Understanding Tlirfgrass Roots — Part 2

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Tlirfgrass Roots — Part 2 Understanding Tlirfgrass Roots — Part 2 While water uptake is critical, nutrient absorption, hormonal balance and proper treatment also play major roles in the health of turfgrass roots enter roots passively along with water. By Richard J. Hull The membrane transporters that couple the expenditure of energy with nutrient ion Editors' note: In Turfgrass Trends for October, Dr. Hull presented Part 1 of his Back to Basics uptake into root cells have a high affinity for information on turfgrass roots, which dis- nutrient ions and this permits the concen- cussed root development and function, growth tration of nutrients patterns, root structure, system operation and within the roots to water uptake. This article finishes his discus- attain levels much This mining the soil for sion. greater than that essential nutrients constitutes present in soil water. Nutrient absorption This mining the one of the primary roles The routes described above for water soil for essential played by plants in the uptake by roots are the ones that nutrient nutrients constitutes ions must also take. Since nutrients are dis- one of the primary overall drama of life. solved in soil water, they are carried along roles played by with water into the apoplasm of plant roots. plants in the overall The apoplastic barriers created by the endo- drama of life. All animal life depends on the dermis and exodermis also effectively block minerals concentrated within plants for the radial transport of nutrient ions into the their source of such nutrients. stele and throughout the plant. Nutrient ion absorption by roots is selec- Ions differ from water in that they carry tive. Those ions essential for plant growth a positive (cation) or negative (anion) (potassium, nitrate, magnesium, sulfate, charge and cannot cross the plasma mem- zinc, etc.) each enter root cells via their own brane into the symplast via aquaporins. membrane transporter. However, they can cross the plasma Other less useful or even toxic ions membrane and become concentrated with- (sodium, aluminum, selenium, etc.) are not in the symplasm via specific transporters accommodated by specific ion transporters energized by electrochemical gradients cre- and thus, do not enter roots readily. ated across the plasma membrane through Because some nutrient elements can be the consumption of ATP. toxic at concentrations only slightly higher The mechanisms of nutrient uptake by than what would be beneficial (boron, man- roots was described in an earlier article ganese, copper, etc.), their cellular levels (Hull, 1995) and will not be repeated here. must be tightly regulated. Specific ion It is only important to know that nutrient transporters are responsible for maintaining uptake requires the use of metabolic ener- optimum ion concentrations. gy by root cells and that nutrients do not Nutrient ions absorbed into the proto- ing to the soil through the apoplast. Thus, water and nutrients LEAVES absorbed by roots are usually retained and loss to the soil nor- mally occurs when cells die or sustain injury. The energy required by roots is delivered from the leaves in the form of simple sugars (sucrose mostly) via intercon- COLEOFTILE nected living tube-like cells called sieve tubes. These, along SEED with companion cells and other ADVENTITIOUS miscellaneous cells, make up the ROOTS phloem that normally is located in the angles between xylem poles (Fig. 2). PRIMARY ROOTS Sugars released from the sieve tubes move via the sym- plasm to all living cells of the root. Releases of organic sub- stances from root cells to the soil is normally a controlled process. Mucilage is released by root Fig. 1. Primary and adventitious roots developing from a turfgrass seedling. cap cells for root lubrication and cells in the absorptive region of roots will excrete organic solutes plasts of epidermal and cortical cells can be during times of nutrient (especially phos- transported via the symplast into cells of the phorus) deficiencies (Marschner, 1995). stele by means of cytoplasmic streaming, The influence of morphological charac- diffusion and the flow of water through teristics of turfgrass roots on nutrient roots powered by transpiration. uptake has received little attention. How- Once in the stele, nutrients ions are again ever, a recent study reported by our group transported across cell membranes into the (Sullivan et al., 2000) has demonstrated dif- apoplast. Here they are carried to the ferences in the weight, length, surface area shoots in large xylem vessels via transpira- and diameter of roots (Fig. 4) among six cul- tional flow eventually to be reabsorbed by tivars of Kentucky bluegrass. living cells of stems and leaves. Below-ground organs were segregated Transpiration, of course, only occurs dur- into fine roots, adventitious roots and rhi- ing the daylight hours so during the night, zomes (Fig. 5). Adventitious roots in this nutrient ions transported into xylem vessels case, were those emerging from upper of the roots are not carried to the shoots but nodes of the crowns and plant stems and rather become concentrated within the ves- comprised only a small portion of the total sels. root system all of which was technically This high solute concentration attracts adventitious, primary roots having been water into xylem vessels creating substantial removed earlier. root pressure that sometimes causes gutta- These root characteristics were correlat- tion droplets to form on leaf tips visible dur- ed with entire plant nitrate uptake. The six ing early morning. The suberized cell walls cultivars differed in their rates of nitrate of the endodermis prevents ions and water uptake and these differences were positive- concentrated in the xylem from back-flow- ly influenced by weight, total length and their response to stress conditions. Roots tNTERCaiUUM SPACE CASPABiAN BANE« PSRtCYCLE XYLÊM VÊSSSt and shoots mutually depend on the contri- butions of the other. Roots cannot grow or function without the energy provided by the photosynthetic production of the shoots. Also, shoot growth is limited by the supply of nutrients and water provided by the roots. It is important that the growth of roots PIASMODESMATA ^ and shoots be coordinated so that the growth of one is not always limited by the APOPtASTSC TRANSPORT performance of the other. If plant growth were controlled by such a balance of limit- EMDOD£ftMJ8 ing factors, one system, roots or shoots, would always be operating at full capacity Fig. 3 Diagram of root (longitudinal view) while the other was limited by inadequate shouring apoplastic and symplastic trans- resources delivered to it. port routes. This would make it difficult for the roots to grow and accumulate reserves if all their surface area of fibrous and adventitious energy were being expended to supply roots. Root diameter was negatively corre- water and nutrients to meet the demands of lated with nitrate uptake indicating that shoots. The same would hold for shoots if total nutrient absorption was mostly a func- their productivity was devoted exclusively tion of fine roots. to meet the needs of roots. Of course in Kentucky bluegrasses, most To coordinate the activities of these two of the root system is composed of fine roots. mutually dependent Nitrate absorption was negatively correlat- plant systems so ed with rhizome weight, length and surface each can grow and The action of ABA allows a area but the relationship was not simple. provide for its pre- There appeared to be an optimum amount sent and future plant to conserve its of rhizome production that resulted in the needs, plants have resources during stress, greatest nutrient uptake. evolved a hormonal This is due to the increased number of control system. making them available for new plants produced at rhizome nodes. There are many growth to resume when con- These plants generate fibrous root systems hormones involved that invade fresh soil and absorb nutrients. in growth coordina- ditions become favorable. However, excess rhizome growth consti- tion but for simplic- tutes a heavy demand for photosynthetic ity, I will concen- energy produced by the shoots and this trate on the two that appear to be most energy is drawn away from root growth involved: cytokinins and abscisic acid resulting in fewer roots and less nitrate (ABA). uptake. Cytokinins are derivatives of the purine Thus, the finest turfgrass roots appear to adenine and they promote cell division and be most responsible for nutrient recovery thereby growth. Cytokinins are synthesized from the soil and rhizomes make a positive in the roots and are carried in the xylem to contribution only to the extent that they the shoots where they counteract the add to the number of functioning roots. inhibiting effects of the hormone aukin. Auxin is made in the shoot apex and moves Hormonal balance down the stem inhibiting the growth of axi- Beside their obvious roles in water and lary buds causing the phenomenon kn6wn nutrient acquisition, roots also participate in as apical dominance. the coordinated growth of plants and in Cytokinins block the inhibitory action of auxin allowing lateral buds to grow and pro- duce branches. Because cytokinins are derived from the roots, it is the basal shoot buds that are most stimulated to grow. This is why grass stems rarely branch and tillers and rhizomes or stolons emerge from the basal buds of the crown (Hull, 2000). If root growth is inhibited by stressful soil conditions or roots are damaged by dis- ease or insects, the supply of cytokinins to the shoot is interrupted and shoot growth is Fig. 2. Grass root structure. inhibited. This is why a stem cutting rarely A. Longitudinal diagram through a young exhibits any growth until it has initiated root shounng developmental regions. adventitious roots. JB. Cross section of a grass root through This control of shoot growth works in the absorption (root hair) region shounng the plant's best interest.
Recommended publications
  • Propagation of Zingiberaceae and Heliconiaceae1
    14 Sociedade Brasileira de Floricultura e Plantas Ornamentais Propagation of Zingiberaceae and Heliconiaceae1 RICHARD A.CRILEY Department of Horticulture, University of Hawaii, Honolulu, Hawaii USA 96822 Increased interest in tropical cut vegetative growths will produce plants flower export in developing nations has identical to the parent. A few lesser gen- increased the demand for clean planting era bear aerial bulbil-like structures in stock. The most popular items have been bract axils. various gingers (Alpinia, Curcuma, and Heliconia) . This paper reviews seed and Seed vegetative methods of propagation for Self-incompatibility has been re- each group. Auxins such as IBA and ported in Costus (WOOD, 1992), Alpinia NAA enhanced root development on aerial purpurata (HIRANO, 1991), and Zingiber offshoots of Alpinia at the rate 500 ppm zerumbet (IKEDA & T ANA BE, 1989); while while the cytokinin, PBA, enhanced ba- other gingers set seed readily. sal shoot development at 100 ppm. Rhi- zomes of Heliconia survived treatment in The seeds of Alpinia, Etlingera, and Hedychium are borne in round or elon- 4811 C hot water for periods up to 1 hour gated capsules which split when the seeds and 5011 C up to 30 minutes in an experi- are ripe and ready for dispersai. ln some ment to determine their tolerance to tem- species a fleshy aril, bright orange or scar- pera tures for eradicating nematodes. Iet in color, covers .the seed, perhaps to Pseudostems soaks in 400 mg/LN-6- make it more attractive to birds. The seeds benzylaminopurine improved basal bud of gingers are black, about 3 mm in length break on heliconia rhizomes.
    [Show full text]
  • Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab Semi-Annual Report for 2013 (January – June)
    Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab Semi-Annual Report For 2013 (January – June) 1 Part 1: General Information Information 3 Diagnostic Input 4 Consultant Input 4 Monthly Sample Numbers 2013 5 Monthly Sample Numbers since 2007 6 Yearly Sample Numbers since 2007 7 Nematode Monthly Sample Numbers 2013 8 Nematode Yearly Sample Numbers since 2003 9 MPPD Monthly Sample Numbers 2013 10 MPPD Yearly Sample Numbers since 2010 11 Client Types 12 Submitter Types 13 Diagnoses/Identifications Requested 14 Sample Categories 15 Sample State Origin 16 Methods Used 17 Part 2: Diagnoses and Identifications Ornamentals and Trees 18 Turf 30 Vegetables and Herbs 34 Fruits and Nuts 36 Field Crops, Pastures and Forage 38 Plant and Mushroom Identifications 39 Insect Identifications 40 Regulatory Concern 42 2 Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab Semi-Annual Report For 2013 (January-June) The Plant Problem Clinic serves the people of South Carolina as a multidisciplinary lab that provides diagnoses of plant diseases and identifications of weeds and insect pests of plants and structures. Plant pathogens, insect pests and weeds can significantly reduce plant growth and development. Household insects can infest our food and cause structural damage to our homes. The Plant Problem Clinic addresses these problems by providing identifications, followed by management recommendations. The Clinic also serves as an information resource for Clemson University Extension, teaching, regulatory and research personnel. As a part of the Department of Plant Industry in Regulatory Services, the Plant Problem Clinic also helps to detect and document new plant pests and diseases in South Carolina.
    [Show full text]
  • Foliar and Shoot Allometry of Pollarded Black Locust, Robinia Pseudoacacia L
    Agroforestry Systems (2006) 68:37–42 Ó Springer 2006 DOI 10.1007/s10457-006-0001-y -1 Foliar and shoot allometry of pollarded black locust, Robinia pseudoacacia L. D.M. Burner1,*, D.H. Pote1 and A. Ares2 1United States Department of Agriculture, Agricultural Research Service, Dale Bumpers Small Farms Research Center, 6883 South State Highway 23, Booneville, AR 72927, USA; 2Weyerhaeuser Company, 505 N. Pearl Street, Centralia, WA 98531, USA; *Author for correspondence (e-mail: [email protected]; phone: +1-479-675-3834; fax: +1-479-675-2940) Received 22 June 2004; accepted in revised form 17 January 2006 Key words: Allometric relationship, Foliar mass, Nonlinear analysis, Shoot diameter, Shoot mass Abstract Browse of multipurpose tree species such as black locust could be used to broaden grazing options, but the temporal distribution of foliage has not been adequately studied. Our objective was to determine effects of harvest date, P fertilization (0 and 600 kg haÀ1 yrÀ1), and pollard height (shoots clipped at 5-, 50-, and 100- cm above ground) on foliar and shoot allometry of black locust. The experiment was conducted on a naturally regenerated 2-yr-old black locust stand (15,000 trees haÀ1). Basal shoot diameter and foliar mass were measured monthly in June to October 2002 and 2003. Foliar and shoot dry mass (Y) was estimated from basal shoot diameter (D) by the function Y = aDb, with regression explaining ‡95% of variance. Allometry of foliar mass was affected by harvest date, increasing at a greater rate with D in September than in June or July, but not by P fertilization or pollard height.
    [Show full text]
  • Plant Problem Clinic Annual Report for 2017 Introduction to the 2017 Annual Report
    Plant Problem Clinic Annual Report for 2017 Introduction to the 2017 Annual Report As of February 1, 2018, the Clemson University Plant Problem Clinic changed its name to The Plant and Pest Diagnostic Clinic (PPDC). The PPDC, the Molecular Plant Pathogen Detection Lab (MPPD) and the Commercial Turf Clinic are housed in the Department of Plant Industry, while the Nematode Assay Lab, with whom we have a contract, is in the Department of Plant and Environmental Sciences. Despite the name change, our primary mission has not changed. The Clinic serves the people of South Carolina as a multidisciplinary lab that provides diagnoses of plant diseases and identifications of weeds and insect pests of plants and structures. Solutions for these problems are provided through management recommendations. As a part of the Department of Plant Industry in Regulatory Services, the PPDC also helps to detect and document new plant diseases and pests in South Carolina and serves as an information resource for Clemson University Extension, teaching, regulatory and research personnel. We were lucky to retain the part-time assistance of Madeline Dowling who prepared many of the tables for Host/Diagnosis by Crop for this report. We also hired Martha Froelich, another graduate student in Plant Pathology, who also assists with diagnostics and other aspects of lab management. Both have been extremely helpful. In 2017, the Plant Problem Clinic received 1215 samples and 27 people from eight disciplinary areas assisted by identifying diseases, insects or plants or by providing management recommendations. Appreciation is expressed to all faculty, students and staff that contributed their time and effort, enhancing the success of the Plant and Pest Diagnostic Clinic.
    [Show full text]
  • COMMON Plants Longleaf PINE
    COMMON PlANTS OF lONGlEAF PINE - BlUE STEM RANGE Harold E. Grelen Vinson L. Duvall In preparing this handbook, the authors have received substantial assistance from predecessors and colleagues. Much of the information is from the Forest Service's "Field Book of Forage Plants on Longleaf Pine-Biuestem Ranges," by 0. Gordon Langdon, the late Miriam L. Bomhard, and John T. Cassady ( 1952). Charles Feddema, Lowell K. Halls, J. B. Hilmon, and Alfred W. Johnson, U. S. Forest Service, and Thomas N. Shiflet, U. S. Soil Conservation Service, reviewed the manu­ script and made important suggestions regarding content and organiza­ tion. Phil D. Goodrum, Bureau of Sport Fisheries and Wildlife, U. S. Fish and Wildlife Service, supplied much information on values of range plants to wildlife. Jane Roller, Forest Service, prepared illustrated keys as well as many technical descriptions and drawings. Most other drawings were by the late Leta Hughey, Forest Service, and the senior author; several are from other U.S. Department of Agriculture publica­ tions. U. S. FOREST SERVICE RESEARCH PAPER S0-23 COMMON PLANTS OF LONGLEAF PINE·BLUESTEM RANGE Harold E. Grelen V-inson L. Duvall SOUTHERN FO!;<.EST EXPERIMENT STAT ION Thomas, c·. Nelson, Director FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE 1966 Contents The type 1 Grasses 3 Bluestems 3 Panicums 13 Paspalums 21 Miscellaneous grasses 25 Grasslike plants 37 Forbs . 47 Legumes 47 Composites 59 Miscellaneous forbs 74 Shrubs and woody vines 78 Bibliography 90 Glossary . 91 Index of plant names 94 COMMON PLANTS OF LONGLEAF PINE· BLUEST EM RANGE This publication describes many grasses, salient taxonomic features of species mention­ grasslike plants, forbs, and shrubs that inhabit ed briefly as well as of those described fully.
    [Show full text]
  • PENNSYLVANIA 2012–2013 Tree Fruit Production Guide
    PENNSYLVANIA 2012–2013 Tree Fruit Production Guide College of Agri C u lt u r A l S C i e n C e S Production Guide Pesticide Safety Coordinator Penn State Pesticide Education J. M. Halbrendt Program Horticulture Orchard Sprayer Techniques R. M. Crassweller, J. W. Travis section coordinator Harvest and Postharvest Handling J. R. Schupp R. M. Crassweller Entomology J. R. Schupp G. Krawczyk, section Cider Production and Food Safety coordinator L. F. LaBorde L. A. Hull D. J. Biddinger Orchard Budgets J. K. Harper Pollination and Bee L. F. Kime Management M. Frazier Farm Labor Regulations D. J. Biddinger R. H. Pifer Plant Pathology Designer H. K. Ngugi, section G. Collins coordinator Editor N. O. Halbrendt A. Kirsten Nematology Disease, insect figures J. M. Halbrendt C. Gregory Wildlife Resources C. Jung G. San Julian Cover Photos Environmental Monitoring iStock J. W. Travis this guide is also available on the web at agsci.psu.edu/tfpg Visit Penn State’s College of Agricultural Sciences on the web: agsci.psu.edu This publication is available from the Publications Distribution Center, The Pennsylvania State Univer- sity, 112 Agricultural Administration Building, University Park, PA 16802. For information telephone 814-865-6713. Where trade names appear, no discrimination is intended, and no endorsement by Penn State Cooperative Extension or the College of Agricultural Sciences is implied. This publication is available in alternative media on request. The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities.
    [Show full text]
  • Axillary Bud Development in Rose
    Axillary buddevelopmen t inros e C.A.M.Marceli s -va nAcke r Promotoren: dr. J.Tromp , hoogleraari nd etuinbouwplantenteelt , inhe tbijzonde r de overblijvende gewassen dr.M.T.M .Willemse , hoogleraar ind eplantkund e Co-promotoren:dr .ir .C.J . Keijzer, universitairdocen tbi jd evakgroe pPlantencytologi e en -Morfologie dr.ir .P.A . van dePol , universitair hoofddocent bij devakgroe p Tuinbouwplantenteelt ^OFZÖ' [ISS' Axillary buddevelopmen t inros e Ontvange',;' i 16 NOV. 1994 UB-CARDEX C.A.M. Marcelis - van Acker Proefschrift terverkrijgin g vand egraa dva n doctori nd elandbouw -e n milieuwetenschappen, opgeza gva n derecto r magnificus, dr. C.M. Karssen, inhe topenbaa r te verdedigen opvrijda g 18novembe r 1994 desnamiddag s tetwe euu ri nd eAul a vand eLandbouwuniversitei t teWageningen . ^- SIV35 « CIP-DATA KONINKLIJKE BIBLIOTHEEK, DENHAA G Marcelis-vanAcker ,C.A.M . Axillary buddevelopmen t inros e/ C.A.M.Marcelis-va n Acker. - [S.l. :s.n.] .- 111 . ThesisWageningen . -Wit href .- Wit h summary inDutch . ISBN 90-5485-309-3 Subject headings:bu ddevelopmen t ; roses. Thisthesi scontain sresult s of aresearc hprojec t ofth eWageninge n Agricultural University, Department of Horticulture,Haagstee g 3,670 8P MWageninge n andDepartmen t of Plant Cytology andMorphology , Arboretumlaan 4,6703B DWageningen , TheNetherlands . Publication ofthi sthesi s wasfinanciall y supportedby : • Boomkwekerij Bert Rombouts BV teHaper t • LEB-fonds BIBLIOTHEEK BXNDBOUWL'MN'ïiRSrriüa WAGENINGEN Stellingen 1. Bloemknopaanleg bij deroo svind tpa splaat sn aopheffe n vand eapical edominantie . Dit proefschrift 2. Effecten vanteeltconditie s tijdens deaanle gva n okselknoppen bijd e roos op de uitgroei van die knoppen komen voornamelijk tot stand viabeïnvloedin g van het overige gedeelte van de plant.
    [Show full text]
  • Pest and Disease Management: Organic Ecosystem
    Pest and Disease Management: Organic Ecosystem Pest and Disease Management: Organic Ecosystem Pest and Disease Management in Organic Ecosystem General Immense commercialisation of agriculture has had a very negative effect on the environment. The use of pesticides has led to enormous levels of chemical buildup in our environment, in soil, water, air, in animals and even in our own bodies. Fertilisers have a short-term effect on productivity but a longer-term negative effect on the environment where they remain for years after leaching and running off, contaminating ground water and water bodies. The use of hybrid seeds and the practice of monoculture has led to a severe threat to local and indigenous varieties, whose germplasm can be lost for ever. All this for "productivity". In the name of growing more to feed the earth, it has taken the wrong road of unsustainability. The effects show - farmers committing suicide in growing numbers with every passing year; the horrendous effects of pesticide sprays, pesticide contaminated bottled water and aerated beverages are only some instances. The bigger picture that rarely makes news however is that millions of people are still underfed, and where they do get enough to eat, the food they eat has the capability to eventually kill them. Another negative effect of this trend has been on the fortunes of the farming communities worldwide. Despite this so-called increased productivity, farmers in practically every country around the world have seen a downturn in their fortunes. This is where organic farming comes in. Organic farming has the capability to take care of each of these problems.
    [Show full text]
  • Technological Advances in Temperate Hardwood Tree Improvement Including Breeding and Molecular Marker Applications
    In Vitro Cell.Dev.Biol.—Plant (2007) 43:283–303 DOI 10.1007/s11627-007-9026-9 INVITED REVIEW Technological advances in temperate hardwood tree improvement including breeding and molecular marker applications Paula M. Pijut & Keith E. Woeste & G. Vengadesan & Charles H. Michler Received: 20 September 2006 /Accepted: 8 January 2007 / Published online: 6 July 2007 / Editor: P. Lakshmanan # The Society for In Vitro Biology 2007 Abstract Hardwood forests and plantations are an impor- Genetic modification of hardwood tree species could tant economic resource for the forest products industry potentially produce trees with herbicide tolerance, disease worldwide and to the international trade of lumber and logs. and pest resistance, improved wood quality, and reproduc- Hardwood trees are also planted for ecological reasons, for tive manipulations for commercial plantations. This review example, wildlife habitat, native woodland restoration, and concentrates on recent advances in conventional breeding riparian buffers. The demand for quality hardwood from and selection, molecular marker application, in vitro tree plantations will continue to rise as the worldwide culture, and genetic transformation, and discusses the consumption of forest products increases. Tree improve- future challenges and opportunities for valuable temperate ment of temperate hardwoods has lagged behind that of (or “fine”) hardwood tree improvement. coniferous species and hardwoods of the genera Populus and Eucalyptus. The development of marker systems has Keywords Clonal propagation . Cryopreservation . become an almost necessary complement to the classical Forest genetics . Genetic transformation . Organogenesis . breeding and improvement of hardwood tree populations Plantation forestry. Regeneration . Somatic embryogenesis for superior growth, form, and timber characteristics. Molecular markers are especially valuable for determining the reproductive biology and population structure of natural Introduction forests and plantations, and the identity of genes affecting quantitative traits.
    [Show full text]
  • PMSP for Wine Grapes in Oregon
    Pest Management Strategic Plan for Wine Grapes in Oregon Photo credit: EESC Media, Oregon State University Lead Authors: Katie Murray and Joe DeFrancesco Summary of a workshop held on February 25, 2016, Portland, OR Issued: July 2016 Contact Person: Katie Murray, Oregon State University, IPPC 2040 Cordley Hall [email protected] 541-231-1983 This project was supported with funding from the Oregon Wine Board. 1 Table of Contents Work Group Members ...................................................................................................... 3 Summary of Critical Needs ............................................................................................... 5 Introductory Pages ProCess for this Pest Management Strategic Plan .............................................. 7 Wine Grape Production in Oregon ....................................................................... 8 IPM Strategies in Wine Grape Production ....................................................... 12 Certification ProGrams used by Oregon Wine Grape Growers .................... 14 Wine Grape Pest/Crop Stages Outline ........................................................................... 15 Wine Grape Pests and Management Options I. Major Pests ....................................................................................................... 16 a. Insects, Mites, and Nematodes .................................................................. 16 b. Diseases .......................................................................................................
    [Show full text]
  • Using Exogenous Hormone Application to Suppress Axillary Shoot Development in Tobacco
    University of Kentucky UKnowledge Theses and Dissertations--Plant and Soil Sciences Plant and Soil Sciences 2017 USING EXOGENOUS HORMONE APPLICATION TO SUPPRESS AXILLARY SHOOT DEVELOPMENT IN TOBACCO W. Jesse Carmack University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.075 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Carmack, W. Jesse, "USING EXOGENOUS HORMONE APPLICATION TO SUPPRESS AXILLARY SHOOT DEVELOPMENT IN TOBACCO" (2017). Theses and Dissertations--Plant and Soil Sciences. 88. https://uknowledge.uky.edu/pss_etds/88 This Master's Thesis is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Plant and Soil Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Ball Seed Cut Flower Guide
    CUT FLOGWuiEde R They might give you a call. We send you Russell. “ I’ll make sure your business thrives, not just survives. Don’t expect me to just take your order and leave. No, I’ll be on your doorstep time and again to help you pick out the right varieties in the right form…pass along the latest growing “how-tos”…help you gure out how to make the latest trends work for you…and get up to my elbows in dirt if that’s what it takes to trouble-shoot a problem. Because your success is my passion.” Russell Emerson Partnering with growers like you for 13+ years Russell is just one of the many reasons why Ball Seed is the easiest distributor to do business with! Contact your Ball Seed sales rep today. 800 879-BALL Fax: 800 234-0370 ballseed.com © 2011 Ball Horticultural Company BALL SEED is a registered trademark of Ball Horticultural Company in the U.S. It may also be registered in other countries. Letter From Ed More than 100 years ago, George J. Ball started his business Aselling cut flowers. Today, Ball Horticultural Company is as committed as ever to providing the “best of the best” cut flower varieties to growers throughout North America. Ball has long been a leader in breeding and selling top cut flower varieties such as snapdragon, lisianthus and dianthus. These, along with the best genetics from the top breeders and suppliers from Europe and Asia, constitute a lineup of great varieties designed to help you be successful in the cut flower business.
    [Show full text]