Engineering Control of Bacterial Cellulose Production Using a Genetic Toolkit and a New Cellulose-Producing Strain

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Control of Bacterial Cellulose Production Using a Genetic Toolkit and a New Cellulose-Producing Strain Engineering control of bacterial cellulose production PNAS PLUS using a genetic toolkit and a new cellulose- producing strain Michael Floreaa,b,1, Henrik Hagemanna,c, Gabriella Santosaa,b, James Abbottd,e, Chris N. Micklema,b, Xenia Spencer-Milnesa,b, Laura de Arroyo Garciaa,b, Despoina Paschoua,c, Christopher Lazenbatta,b, Deze Konga,c, Haroon Chughtaia,c, Kirsten Jensena,f, Paul S. Freemonta,f, Richard Kitneya,c, Benjamin Reevea,c, and Tom Ellisa,c,2 aCentre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; bDepartment of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom; cDepartment of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; dBioinformatics Support Service, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom; eCentre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, United Kingdom; and fDepartment of Medicine, Imperial College London, London SW7 2AZ, United Kingdom Edited by Jef D. Boeke, New York University School of Medicine, New York, NY, and approved April 29, 2016 (received for review November 20, 2015) Bacterial cellulose is a strong and ultrapure form of cellulose advantage in colonization over other microorganisms (10). In ma- produced naturally by several species of the Acetobacteraceae. Its terials science, genetic engineering has been used to create several high strength, purity, and biocompatibility make it of great interest novel biomaterials, such as strong underwater protein-based ad- to materials science; however, precise control of its biosynthesis has hesives (11), self-assembling, functionalized amyloid-based biofilms remained a challenge for biotechnology. Here we isolate a strain of (12), biodegradable bacterial cellulose-based tissue engineering Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce scaffolds (13), and many others. Bacterial cellulose has long been a cellulose at high yields, grow in low-nitrogen conditions, and is focus of research because, unlike plant-based cellulose, it is pure of highly resistant to toxic chemicals. We achieved external control other chemical species (lignin and pectin) and is synthesized as a over its bacterial cellulose production through development of a continuous highly interconnected lattice (14). This makes the ma- modular genetic toolkit that enables rational reprogramming of terial mechanically strong [nanocellulose fibers possess tensile MICROBIOLOGY the cell. To further its use as an organism for biotechnology, we stiffness of between 100 and 160 GPa and tensile strength of at sequenced its genome and demonstrate genetic circuits that enable least 1 GPa (15, 16)] while still flexible, biocompatible, and highly functionalization and patterning of heterologous gene expression hydrophilic, capable of storing water over 90% of its total weight within the cellulose matrix. This work lays the foundations for using (17, 18). Due to these properties, bacterial cellulose is commercially genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, Significance and biotechnology. synthetic biology | bacterial cellulose | genetic engineering | biomaterials | Bacterial cellulose is a remarkable material that is malleable, genomics biocompatible, and over 10-times stronger than plant-based cel- lulose. It is currently used to create materials for tissue engi- neering, medicine, defense, electronics, acoustics, and fabrics. We he emergence of synthetic biology now enables model mi- describe here a bacterial strain that is readily amenable to genetic Escherichia coli Tcroorganisms such as to be easily reprog- engineering and produces high quantities of bacterial cellulose in rammed with modular DNA code to perform a variety of new low-cost media. To reprogram this organism for biotechnology tasks for useful purposes (1). However, for many application applications, we created a set of genetic tools that enables bio- areas, it is instead preferable to exploit the natural abilities of synthesis of patterned cellulose, functionalization of the cellulose nonmodel microbes as specialists at consuming or producing surface with proteins, and tunable control over cellulose pro- molecules or thriving within niche environments (2). Recent duction. This greatly expands our ability to control and engineer work has described adapting common E. coli synthetic biology new cellulose-based biomaterials, offering numerous applica- tools to work across different bacterial phyla (3, 4) and has tions for basic research, materials science, and biotechnology. produced genetic toolkits for new bacteria, where collections of DNA constructs and methods for precise control of heterologous Author contributions: M.F., H.H., and B.R., isolated and characterized the iGEM strain; M.F. gene expression have been developed for engineering strains and B.R. sequenced the genome; M.F. and J.A. scaffolded and analyzed the genome; M.F., naturally specialized for photosynthesis or survival within the gut H.H., G.S., C.N.M., X.S.-M., L.d.A.G., and D.P. created the genetic engineering toolkit; M.F. created the sRNA construct; H.H., G.S., C.N.M., and X.S.-M. created CBD fusion proteins; microbiome (5, 6). An important application area for biotech- M.F., H.H., G.S., C.N.M., and X.S.-M. created patterned and functionalized biomaterials; nology is the production of materials, and bacteria that naturally M.F., H.H., G.S., and T.E. conducted temporal patterning experiments; H.H., G.S., C.N.M., secrete high yields of cellulose have attracted significant attention X.S.-M., L.d.A.G., and B.R. created sfGFP-functionalized garments; M.F., C.N.M., D.P., C.L., D.K., and H.C. analyzed data; M.F. and T.E. wrote the manuscript; K.J., P.S.F., R.K., B.R., not just from people in industry and research (7) but also from and T.E. supervised the work; all authors contributed to planning the study. those in art, fashion, and citizen science (8). However, despite Conflict of interest statement: H.H. and G.S. are researching the industrial uses of cellulose their widespread use, no toolkit for genetic modification of these functionalized with cellulose binding domain fusion proteins as part of CustoMem Ltd. cellulose-producing bacteria has previously been described. This article is a PNAS Direct Submission. Komagataeibacter is a genus from the Acetobacteraceae family Freely available online through the PNAS open access option. of which multiple species produce bacterial cellulose. Cellulose Data deposition: The sequence reported in this paper has been deposited in the European nanofibers are synthesized from UDP-glucose by the acs (Acetobacter Nucleotide Archive, www.ebi.ac.uk/ena (accession no. PRJEB10933). cellulose synthase) operon proteins AcsA and AcsB (9) and secreted 1Present address: Department of Biosystems Science and Engineering, Eidgenössische by AcsC and AcsD, forming an interconnected cellulose “pellicle” Technische Hochschule Zürich, 4058 Basel, Switzerland. around cells (7). Although it is still unclear why Acetobacteraceae 2To whom correspondence should be addressed. Email: [email protected]. produce bacterial cellulose in nature (7), it has been shown to This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. confer the host with a high resistance to UV light and a competitive 1073/pnas.1522985113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1522985113 PNAS Early Edition | 1of10 Downloaded by guest on September 30, 2021 Fig. 1. Characterization of K. rhaeticus iGEM. (A) Morphology of a typical cellulose pellicle produced by K. rhaeticus iGEM. White patches are light reflected by the pellicle surface. (B) Cellulose productivity of K. rhaeticus iGEM and G. hansenii ATCC 53582 on different growth media, shown as pellicle dry weight after a 10-d incubation in 20 mL liquid Hestrin–Schramm (HS) media. Cellulose production of K. rhaeticus exceedsthatofG. hansenii in sucrose-containing media (HS sucrose and Kombucha tea, adjusted P = 0.0128 and P = 0.039, respectively), but is lower than that of G. hansenii in HS glucose (adjusted P = 0.027). (C and D) Growth and production of a cellulose pellicle (denoted by an arrow) by K. rhaeticus iGEM in nitrogen-free LGI medium. K. rhaeticus iGEM shows significant growth compared with negative controls G. hansenii and E. coli (adjusted P = 0.026 and P = 0.011, respectively), whereas G. hansenii and E. coli donotdiffer(adjustedP = 0.742). ns, not significant. (E) Comparison of K. rhaeticus and E. coli survival after incubation for 5, 30, or 90 min with toxic chemicals [0.1 M HCl, 0.1 M NaOH, 70% (vol/vol) EtOH, and 10% (vol/vol) bleach]. Survival is defined as the fraction of survived cells compared with PBS-treated cells. (F) Scanning electron micrographs of K. rhaeticus iGEM encased in bacterial cellulose, taken after 8 d of growth, at 6,000× magnification. *P < 0.05. n = 3 biological replicates for all experiments; error bars indicate SD. Statistical significance was determined for B with two-way ANOVA and Bonferroni’s multiple comparisons test and for D with one-way ANOVA with Tukey’s multiple comparisons tests. For A and C, images were taken 9 d postinoculation. Images were cropped, and contrast was adjusted to improve clarity, without affecting details. See Methods for experimental details. used in medical wound dressings, high-end acoustics, and many (24) that can grow in low-nitrogen
Recommended publications
  • Protein Expression Profile of Gluconacetobacter Diazotrophicus PAL5, a Sugarcane Endophytic Plant Growth-Promoting Bacterium
    Proteomics 2008, 8, 1631–1644 DOI 10.1002/pmic.200700912 1631 RESEARCH ARTICLE Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugarcane endophytic plant growth-promoting bacterium Leticia M. S. Lery1, 2, Ana Coelho1, 3, Wanda M. A. von Kruger1, 2, Mayla S. M. Gonc¸alves1, 3, Marise F. Santos1, 4, Richard H. Valente1, 5, Eidy O. Santos1, 3, Surza L. G. Rocha1, 5, Jonas Perales1, 5, Gilberto B. Domont1, 4, Katia R. S. Teixeira1, 6 and Paulo M. Bisch1, 2 1 Rio de Janeiro Proteomics Network, Rio de Janeiro, Brazil 2 Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 3 Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 4 Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 5 Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica- Instituto Oswaldo Cruz- Fundac¸ão Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil 6 Laboratório de Genética e Bioquímica, Embrapa Agrobiologia, Seropédica, Brazil This is the first broad proteomic description of Gluconacetobacter diazotrophicus, an endophytic Received: September 25, 2007 bacterium, responsible for the major fraction of the atmospheric nitrogen fixed in sugarcane in Revised: December 18, 2007 tropical regions. Proteomic coverage of G. diazotrophicus PAL5 was obtained by two independent Accepted: December 19, 2007 approaches: 2-DE followed by MALDI-TOF or TOF-TOF MS and 1-DE followed by chromatog- raphy in a C18 column online coupled to an ESI-Q-TOF or ESI-IT mass spectrometer.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Deep Divergence and Rapid Evolutionary Rates in Gut-Associated Acetobacteraceae of Ants Bryan P
    Brown and Wernegreen BMC Microbiology (2016) 16:140 DOI 10.1186/s12866-016-0721-8 RESEARCH ARTICLE Open Access Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants Bryan P. Brown1,2 and Jennifer J. Wernegreen1,2* Abstract Background: Symbiotic associations between gut microbiota and their animal hosts shape the evolutionary trajectories of both partners. The genomic consequences of these relationships are significantly influenced by a variety of factors, including niche localization, interaction potential, and symbiont transmission mode. In eusocial insect hosts, socially transmitted gut microbiota may represent an intermediate point between free living or environmentally acquired bacteria and those with strict host association and maternal transmission. Results: We characterized the bacterial communities associated with an abundant ant species, Camponotus chromaiodes. While many bacteria had sporadic distributions, some taxa were abundant and persistent within and across ant colonies. Specially, two Acetobacteraceae operational taxonomic units (OTUs; referred to as AAB1 and AAB2) were abundant and widespread across host samples. Dissection experiments confirmed that AAB1 and AAB2 occur in C. chromaiodes gut tracts. We explored the distribution and evolution of these Acetobacteraceae OTUs in more depth. We found that Camponotus hosts representing different species and geographical regions possess close relatives of the Acetobacteraceae OTUs detected in C. chromaiodes. Phylogenetic analysis revealed that AAB1 and AAB2 join other ant associates in a monophyletic clade. This clade consists of Acetobacteraceae from three ant tribes, including a third, basal lineage associated with Attine ants. This ant-specific AAB clade exhibits a significant acceleration of substitution rates at the 16S rDNA gene and elevated AT content.
    [Show full text]
  • The Acetobacteraceae: Extending the Spectrum of Human Pathogens David Fredricks, Lalita Ramakrishnan
    Editorial The Acetobacteraceae: Extending the Spectrum of Human Pathogens David Fredricks, Lalita Ramakrishnan atients with chronic proposed, Koch’s postulates, so named disseminated disease in patients with granulomatous disease (CGD) by the students of Robert Koch, remain neutropenia, but it is also a common P get recurrent infections with a the gold standard for proving that a colonizer of the gastrointestinal tract variety of bacterial and fungal microbe is the cause of a disease. In one of immunocompetent humans in whom pathogens as a consequence of of the most influential papers in the it does not produce disease. Further phagocyte defects in production of history of microbiology, ‘‘Die complicating matters, not every antimicrobial reactive oxygen Aetiologie der Tuberkulose’’ (‘‘The episode of neutropenic fever is caused metabolites. Patients with CGD often Etiology of Tuberculosis’’), presented by C. albicans, as other fungi, bacteria, present with clinical syndromes, such as before the Physiological Society of and viruses are also pathogens in this pneumonia or lymphadenitis, for which Berlin in 1882, Koch tried to convince setting. Koch’s postulates were no credible pathogen is identified, his colleagues that a novel bacterium, conceptualized at a time when our leading to empirical broad-spectrum Mycobacterium tuberculosis, was the cause attention was focused on clinical antibacterial and antifungal therapy. of tuberculosis [2]. syndromes such as anthrax and The question beleaguering the clinician The elements of Koch’s postulates pulmonary tuberculosis, which were so in this scenario is whether the patient is are summarized in Box 1, and it is clear distinct that they were easily infected with a common microbe (e.g., that the authors have left no stone recognizable even by the laity.
    [Show full text]
  • Transition from Unclassified Ktedonobacterales to Actinobacteria During Amorphous Silica Precipitation in a Quartzite Cave Envir
    www.nature.com/scientificreports OPEN Transition from unclassifed Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment D. Ghezzi1,2, F. Sauro3,4,5, A. Columbu3, C. Carbone6, P.‑Y. Hong7, F. Vergara4,5, J. De Waele3 & M. Cappelletti1* The orthoquartzite Imawarì Yeuta cave hosts exceptional silica speleothems and represents a unique model system to study the geomicrobiology associated to silica amorphization processes under aphotic and stable physical–chemical conditions. In this study, three consecutive evolution steps in the formation of a peculiar blackish coralloid silica speleothem were studied using a combination of morphological, mineralogical/elemental and microbiological analyses. Microbial communities were characterized using Illumina sequencing of 16S rRNA gene and clone library analysis of carbon monoxide dehydrogenase (coxL) and hydrogenase (hypD) genes involved in atmospheric trace gases utilization. The frst stage of the silica amorphization process was dominated by members of a still undescribed microbial lineage belonging to the Ktedonobacterales order, probably involved in the pioneering colonization of quartzitic environments. Actinobacteria of the Pseudonocardiaceae and Acidothermaceae families dominated the intermediate amorphous silica speleothem and the fnal coralloid silica speleothem, respectively. The atmospheric trace gases oxidizers mostly corresponded to the main bacterial taxa present in each speleothem stage. These results provide novel understanding of the microbial community structure accompanying amorphization processes and of coxL and hypD gene expression possibly driving atmospheric trace gases metabolism in dark oligotrophic caves. Silicon is one of the most abundant elements in the Earth’s crust and can be broadly found in the form of silicates, aluminosilicates and silicon dioxide (e.g., quartz, amorphous silica).
    [Show full text]
  • Glucanoacetobacter
    GLUCANOACETOBACTER INTRODUCTION Glucanoacetobacter is a genuine in the phylum proto bacteria. It is like rod shape and circular ends. It can be classified as gram negative bacterium. The bacterium is known for stimulating plant growth and being tolerant to acetic acid with one to three lateral flagella and known to be found on sugar cane. Gluconacetobacter diazotrophicus was discovered in Brazil by Bladimir A Cavalcante and Johannna/Dobereiner. Domain: Bacteria Phylum: Proteobacteria Class :Alphaproteobacteria Order : Rhodospirillales Family: Acetobacteraceae Genus:Gluconacetobacter Species:G.diazotrophicus CHARACTERISTICS Originally found in Alagoas, Brazil, Gluconacetobacter diazotrophicus is a bacterium that has several interesting features and aspects which are important to note. The bacterium was first discovered by Vladimir A. Cavalcante and Johanna Dobereiner while analyzing sugarcane in Brazil. Gluconacetobacter diazotrophicus is a part of the Acetobacteraceae family and started out with the name, Saccharibacter nitrocaptans, however, the bacterium is renamed as Acetobacter diazotrophicus because the bacterium is found to belong with bacteria that are able to tolerate acetic acid. Again, the bacterium’s name was changed to Gluconacetobacter diazotrophicus when its taxonomic position was resolved using 16s ribosomal RNA analysis. In addition to being a part of the Acetobacter family, Gluconacetobacter azotrophicus belongs to the Proteobacteria phylum, the Alphaprotebacteria class, and the Gluconacetobacter genus while being a part of the Rhodosprillales order. Other nitrogen-fixing species in this same genus include Gluconacetobacter azotocaptans and Gluconacetobacter johannae. Gluconacetobacter diazotrophicus cells are shaped like rods, have ends that are circular or round, and have anywhere from one to three flagella that are lateral. Based on these descriptions of the cell, Gluconacetobacter diazotrophicus can be classified with the bacillus genus.
    [Show full text]
  • Roseomonas Aerofrigidensis Sp. Nov., Isolated from an Air Conditioner
    TAXONOMIC DESCRIPTION Hyeon and Jeon, Int J Syst Evol Microbiol 2017;67:4039–4044 DOI 10.1099/ijsem.0.002246 Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner Jong Woo Hyeon and Che Ok Jeon* Abstract A Gram-stain-negative, strictly aerobic bacterium, designated HC1T, was isolated from an air conditioner in South Korea. Cells were orange, non-motile cocci with oxidase- and catalase-positive activities and did not contain bacteriochlorophyll a. Growth of strain HC1T was observed at 10–45 C (optimum, 30 C), pH 4.5–9.5 (optimum, pH 7.0) and 0–3 % (w/v) NaCl T (optimum, 0 %). Strain HC1 contained summed feature 8 (comprising C18 : 1!7c/C18 : 1!6c), C16 : 0 and cyclo-C19 : 0!8c as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unknown aminolipid were detected as the major polar lipids. The major carotenoid was hydroxyspirilloxanthin. The G+C content of the genomic DNA was 70.1 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain HC1T formed a phylogenetic lineage within the genus Roseomonas. Strain HC1T was most closely related to the type strains of Roseomonas oryzae, Roseomonas rubra, Roseomonas aestuarii and Roseomonas rhizosphaerae with 98.1, 97.9, 97.6 and 96.8 % 16S rRNA gene sequence similarities, respectively, but the DNA–DNA relatedness values between strain HC1T and closely related type strains were less than 70 %. Based on phenotypic, chemotaxonomic and molecular properties, strain HC1T represents a novel species of the genus Roseomonas, for which the name Roseomonas aerofrigidensis sp.
    [Show full text]
  • Metaproteomics Characterization of the Alphaproteobacteria
    Avian Pathology ISSN: 0307-9457 (Print) 1465-3338 (Online) Journal homepage: https://www.tandfonline.com/loi/cavp20 Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar To cite this article: José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar (2019) Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssusgallinae (De Geer, 1778), Avian Pathology, 48:sup1, S52-S59, DOI: 10.1080/03079457.2019.1635679 To link to this article: https://doi.org/10.1080/03079457.2019.1635679 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group Accepted author version posted online: 03 Submit your article to this journal Jul 2019. Published online: 02 Aug 2019. Article views: 694 View related articles View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=cavp20 AVIAN PATHOLOGY 2019, VOL. 48, NO. S1, S52–S59 https://doi.org/10.1080/03079457.2019.1635679 ORIGINAL ARTICLE Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero a,b, Sandra Díaz-Sanchez a, Olivier Sparagano c, Robert D. Finn d, José de la Fuente a,e and Margarita Villar a aSaBio.
    [Show full text]
  • Acetobacteraceae Sp., Strain AT-5844 Catalog No
    Product Information Sheet for HM-648 Acetobacteraceae sp., Strain AT-5844 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-648 Growth Conditions: For research use only. Not for human use. Media: Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% sheep blood or Chocolate agar or Carey-Ann Burnham, Ph.D., Medical Director of equivalent Microbiology, Department of Pediatrics, Washington Incubation: University School of Medicine, St. Louis, Missouri, USA Temperature: 35°C Atmosphere: Aerobic with 5% CO2 Manufacturer: Propagation: BEI Resources 1. Keep vial frozen until ready for use, then thaw. 2. Transfer the entire thawed aliquot into a single tube of Product Description: broth. Bacteria Classification: Rhodospirillales, Acetobacteraceae 3. Use several drops of the suspension to inoculate an agar Species: Acetobacteraceae sp. slant and/or plate. Strain: AT-5844 4. Incubate the tube, slant and/or plate at 35°C for 18-24 Original Source: Acetobacteraceae sp., strain AT-5844 was hours. isolated at the St. Louis Children’s Hospital in Missouri, USA, on May 28, 2010, from a leg wound infection of a Citation: human patient that was stepped on by a bull.1 Acknowledgment for publications should read “The following Comments: Acetobacteraceae sp., strain AT-5844 (HMP ID reagent was obtained through BEI Resources, NIAID, NIH as 9946) is a reference genome for The Human Microbiome part of the Human Microbiome Project: Acetobacteraceae Project (HMP). HMP is an initiative to identify and sp., Strain AT-5844, HM-648.” characterize human microbial flora.
    [Show full text]
  • Gluconacetobacter Diazotrophicus Pal5 Enhances Plant Robustness Status Under the Combination of Moderate Drought and Low Nitrogen Stress in Zea Mays L
    microorganisms Article Gluconacetobacter diazotrophicus Pal5 Enhances Plant Robustness Status under the Combination of Moderate Drought and Low Nitrogen Stress in Zea mays L. Muhammad Aammar Tufail 1,2,3,* , María Touceda-González 2 , Ilaria Pertot 3,4 and Ralf-Udo Ehlers 2 1 Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy 2 e-nema Gesellschaft für Biotechnologie und Biologischen Pflanzenschutz mbH, Klausdorfer Str. 28-36, 24223 Schwentinental, Germany; [email protected] (M.T.-G.); [email protected] (R.-U.E.) 3 Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; [email protected] 4 Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy * Correspondence: [email protected] Abstract: Plant growth promoting endophytic bacteria, which can fix nitrogen, plays a vital role in plant growth promotion. Previous authors have evaluated the effect of Gluconacetobacter diazotrophicus Pal5 inoculation on plants subjected to different sources of abiotic stress on an individual basis. The present study aimed to appraise the effect of G. diazotrophicus inoculation on the amelioration Citation: Tufail, M.A.; of the individual and combined effects of drought and nitrogen stress in maize plants (Zea mays L.). Touceda-González, M.; Pertot, I.; A pot experiment was conducted whereby treatments consisted of maize plants cultivated under Ehlers, R.-U. Gluconacetobacter drought stress, in soil with a low nitrogen concentration and these two stress sources combined, diazotrophicus Pal5 Enhances Plant with and without G.
    [Show full text]
  • Acetic Acid Bacteria – Perspectives of Application in Biotechnology – a Review
    POLISH JOURNAL OF FOOD AND NUTRITION SCIENCES www.pan.olsztyn.pl/journal/ Pol. J. Food Nutr. Sci. e-mail: [email protected] 2009, Vol. 59, No. 1, pp. 17-23 ACETIC ACID BACTERIA – PERSPECTIVES OF APPLICATION IN BIOTECHNOLOGY – A REVIEW Lidia Stasiak, Stanisław Błażejak Department of Food Biotechnology and Microbiology, Warsaw University of Life Science, Warsaw, Poland Key words: acetic acid bacteria, Gluconacetobacter xylinus, glycerol, dihydroxyacetone, biotransformation The most commonly recognized and utilized characteristics of acetic acid bacteria is their capacity for oxidizing ethanol to acetic acid. Those microorganisms are a source of other valuable compounds, including among others cellulose, gluconic acid and dihydroxyacetone. A number of inves- tigations have recently been conducted into the optimization of the process of glycerol biotransformation into dihydroxyacetone (DHA) with the use of acetic acid bacteria of the species Gluconobacter and Acetobacter. DHA is observed to be increasingly employed in dermatology, medicine and cosmetics. The manuscript addresses pathways of synthesis of that compound and an overview of methods that enable increasing the effectiveness of glycerol transformation into dihydroxyacetone. INTRODUCTION glucose to acetic acid [Yamada & Yukphan, 2007]. Another genus, Acetomonas, was described in the year 1954. In turn, Multiple species of acetic acid bacteria are capable of in- in the year 1984, Acetobacter was divided into two sub-genera: complete oxidation of carbohydrates and alcohols to alde- Acetobacter and Gluconoacetobacter, yet the year 1998 brought hydes, ketones and organic acids [Matsushita et al., 2003; another change in the taxonomy and Gluconacetobacter was Deppenmeier et al., 2002]. Oxidation products are secreted recognized as a separate genus [Yamada & Yukphan, 2007].
    [Show full text]
  • Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
    The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT.
    [Show full text]