MRPS18B Rabbit Pab

Total Page:16

File Type:pdf, Size:1020Kb

MRPS18B Rabbit Pab Leader in Biomolecular Solutions for Life Science MRPS18B Rabbit pAb Catalog No.: A12085 Basic Information Background Catalog No. Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in A12085 protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% Observed MW protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is 35kDa reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins Calculated MW comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical 29kDa properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S18P family. The encoded Category protein is one of three that has significant sequence similarity to bacterial S18 proteins. The primary sequences of the three human mitochondrial S18 proteins are no more Primary antibody closely related to each other than they are to the prokaryotic S18 proteins. Pseudogenes corresponding to this gene are found on chromosomes 1q and 2q. Applications WB,IHC Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 28973 Q9Y676 IHC 1:100 - 1:200 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 1-258 of human MRPS18B (NP_054765.1). Synonyms MRPS18B;C6orf14;HSPC183;HumanS18a;MRP-S18-2;MRPS18-2;PTD017;S18amt Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using MRPS18B antibody (A12085) at 1:3000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit (RM00020). Exposure time: 30s. Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only. Not for therapeutic or diagnostic purposes. Please visit http://abclonal.com for a complete listing of recommended products..
Recommended publications
  • Anti-MRPS18B Antibody
    D225370 Anti-MRPS18B antibody Cat. No. D225370 Package 25 μl/100 μl/200 μl Storage -20°C, pH7.4 PBS, 0.05% NaN3, 40% Glycerol Product overview Description A n ti-MRPS18B rabbit polyclonal antibody Applications ELISA, WB, IHC Immunogen Fusion protein of human MRPS18B Reactivity Human Content 1 mg/ml Host species Rabbit Ig class Immunogen-specific rabbit IgG Purification Antigen affinity purification Target information Symbol MRPS18B Full name mitochondrial ribosomal protein S18B Synonyms PTD017; S18amt; C6orf14; HSPC183; MRPS18-2; HumanS18a; MRP-S18-2 Swissprot Q9Y676 Target Background Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S18P family. The encoded protein is one of three that has significant sequence similarity to bacterial S18 proteins. The primary sequences of the three human mitochondrial S18 proteins are no more closely reSlated to angoneach other than they are to the prok aryBiotic S18 proteins. tPseuedogenches corresponding to this gene are found on chromosomes 1q and 2q. Applications Immunohistochemistry Predicted cell location: Cytoplasm Positive control: Human tonsil Recommended dilution: 25-100 The image on the left is immunohistochemistry of paraffin-embedded Human tonsil tissue using D225370(MRPS18B Antibody) at dilution 1/55, on the right is treated with fusion protein.
    [Show full text]
  • Pathological Ribonuclease H1 Causes R-Loop Depletion and Aberrant DNA Segregation in Mitochondria
    Pathological ribonuclease H1 causes R-loop depletion PNAS PLUS and aberrant DNA segregation in mitochondria Gokhan Akmana,1, Radha Desaia,1, Laura J. Baileyb, Takehiro Yasukawab,2, Ilaria Dalla Rosaa, Romina Durigona, J. Bradley Holmesb,c, Chloe F. Mossa, Mara Mennunia, Henry Houldend, Robert J. Crouchc, Michael G. Hannad, Robert D. S. Pitceathlyd,e, Antonella Spinazzolaa,3, and Ian J. Holta,3 aMedical Research Council, Mill Hill Laboratory, London NW7 1AA, United Kingdom; bMedical Research Council Mitochondrial Biology Unit, Cambridge CB1 9SY, United Kingdom; cDivision of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; dMedical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; and eDepartment of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom Edited by Douglas Koshland, University of California, Berkeley, CA, and approved June 7, 2016 (received for review January 18, 2016) The genetic information in mammalian mitochondrial DNA is densely Results packed; there are no introns and only one sizeable noncoding, or Analysis of RNA hybridized to mtDNA must contend with the control, region containing key cis-elements for its replication and ready degradation of the RNA during extraction (16). Previous expression. Many molecules of mitochondrial DNA bear a third analysis of fragments of mtDNA encompassing the CR dem- strand of DNA, known as “7S DNA,” which forms a displacement onstrated that they included molecules with 7S DNA, as (D-) loop in the control region.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Learning Chroma\N States from Chip-‐Seq Data
    Learning Chroman States from ChIP-seq data Luca Pinello GC Yuan Lab Outline • Chroman structure, histone modificaons and combinatorial paerns • How to segment the genome in chroman states • How to use ChromHMM step by step • Further references 2 Epigene-cs and chroman structure • All (almost) the cells of our body share the same genome but have very different gene expression programs…. 3 h?p://jpkc.scu.edu.cn/ywwy/zbsw(E)/edetail12.htm The code over the code • The chroman structure and the accessibility are mainly controlled by: 1. Nucleosome posioning, 2. DNA methylaon, 3. Histone modificaons. 4 Histone Modificaons Specific histone modificaons or combinaons of modificaons confer unique biological func-ons to the region of the genome associated with them: • H3K4me3: promoters, gene acva.on • H3K27me3: promoters, poised enhancers, gene silencing • H2AZ: promoters • H3K4me1: enhancers • H3K36me3: transcribed regions • H3K9me3: gene silencing • H3k27ac: acve enhancers 5 Examples of *-Seq Measuring the genome genome fragmentation assembler DNA DNA reads “genome” ChIP-seq to measure histone data fragments Measuring the regulome (e.g., protein-binding of the genome) Chromatin Immunopreciptation genomic (ChIP) + intervals fragmentation Protein - peak caller bound by DNA bound DNA reads proteins REVIEWS fragments a also informative, as this ratio corresponds to the fraction ChIP–chip of nucleosomes with the particular modification at that location, averaged over all the cells assayed. One of the difficulties in conducting a ChIP–seq con- trol experiment is the large amount of sequencing that ChIP–seq may be necessary. For input DNA and bulk nucleosomes, many of the sequenced tags are spread evenly across the genome.
    [Show full text]
  • Protein Phosphatase Regulatory Protein 10 Cooperates with Neurofibromin Inactivation in Myeloid Leukemogenesis
    PROTEIN PHOSPHATASE REGULATORY PROTEIN 10 COOPERATES WITH NEUROFIBROMIN INACTIVATION IN MYELOID LEUKEMOGENESIS By ANGELA HADJIPANAYIS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Angela Hadjipanayis 2 This work is dedicated to my extended family who never had the opportunity to obtain higher education. To my parents and husband for their loving support and belief in my abilities. To Camilynn I. Brannan whose research expertise led to the discovery of this locus. 3 ACKNOWLEDGMENTS First, I would like to thank my mentor Peggy Wallace for her indispensable support over the years, her encouragement, and her advice on how to become a better scientist. Second, I would like to thank my husband for taking a leap of faith in life and moving to Florida with me when he didn’t have a job at the time. Third, I would like to thank my parents for their love, support, and advice over the years. Fourth, I would like to thank my other committee members, Dr. Jim Resnick, Dr. Paul Oh, Dr. Stephen Hunger and Dr. Dan Driscoll for their valuable advice on the project. I also would like to thank Dr. Jennifer Embury for the tremendous effort on all the pathology of the mice. In addition, I would like to thank Dr. Kevin Shannon and Dr. Scott Kogan for their leukemia expertise and strategies in modeling leukemia. Lastly, I would like to thank the lab for their help on this project, their jokes, and all their personalities that made the days seem not as long.
    [Show full text]
  • It Is Illeg Al to P O St Th Is Co P Yrig H Ted P D F O N an Y W Eb Site. It Is Illegal
    Letters to the Editor It is Geneillegal Expression to Profiling post ofthis the xMHC copyrighted Region and HIST1H4C PDF encodeon histones.any Strong website. evidence of associations Reveals 9 Candidate Genes in Schizophrenia was observed within and around histone genes in schizophrenia.2 Abnormal expression of genes related to nucleosome and histone To the Editor: Strong association of the extended major structure and function has also been found in both schizophrenia 3 histocompatibility complex (xMHC) region on human patients and their siblings. MRPS18B encodes ribosomal protein chromosome 6 with schizophrenia has been supported by a that helps in mitochondrial protein synthesis. TUBB encodes number of genome-wide association studies.1 However, since tubulin that is the major constituent of microtubules. Altered the xMHC region is featured by numerous polymorphisms, expression of TUBB has been reported in a previous microarray 4 dense gene clusters, and strong linkage disequilibrium, it is study in schizophrenia patients. ABCF1 and BTN3A3 are difficult to attribute the association to specific genes. A targeted immune-related genes. BTN3A3 is involved in T-cell activity scrutinization of gene expression in the xMHC region can in adaptive immune response. ABCF1 enhances protein provide valuable candidate genes for future validation. Here synthesis and promotes inflammation. Decreased expression we utilize 2 real-time polymerase chain reaction (PCR)–based of ABCF1 had been found in the whole blood of patients with platforms and 2 sample sets to investigate protein-coding gene schizophrenia and identified as a hub gene in a gene expressional 5 expressions in the xMHC region in peripheral blood leukocytes subnetwork.
    [Show full text]
  • Transcriptomic and Proteomic Landscape of Mitochondrial
    TOOLS AND RESOURCES Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals Inge Ku¨ hl1,2†*, Maria Miranda1†, Ilian Atanassov3, Irina Kuznetsova4,5, Yvonne Hinze3, Arnaud Mourier6, Aleksandra Filipovska4,5, Nils-Go¨ ran Larsson1,7* 1Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany; 2Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC) UMR9198, CEA, CNRS, Univ. Paris-Sud, Universite´ Paris-Saclay, Gif- sur-Yvette, France; 3Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany; 4Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia; 5School of Molecular Sciences, The University of Western Australia, Crawley, Australia; 6The Centre National de la Recherche Scientifique, Institut de Biochimie et Ge´ne´tique Cellulaires, Universite´ de Bordeaux, Bordeaux, France; 7Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden Abstract Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative *For correspondence: analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five [email protected] knockout mouse strains deficient in essential factors required for mitochondrial DNA gene (IKu¨ ); expression, leading to OXPHOS dysfunction. Moreover,
    [Show full text]
  • MRPS18B Polyclonal Antibody
    PRODUCT DATA SHEET Bioworld Technology,Inc. MRPS18B polyclonal antibody Catalog: BS71715 Host: Rabbit Reactivity: Human,Mouse,Rat BackGround: Purification&Purity: Mammalian mitochondrial ribosomal proteins are encod- The antibody was affinity-purified from rabbit antiserum ed by nuclear genes and help in protein synthesis within by affinity-chromatography using epitope-specific im- the mitochondrion. Mitochondrial ribosomes (mitoribo- munogen and the purity is > 95% (by SDS-PAGE). somes) consist of a small 28S subunit and a large 39S Applications: subunit. They have an estimated 75% protein to rRNA WB 1:500 - 1:2000 composition compared to prokaryotic ribosomes, where Storage&Stability: this ratio is reversed. Another difference between mam- Store at 4°C short term. Aliquot and store at -20°C long malian mitoribosomes and prokaryotic ribosomes is that term. Avoid freeze-thaw cycles. the latter contain a 5S rRNA. Among different species, Specificity: the proteins comprising the mitoribosome differ greatly in MRPS18B polyclonal antibody detects endogenous levels sequence, and sometimes in biochemical properties, of MRPS18B protein. which prevents easy recognition by sequence homology. DATA: This gene encodes a 28S subunit protein that belongs to the ribosomal protein S18P family. The encoded protein is one of three that has significant sequence similarity to bacterial S18 proteins. The primary sequences of the three human mitochondrial S18 proteins are no more closely related to each other than they are to the prokaryotic S18 proteins. Pseudogenes corresponding to this gene are found on chromosomes 1q and 2q. Western blot analysis of extracts of various cell lines, using MRPS18B Product: antibody. Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, Note: 50% glycerol, pH7.2 For research use only, not for use in diagnostic procedure.
    [Show full text]
  • Whole-Genome Sequencing Identifies New Genetic Alterations in Meningiomas
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 10), pp: 17070-17080 Research Paper Whole-genome sequencing identifies new genetic alterations in meningiomas Mei Tang1,*, Heng Wei2,*, Lu Han1,*, Jiaojiao Deng3, Yuelong Wang3, Meijia Yang1, Yani Tang1, Gang Guo1, Liangxue Zhou3, Aiping Tong1 1The State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China 2College of Life Science, Sichuan University, Chengdu 610064, China 3Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China *These authors have contributed equally to the work Correspondence to: Aiping Tong, email: [email protected] Liangxue Zhou, email: [email protected] Keywords: whole-genome sequencing, meningioma, chromosome instability, copy number alteration, mutation Received: October 24, 2016 Accepted: January 13, 2017 Published: February 03, 2017 ABSTRACT The major known genetic contributor to meningioma formation was NF2, which is disrupted by mutation or loss in about 50% of tumors. Besides NF2, several recurrent driver mutations were recently uncovered through next-generation sequencing. Here, we performed whole-genome sequencing across 7 tumor-normal pairs to identify somatic genetic alterations in meningioma. As a result, Chromatin regulators, including multiple histone members, histone-modifying enzymes and several epigenetic regulators, are the major category among all of the identified copy number variants and single nucleotide variants. Notably, all samples contained copy number variants in histone members. Recurrent chromosomal rearrangements were detected on chromosome 22q, 6p21-p22 and 1q21, and most of the histone copy number variants occurred in these regions.
    [Show full text]
  • Anti-MRPS18B Ponoclonal Antibody Cat: K008704P Summary
    Anti-MRPS18B Ponoclonal Antibody Cat: K008704P Summary: 【Product name】: Anti-MRPS18B antibody 【Source】: Rabbit 【Isotype】: IgG 【Species reactivity】: Human 【Swiss Prot】: Q9Y676 【Gene ID】: 28973 【Calculated】: MW:29kDa 【Observed】: MW:29kDa 【Purification】: Affinity purification 【Tested applications】: WB IHC 【Recommended dilution】: WB 1:500-2000. IHC 1:25-100. 【WB Positive sample】: Jurkat,MDA-MB-231,MCF7,A431,K-562 【IHC Positive sample】: Human tonsil 【Subcellular location】: Mitochondrion 【Immunogen】: Recombinant protein of human MRPS18B 【Storage】: Shipped at 4°C. Upon delivery aliquot and store at -20°C Background: Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S18P family. The encoded protein is one of three that has significant sequence similarity to bacterial S18 proteins. The primary sequences of the three human mitochondrial S18 proteins are no more closely related to each other than they are to the prokaryotic S18 proteins. Pseudogenes corresponding to this gene are found on chromosomes 1q and 2q. Sales:[email protected] For research purposes only. Tech:[email protected] Please visit www.solarbio.com for a more product information Verified picture Western blot analysis with MRPS18B antibody Immunohistochemistry of paraffin-embedded diluted at 1:1000;Lane:Jurkat,MDA-MB-231, Human tonsil with MRPS18B antibody MCF7,A431,K-562 diluted at 1:55 Sales:[email protected] For research purposes only.
    [Show full text]
  • Mitochondrial Ribosomal Proteins: Candidate Genes for Mitochondrial Disease James E
    March/April 2004 ⅐ Vol. 6 ⅐ No. 2 review Mitochondrial ribosomal proteins: Candidate genes for mitochondrial disease James E. Sylvester, PhD1, Nathan Fischel-Ghodsian, MD2, Edward B. Mougey, PhD1, and Thomas W. O’Brien, PhD3 Most of the energy requirement for cell growth, differentiation, and development is met by the mitochondria in the form of ATP produced by the process of oxidative phosphorylation. Human mitochondrial DNA encodes a total of 13 proteins, all of which are essential for oxidative phosphorylation. The mRNAs for these proteins are translated on mitochondrial ribosomes. Recently, the genes for human mitochondrial ribosomal proteins (MRPs) have been identified. In this review, we summarize their refined chromosomal location. It is well known that mutations in the mitochondrial translation system, i.e., ribosomal RNA and transfer RNA cause various pathologies. In this review, we suggest possible associations between clinical conditions and MRPs based on coincidence of genetic map data and chromosomal location. These MRPs may be candidate genes for the clinical condition or may act as modifiers of existing known gene mutations (mt-tRNA, mt-rRNA, etc.). Genet Med 2004:6(2):73–80. Key Words: mitochondrial, ribosomal proteins, oxidative phosphorylation, candidate genes, translation Most of the energy requirements for cell growth, differenti- THE MITORIBOSOME ation, and development are met by the mitochondrial ATP Human cells contain two genomes and two protein synthe- produced by the process of oxidative phosphorylation. Mito- sizing (translation) systems. The first is the nuclear genome of chondrial DNA encodes 13 essential proteins of this oxidative 3 ϫ 109 bp that has 30,000 to 40,000 genes coding a much phosphorylation system.
    [Show full text]
  • Molecular Characterization of Breast Cancer with High-Resolution Oligonucleotide Comparative Genomic Hybridization Array
    Human Cancer Biology Molecular Characterization of Breast Cancer with High-Resolution Oligonucleotide Comparative Genomic Hybridization Array Fabrice Andre,1, 2 BastienJob,3 Philippe Dessen,4,6 Attila Tordai,7 Stefan Michiels,5 Cornelia Liedtke,8 Catherine Richon,3 KaiYan,7 Bailang Wang,7 Gilles Vassal,1 Suzette Delaloge,1, 2 Gabriel N. Hortobagyi,8 W. Fraser Symmans,9 Vladimir Lazar,3 and Lajos Pusztai8 Abstract Purpose: We used high-resolution oligonucleotide comparative genomic hybridization (CGH) arrays and matching gene expression array data to identify dysregulated genes and to classify breast cancers according to gene copy number anomalies. Experimental Design: DNA was extracted from 106 pretreatment fine needle aspirations of stage II-III breast cancers that received preoperative chemotherapy. CGH was done using Agilent Human 4 Â 44K arrays. Gene expression data generated with Affymetrix U133A gene chips was also available on 103 patients. All P values were adjusted for multiple comparisons. Results: The average number of copy number abnormalities in individual tumors was 76 (range 1-318). Eleven and 37 distinct minimal common regions were gained or lost in >20% of samples, respectively. Several potential therapeutic targets were identified, including FGFR1 that showed high-level amplification in10% of cases. Close correlation between DNA copy number and mRNA expression levels was detected. Nonnegative matrix factorization (NMF) clustering of DNA copy number aberrations revealed three distinct molecular classes in this data set. NMF class I was characterized by a high rate of triple-negative cancers (64%) and gains of 6p21.VEGFA, E2F3, and NOTCH4 were also gained in 29% to 34% of triple-negative tumors.
    [Show full text]