Malaysia Kah-Ooi Chua1, Sze-Looi Song2, Hoi-Sen Yong1, Wah-Seng See-Too1, Wai-Fong Yin1 & Kok-Gan Chan 1,3 The weaver ant Oecophylla smaragdina is an aggressive predator of other arthropods and has been employed as a biological control agent against many insect pests in plantations. Despite playing important roles in pest management, information about the microbiota of O. smaragdina is limited. In this work, a number of O. smaragdina colonies (n = 12) from Malaysia had been studied on their microbiome profle using Illumina 16S rRNA gene amplicon sequencing. We characterized the core microbiota associated with these O. smaragdina and investigated variation between colonies from diferent environments. Across all 12 samples, 97.8% of the sequences were assigned to eight bacterial families and most communities were dominated by families Acetobacteraceae and Lactobacillaceae. Comparison among colonies revealed predominance of Acetobacteraceae in O. smaragdina from forest areas but reduced abundance was observed in colonies from urban areas. In addition, our fndings also revealed distinctive community composition in O. smaragdina showing little taxonomic overlap with previously reported ant microbiota. In summary, our work provides information regarding microbiome of O. smaragdina which is essential for establishing healthy colonies. This study also forms the basis for further study on microbiome of O. smaragdina from other regions. Te ant family Formicidae has 17 subfamilies, 333 genera and 13,263 valid species described1.
    [Show full text]