Analysis of Genomic Regions of Increased Gene Expression (RIDGE)S in Immune Activation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astrin-SKAP Complex Reconstitution Reveals Its Kinetochore
RESEARCH ARTICLE Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80 David M Kern1,2, Julie K Monda1,2†, Kuan-Chung Su1†, Elizabeth M Wilson-Kubalek3, Iain M Cheeseman1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Cell Biology, The Scripps Research Institute, La Jolla, United States Abstract Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions. *For correspondence: DOI: https://doi.org/10.7554/eLife.26866.001 [email protected] †These authors contributed equally to this work Introduction Competing interests: The The macromolecular kinetochore complex links chromosomes to dynamic microtubule polymers and authors declare that no harnesses the forces generated by microtubule growth and depolymerization to facilitate accurate competing interests exist. -
Supplemental Table S1
Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1 -
AKAP8L Rabbit Polyclonal Antibody – TA329433 | Origene
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA329433 AKAP8L Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB Reactivity: Human Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: The immunogen for Anti-AKAP8L antibody is: synthetic peptide directed towards the C- terminal region of Human AKAP8L. Synthetic peptide located within the following region: NNKLISKKLERYLKGENPFTDSPEEEKEQEEAEGGALDEGAQGEAAGISE Formulation: Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Note that this product is shipped as lyophilized powder to China customers. Purification: Affinity Purified Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 64 kDa Gene Name: A-kinase anchoring protein 8 like Database Link: NP_055186 Entrez Gene 26993 Human Q9ULX6 Background: AKAP8L could play a role in constitutive transport element (CTE)-mediated gene expression. It does not seem to be implicated in the binding of regulatory subunit II of PKA. It may be involved in nuclear envelope breakdown and chromatin condensation. It may regulate the initiation phase of DNA replication when associated with TMPO-beta. Synonyms: HA95; HAP95; NAKAP; NAKAP95 This product is to be used for laboratory only. Not for diagnostic -
Modulated in Intestinal Inflammation A
BTNL2, a Butyrophilin/B7-Like Molecule, Is a Negative Costimulatory Molecule Modulated in Intestinal Inflammation This information is current as Heather A. Arnett, Sabine S. Escobar, Eva Gonzalez-Suarez, of September 28, 2021. Alison L. Budelsky, Lori A. Steffen, Norman Boiani, Ming Zhang, Gerald Siu, Avery W. Brewer and Joanne L. Viney J Immunol 2007; 178:1523-1533; ; doi: 10.4049/jimmunol.178.3.1523 http://www.jimmunol.org/content/178/3/1523 Downloaded from References This article cites 40 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/178/3/1523.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology BTNL2, a Butyrophilin/B7-Like Molecule, Is a Negative Costimulatory Molecule Modulated in Intestinal Inflammation Heather A. Arnett,1* Sabine S. -
Viewed the Thesis/Dissertation in Its Final Electronic Format and Certify That It Is an Accurate Copy of the Document Reviewed and Approved by the Committee
U UNIVERSITY OF CINCINNATI Date: I, , hereby submit this original work as part of the requirements for the degree of: in It is entitled: Student Signature: This work and its defense approved by: Committee Chair: Approval of the electronic document: I have reviewed the Thesis/Dissertation in its final electronic format and certify that it is an accurate copy of the document reviewed and approved by the committee. Committee Chair signature: Investigation of Phosphorylated Proteins and Peptides in Human Cerebrospinal Fluid via High-Performance Liquid Chromatography Coupled to Elemental and Molecular Mass Spectrometry A thesis submitted to the Graduate School of the University of Cincinnati In partial fulfillment of the Requirements for the degree of MASTER OF SCIENCE In the Department of Chemistry of the College of Arts and Sciences By ORVILLE DEAN STUART B.S., Chemistry The University of Texas at Tyler, Tyler, Texas May 2006 Committee Chair: Joseph A. Caruso, Ph.D Abstract Cerebrospinal fluid (CSF) surrounds and serves as a protective media for the brain and central nervous system (CNS). This fluid remains isolated from other biological matrices in normal bodily conditions, therefore, an in depth analysis of CSF has the potential to reveal important details and malfunctions of many diseases that plague the nervous system. Because phosphorylation of a wide variety of proteins governs the activity of biological enzymes and systems, a method for the detection of 31P in proteins found in human cerebrospinal fluid by high-performance liquid chromatography (HPLC) coupled to inductively coupled plasma mass spectrometry (ICPMS) is described. Specifically, it is of interest to compare phosphorylated proteins/peptides from patients suffering from post subarachnoid hemorrhage (SAH) arterial vasospasms against CSF from non-diseased patients. -
CD56+ T-Cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients
CD56+ T-cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients Institute of Infection and Global Health Department of Clinical Infection, Microbiology and Immunology Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Mazen Mohammed Almehmadi December 2014 - 1 - Abstract Human T cells expressing CD56 are capable of tumour cell lysis following activation with interleukin-2 but their role in viral immunity has been less well studied. The work described in this thesis aimed to investigate CD56+ T-cells in relation to cytomegalovirus infection in healthy subjects and kidney transplant patients (KTPs). Proportions of CD56+ T cells were found to be highly significantly increased in healthy cytomegalovirus-seropositive (CMV+) compared to cytomegalovirus-seronegative (CMV-) subjects (8.38% ± 0.33 versus 3.29%± 0.33; P < 0.0001). In donor CMV-/recipient CMV- (D-/R-)- KTPs levels of CD56+ T cells were 1.9% ±0.35 versus 5.42% ±1.01 in D+/R- patients and 5.11% ±0.69 in R+ patients (P 0.0247 and < 0.0001 respectively). CD56+ T cells in both healthy CMV+ subjects and KTPs expressed markers of effector memory- RA T-cells (TEMRA) while in healthy CMV- subjects and D-/R- KTPs the phenotype was predominantly that of naïve T-cells. Other surface markers, CD8, CD4, CD58, CD57, CD94 and NKG2C were expressed by a significantly higher proportion of CD56+ T-cells in healthy CMV+ than CMV- subjects. Functional studies showed levels of pro-inflammatory cytokines IFN-γ and TNF-α, as well as granzyme B and CD107a were significantly higher in CD56+ T-cells from CMV+ than CMV- subjects following stimulation with CMV antigens. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
The Porcine Major Histocompatibility Complex and Related Paralogous Regions: a Review Patrick Chardon, Christine Renard, Claire Gaillard, Marcel Vaiman
The porcine Major Histocompatibility Complex and related paralogous regions: a review Patrick Chardon, Christine Renard, Claire Gaillard, Marcel Vaiman To cite this version: Patrick Chardon, Christine Renard, Claire Gaillard, Marcel Vaiman. The porcine Major Histocom- patibility Complex and related paralogous regions: a review. Genetics Selection Evolution, BioMed Central, 2000, 32 (2), pp.109-128. 10.1051/gse:2000101. hal-00894302 HAL Id: hal-00894302 https://hal.archives-ouvertes.fr/hal-00894302 Submitted on 1 Jan 2000 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Genet. Sel. Evol. 32 (2000) 109–128 109 c INRA, EDP Sciences Review The porcine Major Histocompatibility Complex and related paralogous regions: a review Patrick CHARDON, Christine RENARD, Claire ROGEL GAILLARD, Marcel VAIMAN Laboratoire de radiobiologie et d’etude du genome, Departement de genetique animale, Institut national de la recherche agronomique, Commissariat al’energie atomique, 78352, Jouy-en-Josas Cedex, France (Received 18 November 1999; accepted 17 January 2000) Abstract – The physical alignment of the entire region of the pig major histocompat- ibility complex (MHC) has been almost completed. In swine, the MHC is called the SLA (swine leukocyte antigen) and most of its class I region has been sequenced. -
Genome-Wide Gene and Pathway Analysis
European Journal of Human Genetics (2010) 18, 1045–1053 & 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 www.nature.com/ejhg ARTICLE Genome-wide gene and pathway analysis Li Luo1, Gang Peng1, Yun Zhu2, Hua Dong1,2, Christopher I Amos3 and Momiao Xiong*,1 Current GWAS have primarily focused on testing association of single SNPs. To only test for association of single SNPs has limited utility and is insufficient to dissect the complex genetic structure of many common diseases. To meet conceptual and technical challenges raised by GWAS, we suggest gene and pathway-based GWAS as complementary to the current single SNP-based GWAS. This publication develops three statistics for testing association of genes and pathways with disease: linear combination test, quadratic test and decorrelation test, which take correlations among SNPs within a gene or genes within a pathway into account. The null distribution of the suggested statistics is examined and the statistics are applied to GWAS of rheumatoid arthritis in the Wellcome Trust Case–Control Consortium and the North American Rheumatoid Arthritis Consortium studies. The preliminary results show that the suggested gene and pathway-based GWAS offer several remarkable features. First, not only can they identify the genes that have large genetic effects, but also they can detect new genes in which each single SNP conferred a small amount of disease risk, and their joint actions can be implicated in the development of diseases. Second, gene and pathway-based analysis can allow the formation of the core of pathway definition of complex diseases and unravel the functional bases of an association finding. -
(12) Patent Application Publication (10) Pub. No.: US 2012/0264.634 A1 Amersdorfer Et Al
US 20120264.634A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0264.634 A1 Amersdorfer et al. (43) Pub. Date: Oct. 18, 2012 (54) MARKER SEQUENCES FOR PANCREATIC Publication Classification CANCER DISEASES, PANCREATIC (51) Int. Cl. CARCINOMIA AND USE THEREOF C40B 30/04 (2006.01) GOIN 2L/64 (2006.01) (75) Inventors: Peter Amersdorfer, Graz (AT); GOIN 27/72 (2006.01) Annabel Höpfner, Dortmund (DE); C07K I4/435 (2006.01) Angelika Lueking, Bochum (DE) C40B 40/06 (2006.01) C40B 40/10 (2006.01) CI2N 5/09 (2010.01) (73) Assignee: PROTAGEN Aktiengesellschaft, C7H 2L/04 (2006.01) Dortmund (DE) GOIN 33/574 (2006.01) GOIN 27/62 (2006.01) (21) Appl. No.: 13/498,964 (52) U.S. Cl. ........... 506/9:436/501; 435/6.14; 435/7.92; 506/16:506/18: 435/2:536/23.1; 530/350 (22) PCT Filed: Sep. 29, 2010 (57) ABSTRACT The present invention relates to novel marker sequences for (86). PCT No.: PCT/EP2010/064510 pancreatic cancer diseases, pancreatic carcinoma and the diagnostic use thereof together with a method for Screening of S371 (c)(1), potential active Substances for pancreatic cancer diseases, (2), (4) Date: Jun. 22, 2012 pancreatic carcinoma by means of these marker sequences. Furthermore, the invention relates to a diagnostic device con (30) Foreign Application Priority Data taining Such marker sequences for pancreatic cancer diseases, pancreatic carcinoma, in particular a protein biochip and the Sep. 29, 2009 (EP) .................................. O9171690.2 use thereof. Patent Application Publication Oct. 18, 2012 US 2012/0264.634 A1 US 2012/0264.634 A1 Oct. -
Proquest Dissertations
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 NOTE TO USERS Page(s) missing in number only; text follows. Microfilmed as received. 222-229 This reproduction is the best copy available. UMI MOLECULAR GENETIC AND BIOCHEMICAL STUDIES OF THE HUMAN AND MOUSE MHC COMPLEMENT GENE CLUSTERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Zhenyu Yang, M.S. -
Genetic Predictors of Response to Anti-Tumor Necrosis Factor Drugs In
Rheumatology Reports 2009; volume 1:e1 Genetic predictors of response of the human immunoglobulin Ig-G1. It works by binding to soluble TNF and neutralizing it Correspondence: Anne Barton, to anti-tumor necrosis factor but can also bind lymphotoxin-α (LTA). Arthritis Research Campaign Epidemiology Unit, drugs in rheumatoid arthritis Adalimumab and infliximab are monoclonal University of Manchester, M13 9PT, UK antibodies directed against membrane-bound E-mail: [email protected] Rachael Tan and Anne Barton and soluble TNFα.1 Whilst DMARDs may slow radiological progression, studies using anti- Key words: genetics, rheumatoid arthritis, ARC Epidemiology Unit, Stopford response, etanercept, infliximab, adalimumab. Building, The University of Manchester, TNF drugs have shown their superiority in suppressing structural change.2 However, anti- Manchester, UK Conflict of interest: the authors reported no potential TNFs are not without their drawbacks. As well conflict of interests. as being expensive, studies have shown links with malignancy and serious infections.3 Received for publication: 24 March 2009. Furthermore, for unknown reasons, up to 30% Revision received: 18 May 2009. Abstract of patients fail to respond to treatment with Accepted for publication: 18 May 2009. anti-TNFs.4 In many countries, these concerns This work is licensed under a Creative Commons limit the wholesale use of these drugs. In the The introduction of anti-tumor necrosis fac- Attribution 3.0 License (by-nc 3.0). tor (anti-TNF) agents has dramatically UK, for example, the National Institute for improved the outlook for many patients with Health and Clinical Excellence (NICE) advises ©Copyright R. Tan and A.