전기펌프사이클 엔진 등 민간분야 우주발사체 신기술고찰 New Technologies of Space Launch Vehicles Includin

Total Page:16

File Type:pdf, Size:1020Kb

전기펌프사이클 엔진 등 민간분야 우주발사체 신기술고찰 New Technologies of Space Launch Vehicles Includin 韓國航空宇宙學會誌 139 論文 J. of The Korean Society for Aeronautical and Space Sciences 44(2), 139-155(2016) DOI:http://dx.doi.org/10.5139/JKSAS.2016.44.2.139 ISSN 1225-1348(print), 2287-6871(online) 전기펌프사이클 엔진 등 민간분야 우주발사체 신기술고찰 정승민, 김귀순, 오세종, 최정열* New Technologies of Space Launch Vehicles including Electric-Pump Cycle Engine Seung-Min Jeong, Kui Soon Kim, Sejong Oh and Jeong-Yeol Choi* Department of Aerospace Engineering, Pusan National University ABSTRACT Present paper introduces the recent advances in space launch vehicle technologies. A brief survey is given for the space development programs in civil sector with their business model and key technologies. Advances in key technologies were reviewed in detail with more emphasis on the electric pump cycle engine for low cost high performance small launch vehicle, Electron, under development by Rocketlab Ltd., since their contributions would give good lessons for rocket scientists. 초 록 본 논문에서는 최근의 우주발사체 기술 발전에 대한 소개가 이루질 것이다. 민간 분야 에서의 우주개발 사업들의 사업 모델 및 핵심 기술에 대하여 간단한 정리하고, 핵심 기술 의 발전 사항들에 대하여 좀 더 구체적으로 살펴볼 것이다. 특히 Rocketlab 사가 개발 중 인 저가 고성능 경량 우주발사체 Electron 에 사용될 예정인 전기펌프 사이클 엔진에 대하 여 좀 더 구체적으로 살펴보고, 이들이 로켓 과학자들에게 주는 시사점에 대하여 살펴볼 것이다. Key Words : Space Launch Vehicle(우주발사체), New Technologies(신기술), Liquid Rocket Engine(액체로켓엔진), Electric-Pump Cycle(전기펌프 사이클) Ⅰ. 서론: 민간주도 우주개발 프로그램 거장의 승무원과 화물, 보급품 운송에 민간기업 참여 확대를 위한 상업용 궤도 운송 서비스 지난 수년간 우주 개발에 민간 참여가 확대되 (COTS, Commercial Orbital Transportation 면서, 기존의 국가주도 우주개발 과정에서는 볼 Services) 및 상업용 재보급 서비스(CRS, 수 없었던 새로운 아이디어의 사업모델 및 신기 Commercial Resupply Services) 등 민간참여 프 술이 다수 도입되고 있다. 로그램을 진행하여 현재 SpaceX사와 Orbital 대표적인 예로써, 미항공우주국은 국제우주정 Science사가 프로그램에 선정되어 미션을 수행하 †Received : October 26, 2015 Revised : January 11, 2016 Accepted : January 14, 2016 * Corresponding author, E-mail : [email protected] 140 정승민․김귀순․오세종․최정열 韓國航空宇宙學會誌 고 있다. 비추력은, 화학로켓의 경우 추진제 선택과 연소 또한, 민간 상업 우주여행 분야에서는 세계 최 압력에 의하여 결정되며 한계가 명확한 연소 온 초의 우주운항사를 표방하고 있는 Virgin 도의 함수로써, 성능 향상을 위하여 취할 수 있 Galactic사가 우주여행 상품을 판매하고 있으며, 는 선택 범위가 제한된다. 따라서 고압 연소 및 이를 위한 우주공항(Space Port) 등의 기반확충 이를 위한 엔진 사이클 구성요소 기술연구를 통 등도 함께 진행하고 있다[1]. 한 탱크, 엔진, 공급계 등의 경량화에 의한 질량 전통적인 발사체 분야에서는 SpaceX사로 대표 비 향상 연구가 주된 방향이었다. 되는 민간분야의 역할이 두드러진다[2]. SpaceX 하지만 21세기 초부터 많은 민간업체들이 급격 사는 기술 혁신과 제작공정 자동화를 통하여 높 히 커지는 우주발사체 서비스시장에 뛰어들기 시 은 신뢰도 및 가격 경쟁력을 확보하여 국제우주 작하며 단순 성능향상 이외에도 비용절감을 위한 정거장 화물 운송과 같은 미국 정부 수요 및 민 재사용 발사체 기술이 대두되고 있다. 재사용 발 간 발사체 시장에서 상당한 점유율을 확보해 나 사체 기술은 발사체제어, 추력제어, 착륙장치 등 가고 있다. 최근에는 뉴질랜드의 벤처 기업인 의 추가적인 시스템으로 인한 질량비 악화가 수 Rocketlab사에서 전기펌프1) 사이클을 이용한 저 반되지만, 상당한 발사비용의 절감이 예상되는 가 소형 위성 발사체의 연내 발사를 공언하였다. 바, 많은 기업에서 다양한 방식으로 기술개발이 민간업체의 발사체 분야 기술경쟁은 비용절감 이루어지고 있다. 또한 스크램제트 엔진 기반의 을 위한 TSTO 발사체(Two-Stage-To-orbit) 및 재 극초음속 추진 기관 연구와 더불어 공기흡입 추 사용 발사체, 새로운 엔진의 개발에서 이루어지 진기관과 로켓 엔진을 결합한 재사용 공기흡입 고 있다. SpaceX사와 Rocketlab사의 발사체 모두 로켓엔진(Air-Breathing Rocket Engine)도 민간 TSTO이며, 특히 SpaceX사를 비롯한 몇몇 민간업 회사에 의하여 시도되고 있다. 체들은 재사용 발사체 및 우주선 모듈 개발을 진 2.2 Orbital ATK사의 고성능 액체엔진 발사체 행 중이다. 본문에서는 현재 진행되고 있는 다양한 많은 NASA의 상업용 궤도 운송 서비스와 재보급 민간 부분의 발사체 기술 개발 동향에 대하여 살 서비스에 선정된 Orbital Science사는 발사체 및 펴보았으며, 특히 Rocketlab사의 전기펌프 사이 추진기관 제작 경험이 풍부한 ATK(Alliant 클 엔진을 중심으로 최근 우주발사체 개발에 적 Techsystems Inc.)사와 합작으로 Antares 발사체 용되고 있는 신기술들에 대하여 살펴보고 앞으로 를 이용하여 미션수행을 시작하였다. 2013년 첫 의 발전 방향에 대하여 논의하고자 한다. 미션부터 2014년 네 번째 미션까지 1단에 2기의 액체엔진, 2단에 1기의 고체엔진을 장착한 Ⅱ. 우주발사체 신기술 고찰 Antares 100시리즈를 사용하였다. 1단에 사용된 AJ26-62엔진은 1960년대 소련에 서 개발 중단된 달 탐사용 발사체 N-1의 NK-15 2.1 발사체 기술발전 방향 엔진의 후속, NK-33엔진에 짐벌 시스템과 추력 발사체 성능향상의 기본적인 방향은 Newton 편향장치를 개량한 액체추진엔진[4]으로 연소실 역학 원리를 적용하여 간단히 유도되는 Tsiolkovsky의 로켓 방정식에서 직관적으로 알 수 있다. 즉, 발사체 속도증분, ∆ 는 배기속도, , , 와 최종질량 과 초기질량 의 로그함수 의 곱으로 나타난다. (1) ∆ ln 배기속도와 비례하는 기본 추진 성능 지표인 1) Rocketlab사는 전기터보펌프(Electric Turbopump)라 는 용어를 사용하였으나, 일반의 이해를 돕기 위한 것 Fig. 1. AJ26-62, 1st stage engine of 으로 생각되며, 터빈 구동이 없으므로 기술적으로는 전 Antares[3] 기펌프(Electric Pump)가 적합한 용어로 여겨진다. 第 44 卷 第 2 號, 2016. 2. 엔진 등 민간분야 우주발사체 신기술고찰 141 Table 1. Specification of Anatres 130 LOX/RP-1 기반의 RD-180엔진을 2기 장착하였 다. RD-180 엔진은 2개의 연소실과 2개의 노즐 Version Antares 130 로 구성된 엔진으로 추력은 3,700 kN, 연소시간 Stage 1 2 * AJ26-62 은 230 s이다. Stage 2 2 * Castor 30A/B RD-180엔진은 소련의 우주왕복선 Buran의 Max height (m) 41.9 strap-on booster에 쓰일 목적으로 개발된 4개의 Diameter (m) 3.9 연소실과 노즐을 가진 RD-170엔진의 변형 모델 Initial Mass (kg) 240,000 이다. RD-170엔진은 해수면 기준 추력 7.887 Payload to LEO (kg) 6,120 MN, 비추력 309 s, 연소실압력 245 bar로 현존 하는 엔진 중 가장 큰 추력을 가지고 있다. Table 2. Anatres100, 200 series engine RD-170엔진 연소실을 2개로 줄인 RD-180이 개발 specification 된 후 미국과 러시아 정부의 합의하에 2000년 Lockheed Martin AtlasⅢ Engine AJ26-62 RD-180 Castor30B 사가 수입하여 발사체 의 1단에 처음 사용되었다. AltasⅢ 발사체의 성 Thrust(vac.) (kN) 1,680 4150 293.4 AltasⅤ Thrust(SL) (kN) 1,510 3830 (Avg) 공적인 미션 수행 후 발사체까지 사용되 고 있다. Fuel RP-1 RP-1 TP-H8299 /LOX /LOX /aluminum Antares200시리즈 역시 Antares100시리즈와 동 Specific Impulse 3 (vac.) (s) 331 338 일하게 선택적으로 단을 추가하여 운용할 수 Specific Impulse 297 311 · (SL) (s) Thrust – to – 137 78.44 wight ratio 압력 14.83 MPa, 추력 3,265 kN, 연소 시간은 230 s 이다. LOX/kerosene 기반의 NK-33 엔진은 예연소실 에서 산화제 과잉 상태로 예연소된 가스 상태의 추진제로 터빈을 돌리고, 이를 주 연소실에서 다 시 연소하는 다단연소사이클(Staged combustion cycle)을 도입하여 엔진의 연소 압력과 비추력을 크게 높혔다. NK-333 엔진은 SpaceX사의 Merlin 1D엔진이 개발되기 전까지 추력대 중량비 Fig. 2. RD-180 engine and Atlas V[6] (Thrust-to-weight ratio)가 137로 가장 높은 엔진 이었으며, 개발된지 40년 이상이 지났지만 여전 Table 3. Antares, Versions and Performance 히 최고의 기술 수준을 가지는 엔진으로 여겨진 Configuration Performance (kg) 다. Ver sion Stage Stage Interpla 2014 10 28 Antares130 Stage1 LEO SSO GTO 하지만 년 월 일 발사체가 2 3 netary 연소시작 6 초만에 폭발하였고 이 사고의 원인이 Castor 110 AJ26-62 · · · · · 터보펌프의 치명적인 결함으로 밝혀짐에 따라 30A Castor Orbital Science 120 AJ26-62 · 4,600 1,500 · · 사는 신뢰도 향상을 위해 30B Antares100 발사체 시리즈를 퇴역시키고[5] 2016 Castor 121 AJ26-62 BTS 4,750 2,900 · · 년 미션 재시작을 목표로 Antares200 발사체를 30B Castor Star 개발 중이다. 이에 따라 모든 미션은 2016년 이 122 AJ26-62 · · · 900 30B 48BV 후로 연기되었다. 또한 이 사건을 계기로 2015년 Castor 130 AJ26-62 · 5,100 · · · 2월 Orbital Science사와 ATK사가 합병하여 XL Castor Orbital ATK을 설립하였다. 131 AJ26-62 BTS 5,600 3,600 · · XL Antares200 발사체는 1단에 나로호 1단 엔진 Castor Star 132 AJ26-62 · · 1,800 1,100 RD-191의 개발업체인 러시아 Energomash사의 XL 48BV 142 정승민․김귀순․오세종․최정열 韓國航空宇宙學會誌 있게 개발되고 있다. Table 3에 나타나있듯이 Anatres100시리즈의 경우 3단에 1982년부터 운용 된 고체엔진 Star48엔진에 추력편향장치가 추가 된 Star48BV나 GEOStar satellite bus가 개량된 BTS(Bi-Propellant Third Stage)중에 한가지를 추 가하여 운용하였다. 이처럼, Antares100시리즈는 인공위성의 크기, 고도변화에 따른 다양한 시장 의 수요를 충족시키기 위하여 다양한 버전으로 발사체를 개량시켜왔다. 2.3 SpaceX사의 Merlin 엔진 2002년 CEO Elon Musk와 로켓공학자 Tom Mueller 등 10명으로 시작한 SpaceX사는 현재 Fig. 3. SpaceX’s circumferential Friction Stir 주력발사체로 Merlin엔진을 기반으로 한 2단 액 Welding(FSW) machine[8] 체추진발사체 Falcon9 v1.1를 운용하고 있다. SpaceX사는 기존의 대추력이고 안정적이지만 복잡하여 많은 제작비용이 발생하는 기존의 연소 기 설계의 틀에서 벗어나, 추력이 크진 않지만 혁신적인 기술, 자동화 생산공정 도입을 바탕으 로 효율의 극대화를 꾀한 엔진설계를 시도하였 다. 또한 미국내의 다른 발사체 제조 업체인 ULA(United Launch Alliance), Orital ATK사의 주력발사체들은 엔진을 러시아에서 수입하여 사 용하는 반면, SpaceX사는 엔진의 모든 부품을 자국내 생산, 주문을 하고 있다. 이런 제작과정 의 자동화, 혁신적인 공정으로 SpaceX사는 연료 탱크의 경량화를 통한 높은 질량비 달성을 지향 하였다. 현재 SpaceX사의 주력발사체로 운용되 고 있는 Falcon9 v1.1의 경우 연료, 산화제 탱크 가 초경량 알루미늄-리튬 합금을 기반으로 제작 되었다. 연료, 산화제탱크 구조물의 접합공법에 는 1991년 영국에서 개발되어 현재까지 많은 발 , 사체에 쓰인 마찰교반용접법(FSW, Friction Stir Welding)방식[7]을 SpaceX사 자체적으로 개량 한 방식을 이용하였고, TSTO를 달성한 구조 경 Fig. 4. SpaceX’s Merlin Engine[9] 량화의 대표적인 사례로 여겨진다. 발사체의 효 현존하는 로켓엔진중 가장 큰 추력 대 중량비를 율 측면에서 전체 시스템의 질량비 달성만큼 추 가지고 있다. 진계통의 효율 또한 중요한 요소이다. Falcon9 이를 가능하게 하는 요인 중 핵심이라 꼽히는 v1.1의 각 단에 장착된 LOX/RP-1 기반의 기술은 핀틀(pintle) 분사기이다. 핀틀 분사기는 Merlin 1D엔진은 추력 대 중량비가 150이 넘어 제트추진연구소(JPL, Jet Propulsion Laboratory) Table 4. Merlin 1C, 1D engine specification 에서 1950년대 개발되어 TRW사가 아폴로 프로 그램의 달 착륙선의 하강모듈(LMDE, Lunar Thrust – to – Weight Ratio 155:1 Module Descent Engine)제작에 사용하였다. Combustion Pressure (MPa) 9.7 SpaceX의 로켓공학자 Tom Mueller는 TRW사 재 직당시 저가형 핀틀 엔진(LCPE, Low Cost Thrust (kN) 730*, 801** Pintle Engine) TR-106 개발의 수석 엔지니어 였 * ** Specific impulse (s) 282 , 311 고, 이 경험으로 Merlin엔진 시리즈의 핀틀 분사 *Sea level, **Vaccum 기를 성공적으로 개발 할 수 있었다.
Recommended publications
  • First Level Design and System Design of Janus Liquid Oxygen-Liquid Methane Lander Jahir Fernandez University of Texas at El Paso, J [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2017-01-01 First Level Design And System Design Of Janus Liquid Oxygen-Liquid Methane Lander Jahir Fernandez University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Mechanical Engineering Commons Recommended Citation Fernandez, Jahir, "First Level Design And System Design Of Janus Liquid Oxygen-Liquid Methane Lander" (2017). Open Access Theses & Dissertations. 444. https://digitalcommons.utep.edu/open_etd/444 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. FIRST LEVEL DESIGN AND SYSTEM DESIGN OF JANUS LIQUID OXYGEN-LIQUID METHANE LANDER JAHIR FERNANDEZ Master’s Program in Mechanical Engineering APPROVED: Ahsan Choudhuri, Ph.D., Chair John F. Chessa, Ph.D., Co-chair Luis Rene Contreras, Ph.D. Charles H. Ambler, Ph.D. Dean of the Graduate School Copyright © By Jahir Fernandez 2017 FIRST LEVEL DESIGN AND SYSTEM DESIGN OF JANUS LIQUID OXYGEN-LIQUID METHANE LANDER By JAHIR FERNANDEZ, B.S. MECHANICAL ENGINEERIN THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Mechanical Engineering THE UNIVERSITY OF TEXAS AT EL PASO December 2017 Acknowledgements I would like to thank Dr. Ahsan Choudhuri for the opportunity to work at the cSETR. It has been an amazing experience working at the center, where the research has opened many doors for me and through which I was able to intern with NASA at Marshall Space Flight Center.
    [Show full text]
  • Einicke Diplom.Pdf
    Zum Erlangen des akademischen Grades DIPLOMINGENIEUR (Dipl.-Ing.) Betreuer: Dr. Christian Bach Verantwortlicher Hochschullehrer: Prof. Dr. techn. Martin Tajmar Tag der Einreichung: 20.04.2021 Erster Gutachter: Prof. Dr. techn. Martin Tajmar Zweiter Gutachter: Dr. Christian Bach Hiermit erkläre ich, dass ich die von mir dem Institut für Luft-und Raumfahrttechnik der Fakultät Maschinenwesen eingereichte Diplomarbeit zum Thema Mischungsverhältnis- und Brennkammerdruckregelung eines Expander-Bleed Raketentriebwerks mit Reinforcement Learning (Mixture Ratio and Combustion Chamber Pressure Control of an Expander-Bleed Rocket Engine with Reinforcement Learning) selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe. Berlin, 20.04.2021 Karina Einicke Contents Nomenclature iv Acronyms vii 1. Introduction 1 1.1. Motivation . .1 1.2. Objectives and Approach . .2 2. Fundamentals of Liquid Rocket Engines 3 2.1. Control Loops . .5 2.1.1. Open-Loop Control . .5 2.1.2. Closed-Loop Control . .5 2.1.3. Reusable Liquid Rocket Engine Control . .6 2.2. Control Valves . .8 2.2.1. Flow Characteristics . .9 2.2.2. Valve Types . .9 2.3. Liquid Rocket Engine Control: Historical Background . 11 2.4. Summary . 13 3. LUMEN 15 3.1. LUMEN Components . 15 3.2. Operating Points . 17 3.3. EcosimPro/ESPSS Model . 18 3.3.1. LUMEN System Analysis . 21 3.3.2. LUMEN System Validation . 26 3.4. Summary . 27 4. Reinforcement Learning 28 4.1. Fundamentals of Reinforcement Learning . 28 4.2. Reinforcement Learning Algorithms . 31 4.2.1. Model-based and Model-free Reinforcement Learning . 31 4.2.2. Policy Optimization .
    [Show full text]
  • 액체로켓 메탄엔진 개발동향 및 시사점 Development Trends of Liquid
    Journal of the Korean Society of Propulsion Engineers Vol. 25, No. 2, pp. 119-143, 2021 119 Technical Paper DOI: https://doi.org/10.6108/KSPE.2021.25.2.119 액체로켓 메탄엔진 개발동향 및 시사점 임병직 a, * ㆍ 김철웅 a⋅ 이금오 a ㆍ 이기주 a ㆍ 박재성 a ㆍ 안규복 b ㆍ 남궁혁준 c ㆍ 윤영빈 d Development Trends of Liquid Methane Rocket Engine and Implications Byoungjik Lim a, * ㆍ Cheulwoong Kim a⋅ Keum-Oh Lee a ㆍ Keejoo Lee a ㆍ Jaesung Park a ㆍ Kyubok Ahn b ㆍ Hyuck-Joon Namkoung c ㆍ Youngbin Yoon d a Future Launcher R&D Program Office, Korea Aerospace Research Institute, Korea b School of Mechanical Engineering, Chungbuk National University, Korea c Guided Munitions Team, Hyundai Rotem, Korea d Department of Aerospace Engineering, Seoul National University, Korea * Corresponding author. E-mail: [email protected] ABSTRACT Selecting liquid methane as fuel is a prevailing trend for recent rocket engine developments around the world, triggered by its affordability, reusability, storability for deep space exploration, and prospect for in-situ resource utilization. Given years of time required for acquiring a new rocket engine, a national-level R&D program to develop a methane engine is highly desirable at the earliest opportunity in order to catch up with this worldwide trend towards reusing launch vehicles for competitiveness and mission flexibility. In light of the monumental cost associated with development, fabrication, and testing of a booster stage engine, it is strategically a prudent choice to start with a low-thrust engine and build up space application cases.
    [Show full text]
  • LEO on the Cheap Methods for Achieving Drastic Reductions in Space Launch Costs
    Research Report No. AU-ARI-93-8 LEO on the Cheap Methods for Achieving Drastic Reductions in Space Launch Costs JOHN R. LONDON III Lt Col, USAF ARI Command-Sponsored Research Fellow Air Force Materiel Command Air University Press Maxwell Air Force Base, Alabama October 1994 Disclaimer This publication was produced in the Department of Defense school environment in the interest of academic freedom and the advancement of national defense-related concepts. The views ex- pressed in this publication are those of the author and do not reflect the official policy or position of the Department of Defense or the United States government. This publication has been reviewed by security and policy review authorities and is cleared for public release. Contents Chapter Page DISCLAIMER ............................ ii FOREWORD ............................. xv ABOUTTHEAUTHOR ....................... xvii PREFACE .............................. xix ACKNOWLEDGMENTS ...................... xxi INTRODUCTION .......................... xxu Study Boundaries ......................... xxvii Some Definitions .......................... xxvii Notes ................................ xxviii 1 THE PROBLEM.. ......................... 1 Expensive Transportation with Broad Impacts ......... 1 Current Launch Vehicle Cost Range .............. 1 Unique Transportation Requirements ............. 2 Establishing the Cost per Launch of Expendables ....... 2 Establishing the Cost per Launch of the Shuttle ........ 2 Representative Vehicle Costs ................... 4 Pegasus ............................
    [Show full text]
  • Jpc-Final-Program.Pdf
    49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (JPC) Advancing Propulsion Capabilities in a New Fiscal Reality 14–17 July 2013 San Jose Convention Center 11th International Energy Conversion San Jose, California Engineering Conference (IECEC) FINAL PROGRAM www.aiaa.org/jpc2013 www.iecec.org #aiaaPropEnergy www.aiaa.org/jpc2013 • www.iecec.org 1 #aiaaPropEnergy GET YOUR CONFERENCE INFO ON THE GO! Download the FREE Conference Mobile App FEATURES • Browse Program – View the program at your fingertips • My Itinerary – Create your own conference schedule • Conference Info – Including special events • Take Notes – Take notes during sessions • Venue Map – San Jose Convention Center • City Map – See the surrounding area • Connect to Twitter – Tweet about what you’re doing and who you’re meeting with #aiaaPropEnergy HOW TO DOWNLOAD Any version can be run without an active Internet connection! You can also sync an Compatible with itinerary you created online with the app by entering your unique itinerary name. iPhone/iPad, MyItinerary Mobile App MyItinerary Web App Android, and • For optimal use, we recommend • For optimal use, we recommend: rd BlackBerry! iPhone 3GS, iPod Touch (3 s iPhone 3GS, iPod Touch (3rd generation), iPad iOS 4.0, or later generation), iPad iOS 4.0, • Download the MyItinerary app by or later searching for “ScholarOne” in the s Most mobile devices using Android App Store directly from your mobile 2.2 or later with the default browser device. Or, access the link below or scan the QR code to access the iTunes s BlackBerry Torch or later device Sponsored by: page for the app.
    [Show full text]
  • Forever Remembered
    July 2015 Vol. 2 No. 7 National Aeronautics and Space Administration KENNEDY SPACE CENTER’S magazine FOREVER REMEMBERED Earth Solar Aeronautics Mars Technology Right ISS System & Research Now Beyond NASA’S National Aeronautics and Space Administration LAUNCH KENNEDY SPACE CENTER’S SCHEDULE SPACEPORT MAGAZINE Date: July 3, 12:55 a.m. EDT Mission: Progress 60P Cargo Craft CONTENTS Description: In early July, the Progress 60P resupply vehicle — 4 �������������������Solemn shuttle exhibit shares enduring lessons an automated, unpiloted version of the Soyuz spacecraft that is used to ����������������Flyby will provide best ever view of Pluto 10 bring supplies and fuel — launches 14 ����������������New Horizons spacecraft hones in on Pluto to the International Space Station. http://go.nasa.gov/1HUAYbO 24 ����������������Firing Room 4 used for RESOLVE mission simulation Date: July 22, 5:02 p.m. EDT 28 ����������������SpaceX, NASA will rebound from CRS-7 loss Mission: Expedition 44 Launch to 29 ����������������Backup docking adapter to replace lost IDA-1 the ISS Description: In late July, Kjell SHUN FUJIMURA 31 ����������������Thermal Protection System Facility keeping up Lindgren of NASA, Kimiya Yui of JAXA and Oleg Kononenko of am an education specialist in the Education Projects and 35 ����������������New crew access tower takes shape at Cape Roscosmos launch aboard a Soyuz I Youth Engagement Office. I work to inspire students to pursue science, technology, engineering, mathematics, or 36 ����������������Innovative thinking converts repair site into garden spacecraft from the Baikonur Cosmodrome, Kazakhstan to the STEM, careers and with teachers to better integrate STEM 38 ����������������Proposals in for new class of launch services space station.
    [Show full text]
  • Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit
    https://ntrs.nasa.gov/search.jsp?R=20160006983 2019-07-23T15:36:47+00:00Z Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit SPACE PROPULSION 2016 MARRIOTT PARK HOTEL, ROME, ITALY / 2-6 May 2016 Thomas Brown Mark Klem Patrick McRight NASA Engineering and Safety Center Propulsion Division Propulsion Department NASA Marshall Space Flight Center NASA Glenn Research Center NASA Marshall Space Flight Center Huntsville, AL 35812 Cleveland, Ohio 44135 Huntsville, AL 35812 Agenda • Introduction • Background • Needs for Beyond Earth Orbit (BEO) human exploration • LOX/CH4 Igniters • Reaction Control System (RCS) Thrusters • Large (870 – 1000 lbf) LOX/LH2 and LOX/Ethanol thrusters (TRW & Aerojet) • 100 lbf LOX/CH4 thrusters (Aerojet & Northrop Grumman) • Main Engine Injector Parametric Testing • Pressure Fed Main Engine Efforts • 7500 lbf LOX/CH4 (XCOR & KT Engineering) • 5500 lbf LOX/CH4 (Aerojet) • Additively Manufactured 4K Regeneratively Cooled Engine • Pump Fed Main Engine Efforts • Common Extensible Cryogenic Engine – LOX/LH2 throttle-able engine • 7000 lbf LOX/LH2 (TRW/Northrop Grumman) • 7000 lbf LOX/LH2 two stage injector • Current efforts with the Additive Manufacturing Demonstration engine • Cryogenic Fluid Management (CFM) and Distribution • Integrated Systems Demonstration • Challenges for future Human Exploration • Summary and Conclusions 2 Introduction Background • Human, beyond earth orbit, exploration architecture studies have identified Methane/Oxygen
    [Show full text]
  • Design of a 500 Lbf Liquid Oxygen and Liquid Methane Rocket Engine for Suborbital Flight Jesus Eduardo Trillo University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2016-01-01 Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight Jesus Eduardo Trillo University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons Recommended Citation Trillo, Jesus Eduardo, "Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight" (2016). Open Access Theses & Dissertations. 767. https://digitalcommons.utep.edu/open_etd/767 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. DESIGN OF A 500 LBF LIQUID OXYGEN AND LIQUID METHANE ROCKET ENGINE FOR SUBORBITAL FLIGHT JESUS EDUARDO TRILLO Master’s Program in Mechanical Engineering APPROVED: Ahsan Choudhuri, Ph.D., Chair Norman Love, Ph.D. Luis Rene Contreras, Ph.D. Charles H. Ambler, Ph.D. Dean of the Graduate School Copyright © by Jesus Eduardo Trillo 2016 DESIGN OF A 500 LBF LIQUID OXYGEN AND LIQUID METHANE ROCKET ENGINE FOR SUBORBITAL FLIGHT by JESUS EDUARDO TRILLO, B.S.ME THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Mechanical Engineering THE UNIVERSITY OF TEXAS AT EL PASO December 2016 Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor Dr.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods Permalink https://escholarship.org/uc/item/7n51c078 Author Morrow, David Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Aerospace Engineering by David Morrow 2020 c Copyright by David Morrow 2020 ABSTRACT OF THE THESIS Minimizing hydraulic losses in additively-manufactured swirl coaxial rocket injectors via analysis-driven design methods by David Morrow Master of Science in Aerospace Engineering University of California, Los Angeles, 2020 Professor Raymond M. Spearrin, Chair Additive manufacturing (AM) has matured significantly over the past decade and become a highly attractive tool for reducing manufacturing complexity and removing traditional de- sign constraints. This is particularly desirable for rocket combustion devices which often feature hundreds of individual parts with precise tolerances. The degree to which AM can be used to improve combustion device performance, however, has been less rigorously ex- plored. In this work, hydraulic performance impacts associated with and enabled by AM are assessed for a liquid bi-propellant swirl coaxial injector. Specifically, a single-element liquid oxygen/kerosene injector based on a canonical design was manufactured from inconel using Direct Metal Laser Sintering at two different coaxial recess depths. Cold-flow testing for the as-manufactured baseline injector found a reduction in the designed discharge coefficients, which is primarily attributed to increased surface roughness inherent in the AM process.
    [Show full text]
  • Ideas Into Hardware: a History of the Rocket Engine Test Facility
    Ideas Into Hardware IDEAS INTO HARDWARE A History of the Rocket Engine Test Facility at the NASA Glenn Research Center Virginia P. Dawson National Aeronautics and Space Administration NASA Glen Research Center Cleveland, Ohio 2004 This document was generated for the NASA Glenn Research Center, in accor- dance with a Memorandum of Agreement among the Federal Aviation Administration, National Aeronautics and Space Administration (NASA), The Ohio State Historic Preservation Officer, and the Advisory Council on Historic Preservation. The City of Cleveland’s goal to expand the Cleveland Hopkins International Airport required the NASA Glenn Research Center’s Rocket Engine Test Facility, located adjacent to the airport, to be removed before this expansion could be realized. To mitigate the removal of this registered National Historic Landmark, the National Park Service stipulated that the Rocket Engine Test Facility be documented to Level I standards of the Historic American Engineering Record (HAER). This history project was initiated to fulfill and supplement that requirement. Produced by History Enterprises, Inc. Cover and text design by Diana Dickson. Library of Congress Cataloging-in-Publication Data Dawson, Virginia P. (Virginia Parker) —Ideas into hardware : a history of NASA’s Rocket Engine Test Facility / by Virginia P. Dawson. ——p.——cm. —Includes bibliographical references. —1. Rocket engines—Research—United States—History.—2.—United States. National Aeronautics and Space Administration—History.—I. Title. TL781.8.U5D38 2004 621.43'56'072077132—dc22 2004024041 Table of Contents Introduction / v 1. Carving Out a Niche / 1 2. RETF: Complex, Versatile, Unique / 37 3. Combustion Instability and Other Apollo Era Challenges, 1960s / 64 4.
    [Show full text]
  • Extensions to the Time Lag Models for Practical Application to Rocket
    The Pennsylvania State University The Graduate School College of Engineering EXTENSIONS TO THE TIME LAG MODELS FOR PRACTICAL APPLICATION TO ROCKET ENGINE STABILITY DESIGN A Dissertation in Mechanical Engineering by Matthew J. Casiano © 2010 Matthew J. Casiano Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2010 The dissertation of Matthew J. Casiano was reviewed and approved* by the following: Domenic A. Santavicca Professor of Mechanical Engineering Co-chair of Committee Vigor Yang Adjunct Professor of Mechanical Engineering Dissertation Advisor Co-chair of Committee Richard A. Yetter Professor of Mechanical Engineering André L. Boehman Professor of Fuel Science and Materials Science and Engineering Tomas E. Nesman Aerospace Engineer at NASA Marshall Space Flight Center Special Member Karen A. Thole Professor of Aerospace Engineering Head of the Department of Mechanical and Nuclear Engineering *Signatures are on file in the Graduate School iii ABSTRACT The combustion instability problem in liquid-propellant rocket engines (LREs) has remained a tremendous challenge since their discovery in the 1930s. Improvements are usually made in solving the combustion instability problem primarily using computational fluid dynamics (CFD) and also by testing demonstrator engines. Another approach is to use analytical models. Analytical models can be used such that design, redesign, or improvement of an engine system is feasible in a relatively short period of time. Improvements to the analytical models can greatly aid in design efforts. A thorough literature review is first conducted on liquid-propellant rocket engine (LRE) throttling. Throttling is usually studied in terms of vehicle descent or ballistic missile control however there are many other cases where throttling is important.
    [Show full text]
  • Aerospace America
    June 2016 Ambition: Europa NASA might find more than life in this moon’s ocean. It could find a new strategy for exploring other worlds. Page 22 Oklahoma’s Bridenstine on climate, term limits/8 20 years of Design/Build/Fly/30 Smart bombs for wildfires/38 A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS • COVER-0616ƒ.indd 1 5/19/16 1:18 PM 2O16 13 –17 JUNE 2016 WASHINGTON, D.C. AIAA AVIATION 2016 is the only aviation Exclusive Premier Sponsor event that covers the entire integrated spectrum of aviation business and technology. Confirmed Speakers Charles F. Michimasa Maj. Gen. Mike Delaney John S. Richard A. Clarke Bolden Jr. Fujino Joe Engle Langford Vice President, Chairman & CEO, Administrator, President & CEO, United States Air Airplane Chairman and Good Harbor NASA Honda Aircraft Force (Ret.) Development, Chief Executive Security Risk Company The Boeing Officer, Aurora Management, LLC Company Flight Sciences Corporation REGISTER TODAY! AIAA-AVIATION.ORG 16-1132 June 2016 DEPARTMENTS Page 16 EDITOR’S NOTEBOOK 2 Congress’s dynamic aerospace duo IN BRIEF 4 3D-printed drone; status change at Ames? smart repair manuals; Page 34 subscale aircraft CONVERSATION 8 Change agent for aerospace CASE STUDY 12 Preventing more MH370s ENGINEERING NOTEBOOK 16 Making a money saver OUT OF THE PAST 46 Page 4 CAREER OPPORTUNITIES 48 FEATURES AMBITION: EUROPA 22 Jupiter’s moon Europa could have life in the ocean under its shell. NASA came up with a step-by-step plan to find out. Then, along came a congressman from Texas. by Debra Werner Page 38 DESIGNING A WINNER 30 AIAA’s Design/Build/Fly contest gives college students a chance to pit their engineering smarts against international competitors in a remote-controlled aircraft flyoff.
    [Show full text]