Crude Oil Distillation

Total Page:16

File Type:pdf, Size:1020Kb

Crude Oil Distillation Crude Oil Distillation Chapter 4 Gases Polymer- Sulfur Sulfur ization Plant LPG Sat Gas Gas Plant Butanes Fuel Gas Alkyl LPG Feed Alkylation Gas Polymerization Separation & Naphtha Stabilizer Isom- erization Light Naphtha Alkylate Aviation Isomerate Gasoline Automotive Gasoline Reformate Naphtha Solvents Heavy Naphtha Hydro- Naphtha Reforming treating Naphtha Atmospheric Distillation Jet Fuels Kerosene Crude Desalter Kerosene Oil Distillate Cat Solvents Hydro- AGO Naphtha Distillate cracking Treating & Hydro- Heating Oils Blending treating Gas Oil Fluidized Cat Diesel LVGO Hydro- Catalytic treating Cracking Distillates Vacuum Distillation Fuel Oil HVGO Cycle Oils Residual Fuel Oils DAO Solvent Deasphalting SDA Coker Asphalts Bottoms Naphtha Naphtha Visbreaking Heavy Distillates Fuel Oil Coker Bottoms Gas Vacuum Lubricant Residuum Oil Lube Oil Solvent Greases Dewaxing Waxes Waxes Coking Light Coker Gas Oil Coke Updated: July 12, 2018 2 Copyright © 2017 John Jechura ([email protected]) Atmospheric & Vacuum Distillation in U.S. EIA, Jan. 1, 2018 database, published June 2018 http://www.eia.gov/petroleum/refinerycapacity/ Updated: July 12, 2018 3 Copyright © 2017 John Jechura ([email protected]) Topics Crude Stills Configuration — May be as . Historically the oldest refining many as three columns in process series . Only the first step in crude oil . Crude Stabilizer/Preflash Column processing • Reduce traffic in the Atmospheric Purpose Column . Atmospheric Column . To recover light materials . Vacuum Column . Fractionate into sharp light fractions • Reduced pressure to keep blow cracking temperatures Product Yield Curves – Cut Point, Overlap, & Tails Updated: July 12, 2018 4 Copyright © 2017 John Jechura ([email protected]) Configuration: Atmospheric Vacuum Preflash Updated: July 12, 2018 Copyright © 2017 John Jechura ([email protected]) Atmospheric & Vacuum Tower Complex Updated: July 12, 2018 6 Copyright © 2017 John Jechura ([email protected]) Atmospheric & Vacuum Tower Complex Modified drawing from: “Revamping crude and vacuum units to process bitumen,” Sutikno, PTQ ,Q2 2015 Updated: July 12, 2018 7 Copyright © 2017 John Jechura ([email protected]) Atmospheric Column with Preflash Modification of figure in “Increasing distillate production at least capital cost,” Musumeci, Stupin, Olson, & Wendler, PTQ, Q2 2015 Updated: July 12, 2018 8 Copyright © 2017 John Jechura ([email protected]) Preflash Options – Tight Oil Example with no AGO “Optimising preflash for light tight oil processing,” Lee, PTQ, Q3 2015 Updated: July 12, 2018 9 Copyright © 2017 John Jechura ([email protected]) Feed Preheat Train & Desalter Feed Preheat Train Desalter . Initial heat exchange with streams from within . Temperature carefully selected — do not let the tower water vaporize • Heat recovery important to distillation economics! • Lighter crudes (> 40oAPI) @ 250oF o First absorb part of the overhead • Heavier crudes (< 30oAPI) @ 300oF condensation load . All crudes contain salts (NaCl, MgCl, …) o Exchange with one or more of the liquid sides • Salt present in the emulsified water streams, beginning with the top (coldest) side stream • Treated in the field with heat & chemicals to break oil water emulsions. • Require flexibility • Salt can cause damage to equipment o Changes in crude slate o Scale in heat exchangers o Temperature at desalter o HCl formation can lead to corrosion o Limits on two‐phase flow through network o Metals can poison refinery catalysts . Final heating in a direct fired heater . Remove salts & dissolved metals & dirt • Heat enough to vaporize light portions of the crude but temperature kept low to minimize • Oil mixed with fresh wash water & demulsifiers. thermal cracking . Separation in electrostatic settling drum o Inlet typically 550oF, outlet 600 to 750oF. Wash water up to 10% of crude charge o Heavier crudes cannot be heated to the • ~ 90% of the water can be recovered higher temperatures . Effluent water treated for benzene Updated: July 12, 2018 10 Copyright © 2017 John Jechura ([email protected]) Crude Electrostatic Desalting Drawing by Milton Beychok http://en.citizendium.org/wiki/File:Desalter_Diagram.png BFDs from: Refining Overview – Petroleum Processes & Products, by Freeman Self, Ed Ekholm, & Keith Bowers, AIChE CD‐ROM, 2000 Updated: July 12, 2018 11 Copyright © 2017 John Jechura ([email protected]) Crude Desalting Breaking the crude oil/water emulsion important to minimize downstream problems Performance of additives may be crude specific Picture from: “Removing contaminants from crude oil” McDaniels & Olowu, PTQ Q1, 2016 Updated: July 12, 2018 12 Copyright © 2017 John Jechura ([email protected]) Direct Fired Heater Ref: “Useful tips for fired heater optimisation” Bishop & Hamilton, Petroleum Technology Quarterly, Q2 2012 Updated: July 12, 2018 13 Copyright © 2017 John Jechura ([email protected]) Atmospheric Distillation Summary Condenser … Pumparounds . Partial condenser if no Stabilizer Column. Move cooling down column. Total condenser if Stabilizer Column to . Liquid returned above draw tray remove light ends. Side draws … but no reboiler. Side strippers Feed preheat exchanger train . “Clean up” side products . All of the heat to drive the column comes from the hot feed. Stripping steam • As much as 50% of the incoming crude may . Reduce hydrocarbon partial pressure be flashed. Condensed & removed as a second liquid • “Overflash” phase. o Extra amount of material vaporized to • Conditions set so it doesn’t condense ensure reflux between flash zone & within the column – can lead to foaming lowest side draw • Must be treated as sour water o Typically 2 vol% of feed Updated: July 12, 2018 14 Copyright © 2017 John Jechura ([email protected]) Atmospheric Distillation Summary Wash Zone Side Draws & Strippers . Couple trays between flash zone & gas oil . Side strippers remove light component “tail” & draw. return to main column . Reflux to wash resins & other heavy materials . Steam strippers traditional that may contaminate the products. • Reboiled strippers reduce associated sour water & may reduce steam usage Condenser . Typically 0.5 to 20 psig. Trays & Pressure Profile . Balancing act . Typically 32 trays in tower • Low pressures reduce compression on overhead . 0.1 psi per tray for design & target for system operation • High pressures decrease vaporization but increase • May find as high as 0.2 psi per tray, but probably flash zone temperatures & furnace duty; affects flooding! yields . Condenser & accumulator Pumparounds • 3 to 10 psi across condenser • Liquid static head in accumulator . Reduces overhead condenser load & achieves more uniform tower loadings . Typically 6 to 16 psi across entire column. Provides liquid reflux below liquid draws Updated: July 12, 2018 15 Copyright © 2017 John Jechura ([email protected]) Vacuum Distillation Refining Overview – Petroleum Processes & Products, “Consider practical conditions for vacuum unit modeling” by Freeman Self, Ed Ekholm, & Keith Bowers, AIChE CD‐ROM, 2000 R. Yahyaabadi, Hydrocarbon Processing, March 2009 Updated: July 12, 2018 16 Copyright © 2017 John Jechura ([email protected]) Vacuum Distillation – Trays vs. Packing Packing used in vacuum towers instead of trays . Lower pressure drops across the tower – vapor “slides by” liquid instead of pushing through the layer on the tray . Packing also helps to reduce foaming problems “Foaming in fractionation columns” M. Pilling, PTQ, Q4 2015 Updated: July 12, 2018 17 Copyright © 2017 John Jechura ([email protected]) Vacuum Distillation Summary Column Configuration Feed . Vacuum conditions to keep operating . Atmospheric residuum temperatures low . All vapor comes from the heated feed . Large diameter column . Under vacuum (0.4 psi) . Very low density gases . Separate higher boiling materials at . Condenser only for water vapor lower temperatures . Liquid reflux from pumparounds • Minimize thermal cracking . No reboiler Products . Stripping steam may be used . May have multiple gas oils • Needed for deep cuts (1100oF) • Usually recombined downstream to FCCU . Common problem – coking in fired after hydrotreating heater & wash zone . Vacuum resid • Fired heater – high linear velocities to • Blended — asphalt, heavy fuel oil minimize coke formation • Further processing — thermal, solvent • Wash zone – sufficient wash oil flow to o Depends on products & types of crude keep the middle of the packed bed wet Updated: July 12, 2018 18 Copyright © 2017 John Jechura ([email protected]) Vacuum Distillation Summary Dry System Steam Ejectors & Vacuum Pumps . 1050oF+ cut temperature & no stripping steam . Vacuum maintained on tower overhead . Smaller tower diameters . Steam systems considered more reliable . Reduced sour water production . Waste steam is sour & must be treated . Pressure profile . Combinations systems — Last steam stage • Flash zone: 20‐25 mmHg abs & 750 to 770oF. replaced with a vacuum pump • Top of tower: 10 mmHg abs Deep Cut System . 1100oF+ cut temperature & stripping steam . Steam reduces hydrocarbon partial pressures . Pressure profile • Flash zone: 30 mmHg abs • HC partial pressure 10‐15 mmHg abs • Top of tower: 15 mmHg abs Drawing from http://www.enotes.com/topic/Injector Updated: July 12, 2018 19 Copyright © 2017 John Jechura ([email protected]) Example Crude Preheat Trains Ref: “Improve energy efficiency via Heat Integration” Rossiter, Chemical Engineering Progress, December 2010 Updated: July 12, 2018 20 Copyright © 2017 John Jechura ([email protected]) “Composite Curve” for Preheat
Recommended publications
  • Amorphous Silica Containers for Germanium Ultrapurification by Zone Refining O
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Siberian Federal University Digital Repository ISSN 0020-1685, Inorganic Materials, 2016, Vol. 52, No. 11, pp. 1091–1095. © Pleiades Publishing, Ltd., 2016. Original Russian Text © O.I. Podkopaev, A.F. Shimanskii, T.V. Kulakovskaya, A.N. Gorodishcheva, N.O. Golubovskaya, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 11, pp. 1163–1167. Amorphous Silica Containers for Germanium Ultrapurification by Zone Refining O. I. Podkopaeva, *, A. F. Shimanskiib, **, T. V. Kulakovskayaa, A. N. Gorodishchevac, ***, and N. O. Golubovskayab aOJSC Germanium, Transportnyi proezd 1, Krasnoyarsk, 660027 Russia bSiberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, 660047 Russia cReshetnev Siberian State Aerospace University, pr. im. gazety Krasnoyarskii rabochii 31, Krasnoyarsk, 660014 Russia *e-mail: [email protected] **e-mail: [email protected] ***e-mail: [email protected] Received March 2, 2016 Abstract—We have studied the wetting behavior of molten germanium on silica ceramics and amorphous sil- ica coatings in vacuum at a pressure of 1 Pa and a temperature of 1273 K. The results demonstrate that the wetting of rough surfaces of ceramic samples and coatings by liquid Ge is significantly poorer than that of the smooth surface of quartz glass. The contact angle of polished glass is ~100°, and that of the ceramics and coatings increases from 112° to 137° as the total impurity content of the material decreases from 0.120 to 1 × 10–3 wt %. Using experimental contact angle data, we calculated the work of adhesion of molten Ge to the materials studied.
    [Show full text]
  • Refining Crude Oil
    REFINING CRUDE OIL New Zealand buys crude oil from overseas, as well as drilling for some oil locally. This oil is a mixture of many hydrocarbons that has to be refined before it can be used for fuel. All crude oil in New Zealand is refined by The New Zealand Refining Company at their Marsden Point refinery where it is converted to petrol, diesel, kerosene, aviation fuel, bitumen, refinery gas (which fuels the refinery) and sulfur. The refining process depends on the chemical processes of distillation (separating liquids by their different boiling points) and catalysis (which speeds up reaction rates), and uses the principles of chemical equilibria. Chemical equilibrium exists when the reactants in a reaction are producing products, but those products are being recombined again into reactants. By altering the reaction conditions the amount of either products or reactants can be increased. Refining is carried out in three main steps. Step 1 - Separation The oil is separated into its constituents by distillation, and some of these components (such as the refinery gas) are further separated with chemical reactions and by using solvents which dissolve one component of a mixture significantly better than another. Step 2 - Conversion The various hydrocarbons produced are then chemically altered to make them more suitable for their intended purpose. For example, naphthas are "reformed" from paraffins and naphthenes into aromatics. These reactions often use catalysis, and so sulfur is removed from the hydrocarbons before they are reacted, as it would 'poison' the catalysts used. The chemical equilibria are also manipulated to ensure a maximum yield of the desired product.
    [Show full text]
  • Tailoring Diesel Bioblendstock from Integrated Catalytic Upgrading of Carboxylic Acids: a “Fuel Property First” Approach Xiangchen Huoa,B, Nabila A
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019 Tailoring Diesel Bioblendstock from Integrated Catalytic Upgrading of Carboxylic Acids: A “Fuel Property First” Approach Xiangchen Huoa,b, Nabila A. Huqa, Jim Stunkela, Nicholas S. Clevelanda, Anne K. Staracea, Amy E. Settlea,b, Allyson M. Yorka,b, Robert S. Nelsona, David G. Brandnera, Lisa Foutsa, Peter C. St. Johna, Earl D. Christensena, Jon Lueckea, J. Hunter Mackc, Charles S. McEnallyd, Patrick A. Cherryd, Lisa D. Pfefferled, Timothy J. Strathmannb, Davinia Salvachúaa, Seonah Kima, Robert L. McCormicka, Gregg T. Beckhama, Derek R. Vardona* aNational Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, United States bColorado School of Mines, 1500 Illinois St., Golden, CO, United States cUniversity of Massachusetts Lowell, 220 Pawtucket St., Lowell, MA, United States dYale University, 9 Hillhouse Avenue, New Haven, CT, United States *[email protected] Section S1: Experimental Methods Catalyst synthesis and characterization Pt/Al2O3 catalyst was prepared by strong electrostatic adsorption method with chloroplatinic acid hexahydrate as Pt precursor. Al2O3 of 30-50 mesh and Pt precursor were added to deionized water, and solution pH was adjusted to 3 by adding HCl. After stirring overnight, the catalyst particles were recovered by filtration extensively washed with -1 deionized water. The catalyst was dried in the air and reduced in flowing H2 (200 mL min ) at 300°C for 4 h. BET surface area was determined by nitrogen physisorption using a Quadrasorb SI™ surface area analyzer from Quantachrome Instruments. Samples of ~80–120 mg were measured using a 55-point nitrogen adsorption/desorption curve at -196°C.
    [Show full text]
  • Neutron Transmutation Doping of Silicon at Research Reactors
    Silicon at Research Silicon Reactors Neutron Transmutation Doping of Doping Neutron Transmutation IAEA-TECDOC-1681 IAEA-TECDOC-1681 n NEUTRON TRANSMUTATION DOPING OF SILICON AT RESEARCH REACTORS 130010–2 VIENNA ISSN 1011–4289 ISBN 978–92–0– INTERNATIONAL ATOMIC AGENCY ENERGY ATOMIC INTERNATIONAL Neutron Transmutation Doping of Silicon at Research Reactors The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NIGERIA ALBANIA GREECE NORWAY ALGERIA GUATEMALA OMAN ANGOLA HAITI PAKISTAN ARGENTINA HOLY SEE PALAU ARMENIA HONDURAS PANAMA AUSTRALIA HUNGARY PAPUA NEW GUINEA AUSTRIA ICELAND PARAGUAY AZERBAIJAN INDIA PERU BAHRAIN INDONESIA PHILIPPINES BANGLADESH IRAN, ISLAMIC REPUBLIC OF POLAND BELARUS IRAQ PORTUGAL IRELAND BELGIUM QATAR ISRAEL BELIZE REPUBLIC OF MOLDOVA BENIN ITALY ROMANIA BOLIVIA JAMAICA RUSSIAN FEDERATION BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BULGARIA KENYA SEYCHELLES BURKINA FASO KOREA, REPUBLIC OF SIERRA LEONE BURUNDI KUWAIT SINGAPORE CAMBODIA KYRGYZSTAN CAMEROON LAO PEOPLES DEMOCRATIC SLOVAKIA CANADA REPUBLIC SLOVENIA CENTRAL AFRICAN LATVIA SOUTH AFRICA REPUBLIC LEBANON SPAIN CHAD LESOTHO SRI LANKA CHILE LIBERIA SUDAN CHINA LIBYA SWEDEN COLOMBIA LIECHTENSTEIN SWITZERLAND CONGO LITHUANIA SYRIAN ARAB REPUBLIC COSTA RICA LUXEMBOURG TAJIKISTAN CÔTE DIVOIRE MADAGASCAR THAILAND CROATIA MALAWI THE FORMER YUGOSLAV CUBA MALAYSIA REPUBLIC OF MACEDONIA CYPRUS MALI TUNISIA CZECH REPUBLIC MALTA TURKEY DEMOCRATIC REPUBLIC MARSHALL ISLANDS UGANDA
    [Show full text]
  • Laboratory Rectifying Stills of Glass 2
    » LABORATORY RECTIFYING STILLS OF GLASS 2 By Johannes H. Bruun 3 and Sylvester T. Schicktanz 3 ABSTRACT A complete description is given of a set of all-glass rectifying stills, suitable for distillation at pressures ranging from atmospheric down to about 50 mm. The stills are provided with efficient bubbling-cap columns containing 30 to 60 plates. Adiabatic conditions around the column are maintained by surrounding it with a jacket provided with a series of independent electrical heating units. Suitable means are provided for adjusting or maintaining the reflux ratio at the top of the column. For the purpose of conveniently obtaining an accurate value of the true boiling points of the distillates a continuous boiling-point apparatus is incor- porated in the receiving system. An efficient still of the packed-column type for distillations under pressures less than 50 mm is also described. Methods of operation and efficiency tests are given for the stills. CONTENTS Page I. Introduction 852 II. General features of the still assembly 852 III. Still pot 853 IV. Filling tube and heater for the still pot 853 V. Rectifying column 856 1. General features 856 2. Large-size column 856 3. Medium-size column 858 4. Small-size column 858 VI. Column jacket 861 VII. Reflux regulator 861 1. With variable reflux ratio 861 2. With constant reflux ratio 863 VIII. The continuous boiling-point apparatus 863 IX. Condensers and receiver 867 X. The mounting of the still 867 XI. Manufacture and transportation of the bubbling-cap still 870 XII. Operation of the bubbling-cap still 870 XIII.
    [Show full text]
  • Building a Home Distillation Apparatus
    BUILDING A HOME DISTILLATION APPARATUS A Step by Step Guide Building a Home Distillation Apparatus i BUILDING A HOME DISTILLATION APPARATUS Foreword The pages that follow contain a step-by-step guide to building a relatively sophisticated distillation apparatus from commonly available materials, using simple tools, and at a cost of under $100 USD. The information contained on this site is directed at anyone who may want to know more about the subject: students, hobbyists, tinkers, pure water enthusiasts, survivors, the curious, and perhaps even amateur wine and beer makers. Designing and building this apparatus is the only subject of this manual. You will find that it confines itself solely to those areas. It does not enter into the domains of fermentation, recipes for making mash, beer, wine or any other spirits. These areas are covered in detail in other readily available books and numerous web sites. The site contains two separate design plans for the stills. And while both can be used for a number of distillation tasks, it should be recognized that their designs have been optimized for the task of separating ethyl alcohol from a water-based mixture. Having said that, remember that the real purpose of this site is to educate and inform those of you who are interested in this subject. It is not to be construed in any fashion as an encouragement to break the law. If you believe the law is incorrect, please take the time to contact your representatives in government, cast your vote at the polls, write newsletters to the media, and in general, try to make the changes in a legal and democratic manner.
    [Show full text]
  • PETROLEUM: CHEMISTRY, REFINING, FUELS and PETROCHEMICALS - Petroleum: Chemistry, Refining, Fuels and Petrochemicals - Product Treating - James G
    PETROLEUM: CHEMISTRY, REFINING, FUELS AND PETROCHEMICALS - Petroleum: Chemistry, Refining, Fuels and Petrochemicals - Product Treating - James G. Speight PETROLEUM: CHEMISTRY, REFINING, FUELS AND PETROCHEMICALS - PRODUCT TREATING James G. Speight 2476 Overland Road,Laramie, WY 82070-4808, USA Keywords: Caustic treating, Dualayer distillate process, Dualayer gasoline process, electrolytic mercaptan process, Ferrocyanide process, lye treatment, Mercapsol process, polysulfide treatment, Sodasol process, Solutizer process, steam regenerative caustic treatment, Unisol process, acid treating, Nalfining process, sulfuric acid treatment, clay and related processes, alkylation effluent treatment, Arosorb process, bauxite treatment, continuous contact filtration process, cyclic adsorption process, gray clay treatment, percolation filtration process, thermofor continuous percolation process, oxidative treating processes, bender process, copper sweetening process, doctor process, hypochlorite sweetening process, Merox process, solvent treating, deasphalting, solvent refining, dewaxing, gas treating, acid gas removal, gas sweetening Contents 1. Introduction 2. Caustic Processes 2.1. Dualayer Distillate Process 2.2. Dualayer Gasoline Process 2.3. Electrolytic Mercaptan Process 2.4. Ferrocyanide Process 2.5. Lye Treatment 2.6. Mercapsol Process 2.7. Polysulfide Treatment 2.8. Sodasol Process 2.9. Solutizer Process 2.10. Steam Regenerative Caustic Treatment 2.11. Unisol Process 3. Acid Processes 3.1. Nalfining Process 3.2. Sulfuric Acid Treatment 4. Clay
    [Show full text]
  • Environmental, Health, and Safety Guidelines for Petroleum Refining
    ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES PETROLEUM REFINING November 17, 2016 ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES FOR PETROLEUM REFINING INTRODUCTION 1. The Environmental, Health, and Safety (EHS) Guidelines are technical reference documents with general and industry-specific examples of Good International Industry Practice (GIIP).1 When one or more members of the World Bank Group are involved in a project, these EHS Guidelines are applied as required by their respective policies and standards. These industry sector EHS Guidelines are designed to be used together with the General EHS Guidelines document, which provides guidance to users on common EHS issues potentially applicable to all industry sectors. For complex projects, use of multiple industry sector guidelines may be necessary. A complete list of industry sector guidelines can be found at: www.ifc.org/ehsguidelines. 2. The EHS Guidelines contain the performance levels and measures that are generally considered to be achievable in new facilities by existing technology at reasonable costs. Application of the EHS Guidelines to existing facilities may involve the establishment of site-specific targets, with an appropriate timetable for achieving them. 3. The applicability of the EHS Guidelines should be tailored to the hazards and risks established for each project on the basis of the results of an environmental assessment in which site-specific variables— such as host country context, assimilative capacity of the environment, and other project factors—are taken into account. The applicability of specific technical recommendations should be based on the professional opinion of qualified and experienced persons. 4. When host country regulations differ from the levels and measures presented in the EHS Guidelines, projects are expected to achieve whichever is more stringent.
    [Show full text]
  • 19750010206.Pdf
    AND NASA TECHNICAL NASA TM X-2932 MEMORANDUM c-v I N75-1827875827 VACUUM BY REMOVAL (NASA-TM--2932) BETTER (NASA) OF DIFFUSION-PUM1POIL CONTAMINANTS S70 -p HC $4.25 Unclas H1/14 12827 BETTER VACUUM BY REMOVAL OF . DIFFUSION-PUMP-OIL CONTAMINANTS Lewis Research Center Cleveland, Ohio 44135 AT'6ARONATIANDSPACADMINISTRATIONWASHINGTOND.1975 FEBRUARY * FEBRUARY 1975 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-2932 4. Title and Subtitle 5. Report Date 1975 BETTER VACUUM BY REMOVAL OF DIFFUSION-PUMP- February Organization Code OIL CONTAMINANTS 6. Performing 7. Author(s) 8. Performing Organization Report No. Alvin E. Buggele E-7583 10. Work Unit No. 9. Performing Organization Name and Address 491-01 Lewis Research Center 11. Contract or Grant No. National Aeronautics and Space Administration Cleveland, Ohio 44135 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 15. Supplementary Notes Film supplement C-280 is available on request. 16. Abstract The complex problem of why large space simulation chambers do not realize true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance were identified and explained, and some advances in vacuum distillation-fractionation tech- nology were achieved which resulted in a two-decade-or-more lower ultimate pressure. Data are presented to show the overall or individual contaminating effects of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance.
    [Show full text]
  • 5.1 Petroleum Refining1
    5.1 Petroleum Refining1 5.1.1 General Description The petroleum refining industry converts crude oil into more than 2500 refined products, including liquefied petroleum gas, gasoline, kerosene, aviation fuel, diesel fuel, fuel oils, lubricating oils, and feedstocks for the petrochemical industry. Petroleum refinery activities start with receipt of crude for storage at the refinery, include all petroleum handling and refining operations and terminate with storage preparatory to shipping the refined products from the refinery. The petroleum refining industry employs a wide variety of processes. A refinery's processing flow scheme is largely determined by the composition of the crude oil feedstock and the chosen slate of petroleum products. The example refinery flow scheme presented in Figure 5.1-1 shows the general processing arrangement used by refineries in the United States for major refinery processes. The arrangement of these processes will vary among refineries, and few, if any, employ all of these processes. Petroleum refining processes having direct emission sources are presented on the figure in bold-line boxes. Listed below are 5 categories of general refinery processes and associated operations: 1. Separation processes a. Atmospheric distillation b. Vacuum distillation c. Light ends recovery (gas processing) 2. Petroleum conversion processes a. Cracking (thermal and catalytic) b. Reforming c. Alkylation d. Polymerization e. Isomerization f. Coking g. Visbreaking 3.Petroleum treating processes a. Hydrodesulfurization b. Hydrotreating c. Chemical sweetening d. Acid gas removal e. Deasphalting 4.Feedstock and product handling a. Storage b. Blending c. Loading d. Unloading 5.Auxiliary facilities a. Boilers b. Waste water treatment c. Hydrogen production d.
    [Show full text]
  • Honeywell in Refining
    Honeywell Process Solutions HPS INTRODUCTION, MARKET OVERVIEW AND TECHNOLOGY UPDATE P.G.Millette May-2017 Honeywell Oil & Gas Technologies Symposium – Cairo, Alexandria Honeywell Confidential - © 2017 by Honeywell International Inc. All rights reserved. Agenda • Honeywell Process Solutions Overview • HPS activity • Market update & Trends • Technology Trends • Honeywell Technology update – summary - Innovation - LEAP - Joint HPS-UOP Solutions - IIoT Honeywell Confidential - © 2017 by Honeywell International Inc. All rights reserved. HPS - Serving Process Industries Refining & Petrochemical Oil & Gas & Midstream Our solutions are installed at more than Chemicals Power Generation 10,000 sites And renewables around the world Minerals, Metals & Mining Pulp & Paper Specialty / Batch Chemicals, Pharmaceuticals, Food, Water Honeywell Confidential - © 2017 by Honeywell International Inc. All rights reserved. HPS Egypt activity - examples EXAMPLE ALEXANDRIA & WEST DESERT CUSTOMERS ALEXANDRIA ALEXANDRIA SIDI KERIR AMREYA PETROLEUM CO. MINERAL OIL PETROCHEM CO. PETROLEUM (APC) (AMOC) (SIDPEC) REFINING CO. (Refining) (Refining) (Petrochemical) (Refining) EGYPTIAN MISR KHALDA ABU QIR POWER MIDOR PETROCHEM CO. PETROLEUM CO. PETROLEUM CO. STATION Refinery (EPC) (MPC) (KPC) (Power) (Refiining) (Petrochemical) (Refining) (Up Stream) EXAMPLE CAIRO & EAST & SOUTH OF EGYPT CUSTOMERS SUEZ MEDITOR. ABU SULTAN PETROBELL PIPE LINE CO. IDEAL STANDARD POWER STATION (Up Stream) (Pipe line) (Ceramic Manufacturing) (Power) (ENPPI) (SUMED) PROCTER ORIENTAL SUGAR INTERATED
    [Show full text]
  • Distillation Strategies: a Key Factor to Obtain Spirits with Specific Organoleptic Characteristics
    DISTILLATION STRATEGIES: A KEY FACTOR TO OBTAIN SPIRITS WITH SPECIFIC ORGANOLEPTIC CHARACTERISTICS Pau Matias-Guiu Martí ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]