The Age of the Milky Way Galaxy from White Dwarf Chronometry

Total Page:16

File Type:pdf, Size:1020Kb

The Age of the Milky Way Galaxy from White Dwarf Chronometry THE AGE OF THE MILKY WAY GALAXY FROM WHITE DWARF CHRONOMETRY APPROVED BY DISSERTATION COMMITTEE: R. Edward Nather, Supervisor Donald E. Winget Edward L. Robinson William H. Jefferys Jim Liebert Copyright by Charles F. Claver, B.A. 1995 Dedication To my family; Jack, Paulette, and Jeanne in memory of Chet, Harlan, Maria, and Steve. THE AGE OF THE MILKY WAY GALAXY FROM WHITE DWARF CHRONOMETRY by CHARLES FREDERICK CLAVER, B.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN May, 1994 Acknowledgements When I left California to come to Texas I knew I wanted to pursue astronomy, but I had no idea I was taking the first step to the most chalenging and interesting phase of my life to date. The first astronomer I met was Ed Nather. I described to him my telescope making hobby and interests and by the time we were through, without ever having seen me before, Ed gave me a place in his lab to continue my work. From this moment on Ed became my mentor. Ed always gave me a great deal of freedom, but also seemed to know when it was necessary to step in and help, discipline, or correct me. I cannot express enough how grateful I am to Ed for allowing me to do what I love most – astronomy. Thank you Ed, for your faith in me, and for giving me the opportunity and guidance that helped me fulfill a lifelong dream. Equally inspiring to me was Don Winget. I first met Don at McDonald Observatory while I was working on my senior thesis project in 1986. I asked Don what he did. He proceeded to give me very excitedly a synopsis of the white dwarf field. I asked him what was the most important problem in the study of white dwarfs. Don replied "numbers". With that simple response, Don is directly responsible for igniting the fire of curiosity in me which led to my total commitment to professional astronomy. Without Don's continued support and v help to keep this fire alive I would never had made it through graduate school. Thank you, Don. The "Lab" environment that Ed and Don cultivate is second to none. It may seem hopelessly chaotic at times, but in reality it is vibrantly alive with science, philosophy, and life. Of the truly unique friends and collaborations to emerge from this environment are truly unique I have been blessed by many. In particular, I am grateful to have met my professional "big brother", Matt Wood and through him his wife Clara. Matt is someone I admire, looked up to, and can always rely on for straight answers. Other good friends from the lab include Butler Hine, Chris Clemens, Scot Kleinman, Judi Provecal, Paul Bradley, Atsuko Nitta, Mike Montgomery, Usama Aziz, and Todd Watson. I could not have asked for a better family than the one I have. All throughout my life they have supported my interests, encouraged me to learn new things, and have always been willing to help in anyway they could. Most parents would not have driven their son 60 miles every Friday night for 5 years (until I learned to drive) to the Telescope Makers Workshop at Chabot Observatory so that I could rub two pieces of glass together with sand in between. Thank you Mom and Dad for your love, patience, understanding, and most of all for your confidence and trust in me. Jeanne, my sister, you are one of my best friends. Our many conversations have been and continue to be a very important part of my life. Thanks for listening. I am also blessed with another family, my chosen one, who have been equally supportive in ways parents and siblings cannot. These are the people I grew up with, and are collectively known as "The Newton Way Gang" – after the vi street we lived on. Over the years this chosen family has grown as we each meet new people and include them in our lives. Even though we are spread accross the country, the love that is shared among us only continues to strengthen. So to you: Mike Cadigan, Terry and Lynne Shapliegh, Larry Cadigan. Rob and Jamie Loud, Greg Sosa, Mo and Lisa, Dan and Vickie, and Chris Klinger I am truly thankful to know you. It is part of life that sometimes we lose a member of the family. This dissertation is, in part, dedicated to one who I knew so briefly, but showed me how to savor the special moments life has to offer. Steve, wherever you might be – Haaayyyyy! While attending the University of Texas I have also met some truly exceptional people who have helped me along the way towards my degree. I first met Dean Hines on the last day of orientation for the new incoming graduate class. Having spent the past three years at Texas as an undergraduate, I didn't feel like I needed to be oriented. This did nothing to dispel wild rumors of who this Claver guy was, which came to an abrupt halt when Dean and I showed up that day in full Grateful Dead attire. We've been dear friends ever since; thanks Dean. Later that year I met Mark Cornell, and more recently his new wife Debbie. Mark has taught me a sharpness of thinking I would never have developed otherwise. In addition to this, Mark and Debbie are just genuine good people to know - thanks you two! I cannot really explain how it was that Phillip MacQueen and I became friends and collaborators. I can only say that without Phillip the Prime Focus Camera would never have happened – it is as much his instrument as it is mine. Working with Phillip has been, and continues to be, an education and an vii inspiration, and just plain fun. Thanks Phillip, for your herculean efforts over the years., and my appologies to your wife if I've kept you out too late :). I am truly indebted to you. Someone who will always hold a special place in my heart is A–Lan Reynolds, who I met during her second Masters program at the University of Texas. We seem to be cut from the same piece of cloth, albeit opposite ends. A–Lan, you were a brilliant shining light during my darkest years as a graduate student. Even now, as things seem much brighter to me, your light is blinding and your warmth unending. Miao. Op. Po. To Luke and Sherri – ogidy ogidy ogidy. Thank you for the wonderful T– shirt, but most of all thanks for all the wonderful outdoor experiences we've shared. May there be may many more to come. Thanks to Gary Hansen for all the instructive and enlightening conversations over the years, and for including me in your outdoor experiences with Chris and your newest family member, Carli. I would also like to express my sincerest thanks to Frank Bash, Tom Barnes, and the entire staff of McDonald Observatory for their support during the construction of the Prime Focus Camera. At Mt. Locke, I am especially grateful to Dave Doss, Ed Barker and Mark Adams, Jerry Martin, Ed Dutchover, and George Grub (and his crew) for their help and support over the years. I owe special thanks to Jimmy Welborn and George Barzcark for welcoming me into their work place and sharing their knowledge of machining while I built the Prime Focus Camera. viii To David Way and his family, thanks for your support both in the department and away. Our trips to the lake listening to SRV while the sun set on a warm Summer's night went a long way towards easing the strain of graduate school. Finally, but not in the least, I am forever indebted to Beth Clark. If it weren't for Beth this dissertation would not have been completed with my sanity intact. Everyday she does something seemingly small that makes a very big difference in my life. I love you, Beth with all my heart, thanks for everything – big and small. ix THE AGE OF THE MILKY WAY GALAXY FROM WHITE DWARF CHRONOMETRY Publication No._____________ Charles Frederick Claver, Ph. D. The University of Texas at Austin, 1995 Supervisor: R. Edward Nather The age of our own Galaxy – the Milky Way – is one of the principal pieces of information we have to constrain our understanding of how the Universe evolved to its current state. With the assumption that our Galaxy is no different than any other of its type and that our locale in the Universe in not unique, the age of the Milky Way places constraints on how much time has elapsed since galaxies and the Universe were first formed. Estimates for the Galaxy's age have ranged from 10 to 20 billion years, but this age spread is too large to constrain the models we have describing the evolution of the Universe. Perhaps the most accurate way we have of estimating ages comes from the white dwarf stars – the cooling x remnants of stellar evolution. The difficulty is that there are too few white dwarfs known for us to fully exploit them as the accurate chronometers they are. In the first part of this work I present new instrumentation and photometric techniques designed specifically to search for and identify the oldest white dwarf stars. In collaboration with Phillip MacQueen I have converted the 0.76m Boller and Chivens telescope at McDonald Observatory into a highly sensitive digital f 3 Prime Focus Camera.
Recommended publications
  • Young Nearby Stars by Adam Conrad Schneider (Under The
    Young Nearby Stars by Adam Conrad Schneider (Under the Direction of Professor Inseok Song) Abstract Nearby young stars are without equal as stellar and planetary evolution laboratories. The aim of this work is to use age diagnostic considerations to execute a complete survey for new nearby young stars and to efficiently reevaluate and constrain their ages. Because of their proximity and age, young, nearby stars are the most desired targets for any astrophysical study focusing on the early stages of star and planet formation. Identifying nearby, young, low-mass stars is challenging because of their inherent faint- ness and age diagnostic degeneracies. A new method for identifying these objects has been developed, and a pilot study of its effectiveness is demonstrated by the identification of two definite new members of the TW Hydrae Association. Nearby, young, solar-type stars are initially identified in this work by their fractional X-ray luminosity. The results of a large-scale search for nearby, young, solar-type stars is presented. Follow-up spectroscopic observations are taken in order to measure various age diagnostics in order to accurately assess stellar ages. Age, one of the most fundamental properties of a star, is also one of the most difficult to determine. While a variety of proce- dures have been developed and utilized to approximate ages for solar-type stars, with varying degrees of success, a comprehensive age-dating technique has yet to be constructed. Often- times, different methods exhibit contradictory or conflicting findings. Such inconsistencies demonstrate the value of a uniform method of determining stellar ages.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • Nuclear Astrophysics: the Unfinished Quest for the Origin of the Elements
    Nuclear astrophysics: the unfinished quest for the origin of the elements Jordi Jos´e Departament de F´ısica i Enginyeria Nuclear, EUETIB, Universitat Polit`ecnica de Catalunya, E-08036 Barcelona, Spain; Institut d’Estudis Espacials de Catalunya, E-08034 Barcelona, Spain E-mail: [email protected] Christian Iliadis Department of Physics & Astronomy, University of North Carolina, Chapel Hill, North Carolina, 27599, USA; Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA E-mail: [email protected] Abstract. Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoretical astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe arXiv:1107.2234v1 [astro-ph.SR] 12 Jul 2011 and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe.
    [Show full text]
  • The Hertzsprung-Russell Diagram Help Sheet
    School of Physics and Astronomy Edgbaston Birmingham B15 2TT The Hertzsprung-Russell Diagram Help Sheet Setting up the Telescope What is the wavelength range of an optical telescope? Approx. 400 - 700 nm Locating the Star Cluster Observing the sky from the Northern hemisphere, which star remains fixed in the sky whilst the other stars rotate around it? In which direction do they rotate? North Star/Pole Star/Polaris Stars rotate anticlockwise around Polaris Observing the Star Cluster - Stellar Observation What is the difference between the apparent magnitude and the absolute magnitude of a star? The apparent magnitude is how bright the star appears from Earth. The absolute magnitude is how bright the star would appear if it was 10pc away from Earth. Part 1 - Distance to the Star Cluster What is the distance to the star cluster in lightyears? 136 pc = 444 lightyears Conversion: 1 pc = 3.26 lightyears Why might the distance to the cluster you have calculated differ from the literature value? Uncertainty in fit of ZAMS (due to outlying stars, for example), hence uncertainty in distance modulus and hence distance. Part 2 - Age of the Star Cluster Why might there be an uncertainty in the age of the cluster determined by this method? Uncertainty in fit of isochrone; with 2 or 3 parameters to fit it can be difficult to reproduce the correct shape. Also problem with outlying stars, as explained in the manual. How does the age you have calculated compare to the age of the universe? Age of universe ~ 13.8 GYr Part 3 - Comparison of Star Clusters Consider the shape of the CMD for the Hyades.
    [Show full text]
  • Hr Diagrams of Star Clusters
    HR Diagrams of Open Clusters 1 HR DIAGRAMS OF STAR CLUSTERS Student Manual A Manual to Accompany Software for the Introductory Astronomy Lab Exercise Document SM 14: Circ.Version 1.0 Department of Physics Gettysburg College Gettysburg, PA 17325 Telephone: (717) 337-6028 email: [email protected] Database, Software, and Manuals prepared by: Contemporary Laboratory Glenn Snyder and Laurence Marschall (CLEA PROJECT, Gettysburg College) Experiences in Astronomy HR Diagrams of Open Clusters 2 Contents Learning Goals and Procedural Objectives ..................................................................................................................... 3 Introduction: HR Diagrams and Their Uses ................................................................................................................... 4 Software Users Guide ANALYZING THE HR DIAGRAMS OF STAR CLUSTERS ................................................ 8 Starting the Program .................................................................................................................................................. 8 Accessing the Help Files.............................................................................................................................................. 8 Displaying Stored Data for Clusters on a HR diagram........................................................................................... 8 Fitting a Zero-Age Main Sequence to the Cluster Data: Determining Distance.................................................. 10 Fitting Isochrones
    [Show full text]
  • Stellar Evolution: Evolution Off the Main Sequence
    Evolution of a Low-Mass Star Stellar Evolution: (< 8 M , focus on 1 M case) Evolution off the Main Sequence sun sun - All H converted to He in core. - Core too cool for He burning. Contracts. Main Sequence Lifetimes Heats up. Most massive (O and B stars): millions of years - H burns in shell around core: "H-shell burning phase". Stars like the Sun (G stars): billions of years - Tremendous energy produced. Star must Low mass stars (K and M stars): a trillion years! expand. While on Main Sequence, stellar core has H -> He fusion, by p-p - Star now a "Red Giant". Diameter ~ 1 AU! chain in stars like Sun or less massive. In more massive stars, 9 Red Giant “CNO cycle” becomes more important. - Phase lasts ~ 10 years for 1 MSun star. - Example: Arcturus Red Giant Star on H-R Diagram Eventually: Core Helium Fusion - Core shrinks and heats up to 108 K, helium can now burn into carbon. "Triple-alpha process" 4He + 4He -> 8Be + energy 8Be + 4He -> 12C + energy - First occurs in a runaway process: "the helium flash". Energy from fusion goes into re-expanding and cooling the core. Takes only a few seconds! This slows fusion, so star gets dimmer again. - Then stable He -> C burning. Still have H -> He shell burning surrounding it. - Now star on "Horizontal Branch" of H-R diagram. Lasts ~108 years for 1 MSun star. More massive less massive Helium Runs out in Core Horizontal branch star structure -All He -> C. Not hot enough -for C fusion. - Core shrinks and heats up.
    [Show full text]
  • Middle School - Round 16A
    MIDDLE SCHOOL - ROUND 16A TOSS-UP 1) Energy – Short Answer Researchers at Oak Ridge National Lab found that exposing a solution of guanidine [GWAH-nih-deen] to air resulted in the formation of carbonate crystals, indicating absorption of what atmospheric compound? ANSWER: CARBON DIOXIDE (ACCEPT: CO2) BONUS 1) Energy – Short Answer Researchers at Lawrence Berkley National Lab are using the Advanced Light Source to study how a group of highly porous organic materials can capture heavy metal cations [CAT-eye- onz] and sequester them away. What is the term for this large group of compounds? ANSWER: METAL-ORGANIC FRAMEWORKS (ACCEPT: MOFs) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TOSS-UP 2) Physical Science – Short Answer Capacitance describes the ratio of the electric charge stored in a capacitor to what quantity? ANSWER: VOLTAGE (ACCEPT: ELECTRIC POTENTIAL) BONUS 2) Physical Science – Short Answer A 4-kilogram block moving at 3 meters per second collides elastically with a 2-kilogram block at rest. In meters per second, what is the final velocity of the lighter block? ANSWER: 4 Middle School - Round 16A Page 1 TOSS-UP 3) Earth and Space – Short Answer What measure of angular distance is the celestial equivalent of latitude? ANSWER: DECLINATION BONUS 3) Earth and Space – Short Answer Identify all of the following three statements that are true of gas giants in our solar system: 1) They have a lower density than terrestial planets; 2) They have a slower rotational period than terrestrial planets; 3) They all have rings. ANSWER: 1 AND 3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TOSS-UP 4) Life Science – Multiple Choice Which part of a dicot [DYE-kawt] seed has the greatest concentration of carbohydrates? W) Cotyledon [kaw-til-EE-dun] X) Seed coat Y) Endosperm Z) Epicotyl [EH-pih-caw-dil] ANSWER: Y) ENDOSPERM BONUS 4) Life Science – Short Answer Identify all of the following three amino acids that, when found on the surface of a protein, increase its water solubility: 1) Arginine [AR-jih-neen]; 2) Isoleucine [eye-so-LOO- seen]; 3) Valine [VAIL-een].
    [Show full text]
  • 2007 the Meaning of Life
    The Meaning Of Life This observing list tells a story of birth, life and death within the Universe. Each entry has the essential facts about the object in tabular form and then a paragraph or two explaining why the object is important astrophysi- cally and where is sits on the timeline of the Universe . To get the most out of the list, be sure to read the textual descriptions and physical characteristics as you observe each object. In order to get your “Meaning of Life” observing pin, observe 20 of the 24 objects during the 2007 Eldorado Star Party. The objects are not necessarily listed in the best observing order but a summary sheet at the end lists them in order of setting time. Turn your completed sheet into Bill Tschumy sometime during the event to claim your pin. If you miss me at ESP you can also mail the completed list to the address given at the end of the list. ****Birth ****************************************************************************** NGC 6618 , M 17, Cr 377, Swan Nebula Constellation Type RA Dec Magnitude Apparent Size Observed Sgr DN, OC 18h 20.8m -16º 11! 7.5 11!x11! Age Distance Gal Lon Gal Lat Luminosity Actual Size 1 Myr 6,800 ly 15.1º -0.8º 3,757 Suns 22x22 ly The Swan Nebula houses one of the youngest open clusters known in the Galaxy. At the tender age of 1 million years, the cluster is still embedded in the irregularly shaped nebulosity from which it arose. Although the cluster appears to have around 35 stars, most are not true cluster members.
    [Show full text]
  • Chapter 8: Simple Stellar Populations
    Chapter 8: Simple Stellar Populations Simple Stellar Population consists of stars born at the same time and having the same initial element composition. Stars of different masses follow different evolutionary tracks. Theoretical isochrones Old SSPs Age estimates Abundances of light elements Reddening and metallicity estimates Distance estimates Luminosity functions and estimates of the IMF Young SSPs Age estimates Distance estimates Review Outline Theoretical isochrones Old SSPs Age estimates Abundances of light elements Reddening and metallicity estimates Distance estimates Luminosity functions and estimates of the IMF Young SSPs Age estimates Distance estimates Review Theoretical isochrones In a theoretical HRD, stars of an SSP are located along an isochrone (which originates from the Greek word meaning “same age”). This line connects the points belong to the various theoretical evolutionary tracks at the same age. I By applying to each point a set of appropriate bolometric corrections, the isochrone can then be converted to an observational CMD. I The turnover (TO) point is the the bluest point along the isochrone MS, where the central hydrogen is exhausted. I For a particular isochrone, the stellar mass range is very large along the MS. I The mass evolving along RGB and HRD of two isochrones with ages equal to successive phases is approximately 2 and 3 Gyr (Z = 0:001). Stellar masses constant; i.e., the stars there essentially (in solar mass units) at representative all evolved from the same ZAMS mass. evolving points are marked. The evolutionary phase of a star along an isochrone may be characterized with the curvilinear coordinate s, starting from at the bottom of the ZAMS and increasing when moving towards more advanced phases.
    [Show full text]
  • Age Dating the Galactic Bar with the Nuclear Stellar Disc
    MNRAS 492, 4500–4511 (2020) doi:10.1093/mnras/staa140 Advance Access publication 2020 January 20 Age dating the Galactic bar with the nuclear stellar disc Downloaded from https://academic.oup.com/mnras/article-abstract/492/3/4500/5709929 by Institute of Child Health/University College London user on 14 February 2020 Junichi Baba1‹ and Daisuke Kawata 2 1National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan 2Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK Accepted 2020 January 11. Received 2019 December 26; in original form 2019 September 16 ABSTRACT From the decades of the theoretical studies, it is well known that the formation of the bar triggers the gas funnelling into the central sub-kpc region and leads to the formation of a kinematically cold nuclear stellar disc (NSD). We demonstrate that this mechanism can be used to identify the formation epoch of the Galactic bar, using an N-body/hydrodynamics simulation of an isolated Milky Way–like galaxy. As shown in many previous literature, our simulation shows that the bar formation triggers an intense star formation for ∼1 Gyr in the central region and forms an NSD. As a result, the oldest age limit of the NSD is relatively sharp, and the oldest population becomes similar to the age of the bar. Therefore, the age distribution of the NSD tells us the formation epoch of the bar. We discuss that a major challenge in measuring the age distribution of the NSD in the Milky Way is contamination from other non-negligible stellar components in the central region, such as a classical bulge component.
    [Show full text]
  • Ages of Young Stars
    Ages of Young Stars David R. Soderblom Space Telescope Science Institute, Baltimore MD USA Lynne A. Hillenbrand Caltech, Pasadena CA USA Rob. D. Jeffries Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK Eric E. Mamajek Department of Physics & Astronomy, University of Rochester, Rochester NY, 14627-0171, USA Tim Naylor School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK Determining the sequence of events in the formation of stars and planetary systems and their time-scales is essential for understanding those processes, yet establishing ages is fundamentally difficult because we lack direct indicators. In this review we discuss the age challenge for young stars, specifically those less than ∼100 Myr old. Most age determination methods that we discuss are primarily applicable to groups of stars but can be used to estimate the age of individual objects. A reliable age scale is established above 20 Myr from measurement of the Lithium Depletion Boundary (LDB) in young clusters, and consistency is shown between these ages and those from the upper main sequence and the main sequence turn-off – if modest core convection and rotation is included in the models of higher-mass stars. Other available methods for age estimation include the kinematics of young groups, placing stars in Hertzsprung-Russell diagrams, pulsations and seismology, surface gravity measurement, rotation and activity, and lithium abundance. We review each of these methods and present known strengths and weaknesses. Below ∼ 20 Myr, both model-dependent and observational uncertainties grow, the situation is confused by the possibility of age spreads, and no reliable absolute ages yet exist.
    [Show full text]