The Amphibians of Kenya

Total Page:16

File Type:pdf, Size:1020Kb

The Amphibians of Kenya The Amphibians of Kenya Stephen Spawls, Domnick V Wasonga and Robert C Drewes Introduction There are two orders of amphibians in In the early 19th Century, the Kikuyu Kenya; the frogs and the caecilians. Few seer Mugo wa Kibiru prophesied that people are aware of caecilians, as they ‘strangers would come, with skin the are wormlike, burrowing amphibians colour of the banana frog’; he was talking that live in damp soil. However, we know of the Mountain Reed frog, Hyperolius a lot more about frogs. We know the montanus, whose skin is pinkish white. sounds they make; we have seen them The man was right; seemingly predicting at night on wet roads or around our the advent of the colonial era in East outside taps, or by day near the shores of Africa. People sometimes fear frogs and lakes and rivers. And yet little is known toads, believing them to be dangerous. of their lifestyle. The humble chura is a They are not. A few of Kenya’s frogs, for secretive, and yet spectacular creature of example the Red-banded Rubber Frog, the dark and of water, often mysterious, Phrynomantis bifasciatus, and some active only in the rainy season. We hear toads, have toxic skin secretions but them more often than we see them; the these are only dangerous if the skin toxin boom of frogs and toads in the night has accidentally enters a cut. often disturbed our sleep. However, frogs are good for humanity. They eat mostly Kenya’s frogs range widely in size. Females insects; in Kenya’s rice and maize fields it are usually larger than the males, as they is the frogs that keep the insect numbers have to carry the eggs. Our largest frog is down and thus provide more food for us. the huge African Bullfrog, Pyxicephalus Frogs are our friends. edulis, found in Tsavo and Ukambani; this frog can be 14 cm long from snout Frogs are amphibians; that name means to vent, and weigh over a kilogram. Our ‘two lives’, as they live on land and in smallest frog, the Unguja Puddle Frog, water. The first amphibians crawled from Phrynobatrachus ungujae, is only 1.6 cm the lakes and rivers onto land about 370 long as an adult and weights less than million years ago. Some ancient species 2g. Other startling frogs found in Kenya were huge, over 8 m long. Those giant include Peter’s Foam-nest Tree Frog, amphibians are now extinct; we are left which is waterproof, can change colour with three orders; the frogs and toads and lays its eggs in a mass of foam, the (Anura), the salamanders and newts, widespread Senegal Kassina, found from (Caudata) and the poorly-known, worm- Senegal to South Africa, the Northern like caecilians. (Gymnophiona). There are Clawed Frog, which only leaves the water no salamanders or newts in sub-Saharan to migrate in huge numbers, the huge Africa, but Kenya has over 100 species Groove-crowned Bullfrog, which can of frog, and at least seven species of bounce off the water surface as it jumps, caecilian. the exquisite endemic Shimba Hills Reed Frog, and the Mt Elgon Torrent frog, not There are legends and myths about frogs. seen since 1962, never photographed and In many African stories the toad plays possibly extinct. the part of reliable but slow character. 1 Kenya’s caecilians look very much like darkness (frogs are rarely active by day). earthworms, and are usually less than 35 The males usually call at the edge of the cm long. Eight species are known; one of pools, (every species has a different call) which is undescribed. They live largely and the females are attracted; the female in soil and leaf litter in forests along frog finds her male by the specific sound the coast, although one was recently he’s making, if the call isn’t right there’s described from Ngaia Forest near the no attraction. They mate, fertilisation is Nyambene Hills in central Kenya. nearly always external, and the eggs are usually laid in or near the water. They Many of Kenya’s amphibians also occur hatch out into tadpoles. This is a larval in other parts of Africa, but about 20 form quite unlike the adult frog; tadpoles are endemic, found in no other country. have gills like a fish. (a few species do Kenya’s amphibian fauna is quite varied; not have tadpoles, the eggs developing some species are associated with the directly into froglets). The tadpole eats the coastal forests of southeast Africa, algae and detritus, grows rapidly, and others with the arid areas of northern and loses its tail and gills; it turns into a little northeastern Africa, and still others with frog. The small frog eats insects and grows the savannas of southeast and central very rapidly in the remaining water. When Africa and the great forests of central the pool dries up, the frogs either burrow Africa. The study of such historical and deep in the mud, to where it will remain current distribution of organisms is called damp, or find some other moist retreat, biogeography. such as a hole or deep in a big log. There they remain, waiting for the arrival of Amphibians need water; their skins are another rainy season. not waterproof, with one exception (Foam-nest frogs, Chiromantis). Water Frogs are ectotherms, or ‘cold-blooded’, is lost by evaporation through the skin; meaning the heat for life processes if it is not replaced the frog will die by must come from the environment. Thus, desiccation. Invariably, frogs also need in Kenya, the greatest variety of frogs moisture in some form to breed, for eggs occurs where it is regularly warm and to develop, and for their larvae (tadpoles) wet such as along the coast, where over to exist in the aquatic stage, prior to 40 species occur. But even in cold places metamorphosis. Within these constraints, there are frogs; so long as there is water. Africa’s frogs have adapted to exist in Nearly 20 species can be found on the difficult situations. Although a few live on cool Kinangop plateau, at altitudes over the shores of lakes and rivers, most live in 2000m, and a similar number around areas without permanent water and have Nairobi at 1600m elevation. Conversely evolved astonishing lifestyles to avoid at Wajir, at low altitude but in Kenya’s arid dehydration and breed. In the dry season, sub-desert north, only six species of frog many retreat underground where the are known. soil remains moist, and some even form sealed cocoons. When the rain falls and The presence or absence of frogs can be creates temporary pools, frogs emerge; an excellent indicator of environmental they may appear in such numbers that health. Because of their permeable people are convinced they have dropped (leaky) skins, frogs are highly sensitive to from the sky. A frenzy of activity begins at environmental conditions and pollution; 2 they are rapidly affected by toxins which occur) and the mountain national parks enter through their skin. Healthy water such as Mt Elgon, Mt Kenya and the bodies and wetlands will have healthy Aberdares. Moreover, there are some populations of frogs. If frogs are dying off, important areas with unique amphibians this may be an early warning of pollution, species that are not yet protected nor which potentially might affect humans well understood; for example the Taita as well. In many parts of the world, Hills, the Tana River Delta, the Mau amphibian populations are suffering a Forest and the Cherangan’y Hills. At the worrying decline, likely due to factors National Museum in Nairobi, professional such as environmental degradation, herpetologists are actively working on increased ultraviolet radiation and climate documenting and protecting our frogs. change. Moreover, frogs are becoming This can be a difficult task, as many less resistant to pre-existing factors such species are not well described and thus as chytrid fungus. Several species have difficult to identify, in some cases mating become extinct, even in environmentally calls and even DNA analysis may be conscious countries; for example the required. Moreover it is highly likely that Costa Rican Golden Toad and the there are additional amphibian species in Australian Gastric Brooding Frog. Frogs Kenya awaiting discovery and description. not only serve as environmental monitors, Recent advances in molecular biology the skin of some species has been have revealed the fact that the Kenya found to contain complex substances frog fauna is more diverse that previously like peptides, surprisingly useful against thought. There is much more field work various skin conditions in humans It is and laboratory analysis to be undertaken predicted that many additional substances before we have a full understanding of will be found in amphibian skin. So the East African herpetofauna. More everyone can do their bit to help our information is always needed. The frogs. The use of toxic chemicals needs museum herpetologists always welcome to be strictly controlled. Water sources photographs and specimens of Kenya’s should be kept clean. The environment frogs. needs protection. And frogs need to be seen to be Finally, of course, amphibians play a appreciated. So get out there and find fundamental role in all the ecosystems them, and enjoy our wild places. Frogs they inhabit; both as consumers of insects can be found around taps at night, hiding and other arthropods, and themselves as in plants, under ground cover, and by our food sources for secondary consumers rivers and lakes (but sometimes an expert such as mammals, birds, reptiles and even guide is necessary, care must be taken in other amphibians.
Recommended publications
  • Diversification of Afrobatrachian Frogs and the Herpetofauna of the Arabian Peninsula
    Diversification of Afrobatrachian Frogs and the Herpetofauna of the Arabian Peninsula By Daniel Portik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Dr. Jimmy A. McGuire, Chair Dr. Rauri Bowie Dr. David Blackburn Dr. Rosemary Gillespie Fall 2015 Abstract Diversification of Afrobatrachian Frogs and the Herpetofauna of the Arabian Peninsula by Daniel Portik Doctor of Philosophy in Biology University of California, Berkeley Dr. Jimmy A. McGuire, Chair The identification of biotic and abiotic factors that promote the diversification of clades across Africa and the Arabian Peninsula remains a difficult challenge. A variety of ecological and evolutionary processes can be driving such patterns, and clade-specific traits may also play a role in the evolution of these groups. Comparative evolutionary studies of particular clades, relying on a phylogenetic framework, can be used to investigate many of these topics. Beyond these mechanisms there are abiotic factors, such as geological events, that can drive vicariance and dispersal events for large sets of taxa. The investigation of historical biogeography in a comparative phylogenetic framework can be used to detect such patterns. My dissertation explores these topics using reptiles and amphibians as study systems, and I rely on the generation of molecular sequence data, phylogenetics, and the use of comparative phylogenetic methods to address a variety of questions. I provide the abstract for each chapter below. Chapter 1: The reproductive modes of anurans (frogs and toads) are the most diverse among all the terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades.
    [Show full text]
  • Biodiversity Management Plan
    BIODIVERSITY MANAGEMENT PLAN FOR VILANCULOS COASTAL WILDLIFE SANCTUARY (SOFALA PROVINCE, REPUBLIC OF MOZAMBIQUE) VOLUME 3 ANNOTATED SPECIES LISTS March 2003 VILANCULOS COASTAL WILDLIFE SANCTUARY PLANNING TEAM 29 HOMESTEAD ROAD, RIVONIA, 2128, SOUTH AFRICA Prepared by AvW LAMBRECHTS For: VILANCULOS COASTAL WILDLIFE SANCTUARY (PTY) LTD and GLOBAL ENVIRONMENT FACILITY (PDF B contract) 1 BIODIVERSITY MANAGEMENT PLAN PLAN LAYOUT VOLUME 1: CONDENSED PLAN Available as hard copy and on CD (attached) VOLUME 2: THE BIODIVERSITY MANAGEMENT PLAN Available on CD (attached) VOLUME 3: ANNOTATED SPECIES LISTS (THIS DOCUMENT) Only available on CD ANNEX 1: VEGETATION ANNEX 2: MAMMALS ANNEX 3: BIRDS ANNEX 4: REPTILES ANNEX 5: AMPHIBIANS VOLUME 4: SPECIALIST REPORTS Available on CD (attached) 2 BIODIVERSITY MANAGEMENT PLAN VOLUME 3 SPECIES LISTS INTRODUCTION The species lists that follow are all provisional and will be expanded after the planned follow-up surveys have been undertaken. In all instances the specialists who undertook the introductory surveys (Dr Niels Jacobsen for mammals, reptiles, amphibians and plants and Dr Warwick Tarboton for birds) were hamstrung firstly by al lack of time and secondly by the fact that the surveys were undertaken in mid- winter. Some species are also still in the process of being identified. A species list was not compiled for fresh water organisms, although reference is made in the text (see Volume 2 and the specialist report in Volume 4) to the species that were encountered and identified. The same applies to marine species, although extensive reference is made to those species that were identified on an incidental basis by the marine specialist (Prof Mike Bruton; refer to Volume 2 and the specialist report in Volume 4).
    [Show full text]
  • Amphibians in Zootaxa: 20 Years Documenting the Global Diversity of Frogs, Salamanders, and Caecilians
    Zootaxa 4979 (1): 057–069 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:972DCE44-4345-42E8-A3BC-9B8FD7F61E88 Amphibians in Zootaxa: 20 years documenting the global diversity of frogs, salamanders, and caecilians MAURICIO RIVERA-CORREA1*+, DIEGO BALDO2*+, FLORENCIA VERA CANDIOTI3, VICTOR GOYANNES DILL ORRICO4, DAVID C. BLACKBURN5, SANTIAGO CASTROVIEJO-FISHER6, KIN ONN CHAN7, PRISCILLA GAMBALE8, DAVID J. GOWER9, EVAN S.H. QUAH10, JODI J. L. ROWLEY11, EVAN TWOMEY12 & MIGUEL VENCES13 1Grupo Herpetológico de Antioquia - GHA and Semillero de Investigación en Biodiversidad - BIO, Universidad de Antioquia, Antioquia, Colombia [email protected]; https://orcid.org/0000-0001-5033-5480 2Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina [email protected]; https://orcid.org/0000-0003-2382-0872 3Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, 4000 San Miguel de Tucumán, Argentina [email protected]; http://orcid.org/0000-0002-6133-9951 4Laboratório de Herpetologia Tropical, Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rodovia Jorge Amado Km 16 45662-900 Ilhéus, Bahia, Brasil [email protected]; https://orcid.org/0000-0002-4560-4006 5Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida, 32611, USA [email protected]; https://orcid.org/0000-0002-1810-9886 6Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av.
    [Show full text]
  • Kenya Soe Ch4 A
    PART 2 STATE OF THE ENVIRONMENT 61 CHAPTER BIODIVERSITY4 Introduction The Convention on Biological Diversity (CBD) defi nes biodiversity as Kenya’s rich biodiversity Lead Authors ‘the variability among living organisms from all sources including, can be attributed to a number Ali A. Ali and Monday S. Businge among others, terrestrial, marine and other aquatic ecosystems and of factors, including a long Contributing Authors S. M. Mutune, Jane Kibwage, Ivy Achieng, the ecological complexes of which they are part [and] includes diversity evolutionary history, variable Godfrey Mwangi, David Ongare, Fred Baraza, within species, between species and of ecosystems.’ Biodiversity climatic conditions, and diverse Teresa Muthui, Lawrence M. Ndiga, Nick Mugi therefore comprises genetic and species diversity of animals and plants habitat types and ecosystems. Reviewer as well as ecosystem diversity. Kenya is endowed with an enormous The major biodiversity Nathan Gichuki diversity of ecosystems and wildlife species which live in the terrestrial, concentration sites fall within aquatic and aerial environment. These biological resources are the existing protected areas fundamental to national prosperity as a source of food, medicines, network (national parks, reserves and sanctuaries) which are mostly energy, shelter, employment and foreign exchange. For instance, managed by the Kenya Wildlife Service (KWS). However, over 70 percent agricultural productivity and development are dependent on the of the national biodiversity occurs outside the protected areas. availability of a wide variety of plant and animal genetic resources and In spite of its immense biotic capital, Kenya experiences severe on the existence of functional ecological systems, especially those that ecological and socio-economic problems.
    [Show full text]
  • BOA2.1 Caecilian Biology and Natural History.Key
    The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia
    [Show full text]
  • Amphibian Diversity in Shimba Hills National Reserve, Kenya: a Comprehensive List of Specimens and Species
    Journal of East African Natural History 106(1): 19–46 (2017) AMPHIBIAN DIVERSITY IN SHIMBA HILLS NATIONAL RESERVE, KENYA: A COMPREHENSIVE LIST OF SPECIMENS AND SPECIES Beryl A. Bwong Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected] Joash O. Nyamache, Patrick K. Malonza, Domnick V. Wasonga, Jacob M. Ngwava Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected]; [email protected]; [email protected], [email protected] Christopher D. Barratt, Peter Nagel Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland [email protected]; [email protected] Simon P. Loader Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Life Sciences, The Natural History Museum, London SW7 5BD, UK [email protected] ABSTRACT We present the first annotated amphibian checklist of Shimba Hills National Reserve (SHNR). The list comprises of 30 currently known amphibians (28 anurans and two caecilians), which includes 11 families and 15 genera. In addition, individual records per species, distribution in the reserve and brief remarks about the species are presented. The checklist is based on information from museum collections, field guides, unpublished reports and newly collected field data. We are able to confirm the presence of two Eastern Afromontane species in the SHNR: Scolecomorphus cf. vittatus and Callulina cf. kreffti. The latter has not been recorded since the original collection of a single specimen over 50 years ago.
    [Show full text]
  • Bioseries12-Amphibians-Taita-English
    0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria.
    [Show full text]
  • Aspects of the Ecology and Conservation of Frogs in Urban Habitats of South Africa
    Frogs about town: Aspects of the ecology and conservation of frogs in urban habitats of South Africa DJD Kruger 20428405 Thesis submitted for the degree Philosophiae Doctor in Zoology at the Potchefstroom Campus of the North-West University Supervisor: Prof LH du Preez Co-supervisor: Prof C Weldon September 2014 i In loving memory of my grandmother, Kitty Lombaard (1934/07/09 – 2012/05/18), who has made an invaluable difference in all aspects of my life. ii Acknowledgements A project with a time scale and magnitude this large leaves one indebted by numerous people that contributed to the end result of this study. I would like to thank the following people for their invaluable contributions over the past three years, in no particular order: To my supervisor, Prof. Louis du Preez I am indebted, not only for the help, guidance and support he has provided throughout this study, but also for his mentorship and example he set in all aspects of life. I also appreciate the help of my co-supervisor, Prof. Ché Weldon, for the numerous contributions, constructive comments and hours spent on proofreading. I owe thanks to all contributors for proofreading and language editing and thereby correcting my “boerseun” English grammar but also providing me with professional guidance. Prof. Louis du Preez, Prof. Ché Weldon, Dr. Andrew Hamer, Dr. Kirsten Parris, Prof. John Malone and Dr. Jeanne Tarrant are all dearly thanked for invaluable comments on earlier drafts of parts/the entirety of this thesis. For statistical contributions I am especially also grateful to Dr. Andrew Hamer for help with Bayesian analysis and to the North-West Statistical Services consultant, Dr.
    [Show full text]
  • Congolius, a New Genus of African Reed Frog Endemic to The
    www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera.
    [Show full text]
  • Species Summary
    Hoplobatrachus occipitalis Region: 10 Taxonomic Authority: (Gunther, 1858) Synonyms: Common Names: Crowned Bullfrog English Order: Anura Family: Ranidae Notes on taxonomy: This species is believed to consist of at least two species (Bogart and Tandy 1981), with tetraploid populations known from the islands of Lake Victoria and from Liberia. These have not yet been formally distinguished. General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: This species of the African savannah zone ranges from southern It lives in many habitats from dry savannahs to disturbed forest, using Mauritania to Ethiopia, south through East Africa to northern Zambia, logging roads and rivers to penetrate deep into lowland forest. It breeds southern and western Democratic Republic of Congo, Angola, and in small to medium-sized temporary waters, but not in permanent coastal Congo and Gabon. There are isolated populations in waters, since it cannot compete with fish. southwestern Libya, southeastern Western Sahara and nearby Mauritania, the Air mountains of Niger, and northern Mali [Adrar de Iforas]). Conservation Measures: Threats: It occurs in many protected areas. Human consumption is a problem locally, especially in West and Central Africa. However, it is an adaptable species, and overall it is not significantly threatened. Species population information: It is widespread and common over much of its range, with relict isolated populations in oases and wells in the Sahelian and Saharan regions. Native
    [Show full text]
  • Environmental and Social Impact Assessment Seismic Reflection Survey and Well Drilling, Umkhanyakude District Municipality, Northern Kzn
    SFG1897 v2 Public Disclosure Authorized ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT SEISMIC REFLECTION SURVEY AND WELL DRILLING, UMKHANYAKUDE DISTRICT MUNICIPALITY, NORTHERN KZN Public Disclosure Authorized Client: SANEDI–SACCCS Consultant: G.A. Botha (PhD, Pr.Sci.Nat) in association with specialist consultants; Brousse-James and Associates, WetRest, Jeffares & Green, S. Allan Council for Geoscience, P.O. Box 900, Pietermaritzburg, 3200 Council for Geoscience report: 2016-0009 June, 2016 Copyright © Council for Geoscience, 2016 Public Disclosure Authorized Public Disclosure Authorized Table of Contents Executive Summary ..................................................................................................................................... vii 1 Introduction ........................................................................................................................................... 1 2 Project description ................................................................................................................................ 4 2.1 Location and regional context ....................................................................................................... 5 2.2 2D seismic reflection survey and well drilling; project description and technical aspects ............ 7 2.2.1 Seismic survey (vibroseis) process ....................................................................................... 7 2.2.2 Well drilling ...........................................................................................................................
    [Show full text]
  • Wetlands, Biodiversity and the Ramsar Convention
    Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity.
    [Show full text]