Offprint Neotypification and Taxonomic Status of Opephyllum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Delesseriaceae, Rhodophyta) Based on a Morphological and Molecular Study of the Type Species, M
ƒ. Phycol. 45, 678-691 (2009) © 2009 Phycological Society of America DOI: 10.1 lll/j.1529-8817.2009.00677.x CHARACTERIZATION OF MARTENSIA (DELESSERIACEAE, RHODOPHYTA) BASED ON A MORPHOLOGICAL AND MOLECULAR STUDY OF THE TYPE SPECIES, M. ELEGANS, AND M. NATALENSIS SP. NOV. FROM SOUTH AFRICA1 Shoxue-Mei Lin2 Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, China Max H. Hommersand Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, Nordi Carolina 27599-3280, USA Suza n ne Fredericq Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451, LISA and Olivier De Clerck Phycology Research Group, Ghent University, Rrijgslaan 281/S8, B-9000 Ghent, Belgium An examination of a series of collections from Abbreviations: M., Martensia; rbcL, large subunit of the coast of Natal, South Africa, has revealed the the RUBISCO gene; subg., subgenus presence of two species ofMartensia C. Hering nom. cons:M. elegans C. Hering 1841, the type spe cies, and an undescribed species, M. natalensis sp. nov. The two are similar in gross morphology, with both having the network arranged in a single band, T he genus Martensia was established with a brief and with reproductive thalli ofM. elegans usually lar diagnosis by Hering (1841) based on plants col ger and more robust than those ofM. natalensis. lected by Dr. Ferdinand Rrauss on rocks at Port Molecular studies based on rbcL sequence analyses Natal (present-day Durban) in South Africa. Hering place the two in separate, strongly supported clades. (1844), published posthumously by Rrauss, contains The first assemblage occurs primarily in the Indo- a more detailed description and illustrations of West Pacific Ocean, and the second is widely distrib M. -
Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria
marine drugs Review Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria James Lever 1 , Robert Brkljaˇca 1,2 , Gerald Kraft 3,4 and Sylvia Urban 1,* 1 School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476V Melbourne, VIC 3001, Australia; [email protected] (J.L.); [email protected] (R.B.) 2 Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia 3 School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia; [email protected] 4 Tasmanian Herbarium, College Road, Sandy Bay, Tasmania 7015, Australia * Correspondence: [email protected] Received: 29 January 2020; Accepted: 26 February 2020; Published: 28 February 2020 Abstract: Marine macroalgae occurring in the south eastern region of Victoria, Australia, consisting of Port Phillip Bay and the heads entering the bay, is the focus of this review. This area is home to approximately 200 different species of macroalgae, representing the three major phyla of the green algae (Chlorophyta), brown algae (Ochrophyta) and the red algae (Rhodophyta), respectively. Over almost 50 years, the species of macroalgae associated and occurring within this area have resulted in the identification of a number of different types of secondary metabolites including terpenoids, sterols/steroids, phenolic acids, phenols, lipids/polyenes, pheromones, xanthophylls and phloroglucinols. Many of these compounds have subsequently displayed a variety of bioactivities. A systematic description of the compound classes and their associated bioactivities from marine macroalgae found within this region is presented. Keywords: marine macroalgae; bioactivity; secondary metabolites 1. -
Martensia Fragilis Harv. (Delesseriaceae): a New Record to Seaweed Flora of Karnataka Coast, India
J. Algal Biomass Utln. 2018, 9(2): 55-58 Martensia fragilis: A New record to seaweed flora of Karnataka Coast eISSN: 2229 – 6905 Martensia fragilis Harv. (Delesseriaceae): A New record to seaweed flora of Karnataka Coast, India. S.K. Yadav and M Palanisamy* Botanical Survey of India, Southern Regional Centre, Coimbatore - 641 003, Tamil Nadu, India.* Corresponding author: [email protected] Abstract Comprehensive marine macro algal explorations conducted in Karnataka coast during the years 2014-2017 revealed new distributional record of a red algae Martensia fragilis Harv. (Delesseriaceae). A complete description, nomenclatural citations and notes on its occurance have been provided. Keywords: New Record, Martensia fragilis Harv., Karnataka coast, Seaweeds, Rhodophyceae. Introduction The marine macro algae, also known as seaweeds, are the important component of the marine floral diversity. The red seaweed genus Martensia K. Hering belongs to the family Delesseriaceae under the order Ceramiales of class Rhodophyceae. Presently, this genus is represented with 18 taxa in the world (Guiry & Guiry, 2018), and 2 taxa in India (Rao & Gupta, 2015). It is mostly distributed in the tropical to subtropical regions of the world and is characterised by membranous thallus with flabellate lobes. Martensia fragilis Harv. was first described by Harvey in 1854 from the Belligam Bay, Ceylon (now Weliagama, Sri Lanka). Silva & al. (1996) reported this species from the Maldives. Later, it was reported by various workers from other parts of the world like Australia (Huisman, 1997), Africa (Ateweberhan & Prud’homme 2005), South Korea (Lee, 2006), Pacific islands (Skelton & South, 2007), China (Zheng & al., 2008), New Zealand (Nelson, 2012), Vietnam (Nguyen & al., 2013), Taiwan (Lin, 2013), Philippines (Kraft & al. -
Offprint Neotypification and Taxonomic Status of Opephyllum Martensii Schmitz in Schmitz Et Hauptfleisch (Delesseriaceae, Rhodop
Offprint Botanica Marina Vol. 44, 2001, pp. 589Ϫ595 Ą 2001 by Walter de Gruyter · Berlin · New York Neotypification and Taxonomic Status of Opephyllum martensii Schmitz in Schmitz et Hauptfleisch (Delesseriaceae, Rhodophyta) from Zamboanga, Southern Philippines S.-M. Lina, S. Fredericqb* and L. M. Liaoc a National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, Ping Dong 944, Taiwan b Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70504Ϫ2451, U. S. A. c Marine Biology Section, Department of Biology, University of San Carlos, 6000 Cebu City, Cebu, Philippines * Corresponding author The monotypic delesseriaceous genus Opephyllum was created by Schmitz in Schmitz and Hauptfleisch for O. martensii, represented by a single collection from Zamboanga on the southwestern tip of Mindanao in the southern Philippines. As the type specimen or collection is no longer in existence, we are neotypifying the taxon based on recent topotype collections made in the spring of 1998. After comparison of this material with species of Martensia from the Indo-Pacific region and Caribbean Sea based on morphological evidence and sequence analysis of chloroplast-encoded rbcL and the nuclear-encoded large subunit ribosomal DNA gene (LSU rDNA), we conclude that Opephyllum is not generically distinct from Martensia despite its lack of the reticulate fenestrations that characterize fronds of every other species of the latter. We therefore propose the new combination Martensia martensii (Schmitz in Schmitz et Hauptfleisch) Lin, Fredericq et Liao for this rare member of the tribe Martensieae, subfamily Nitophylloideae. Introduction phylloideae, such as belonging to the genus Nitophyl- lum itself. The monotypic genus Opephyllum, based on O. -
Characterization of Martensia (Delesseriaceae; Rhodophyta) from Shallow and Mesophotic Habitats in the Hawaiian Islands: Description of Four New Species
European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: https://www.tandfonline.com/loi/tejp20 Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species Alison R. Sherwood, Showe-Mei Lin, Rachael M. Wade, Heather L. Spalding, Celia M. Smith & Randall K. Kosaki To cite this article: Alison R. Sherwood, Showe-Mei Lin, Rachael M. Wade, Heather L. Spalding, Celia M. Smith & Randall K. Kosaki (2020) Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species, European Journal of Phycology, 55:2, 172-185, DOI: 10.1080/09670262.2019.1668062 To link to this article: https://doi.org/10.1080/09670262.2019.1668062 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group. Published online: 29 Oct 2019. Submit your article to this journal Article views: 700 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 British Phycological EUROPEAN JOURNAL OF PHYCOLOGY 2020, VOL. 55, NO. 2, 172–185 Society https://doi.org/10.1080/09670262.2019.1668062 Understanding and using algae Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species Alison R. Sherwood a,e, Showe-Mei Lin b, Rachael M. Wadea,c, Heather L. Spaldinga,d, Celia M. Smitha,e and Randall K. Kosakif aDepartment of Botany, 3190 Maile Way, University of Hawaiʻi, Honolulu, HI 96822, USA; bInstitute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, R.O.C.; cDepartment of Biological Sciences, 3209 N. -
Marine Benthic Algae of the Houtman Abrolhos Islands, Western Australia
Marine Benthic Algae of the Houtman Abrolhos Islands, Western Australia. John M. Huisman School of Biological and Environmental Sciences, Murdoch University Murdoch, Western Australia 6150, Australia Abstract Recent collections and published records of marine benthic algae from the Houtman Abrolhos are catalogued. Two hundred and sixty species are included, comprising 32 species of green algae (Chlorophyta), 50 species of brown algae (Phaeophyta), and 178 species of red algae (Rhodophyta). Fifty-three species and four varieties are newly recorded for the Indian Ocean coast of Western Australia. The algal flora of the islands includes a mixture of typically temperate species (e.g. the kelp Ecklonia radiata (C. Agardh) J. Agardh) along with many species usually found at more northern latitudes in tropical waters (e.g. the red alga Trichogloea requienii (Montagne) Kiitzing). Introduction The Houtman Abrolhos is a group of mainly coral islands lying some 50-70 km offshore from Geraldton, Western Australia. They include the most southerly coral reefs in the Indian Ocean, and no doubt owe their presence to the influence of the Leeuwin Current, which brings warm waters from the tropics along the coast of Western Australia. The influence of the Leeuwin Current can be sporadic, and this juxtaposition of warm tropical water with the colder water more typical of these latitudes encourages unusual associations and contributes to a wide diversity of organisms (Hatcher 1991). The marine algae of the islands are poorly known, with only sporadic records appearing in the literature (e.g. Levring 1953; May 1946, 1951; Lucas 1926), mostly derived from collections made by the 'Percy Sladen Trust' expeditions of 1913 and 1915 (see Dakin 1918-1922) or collections made by school groups and presently lodged in the Adelaide herbarium. -
Characterization of Martensia (Delesseriaceae, Rhodophyta) Based on a Morphological and Molecular Study of the Type Species, M
J. Phycol. 45, 678–691 (2009) Ó 2009 Phycological Society of America DOI: 10.1111/j.1529-8817.2009.00677.x CHARACTERIZATION OF MARTENSIA (DELESSERIACEAE, RHODOPHYTA) BASED ON A MORPHOLOGICAL AND MOLECULAR STUDY OF THE TYPE SPECIES, M. ELEGANS,ANDM. NATALENSIS SP. NOV. FROM SOUTH AFRICA1 Showe-Mei Lin2 Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, China Max H. Hommersand Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA Suzanne Fredericq Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451, USA and Olivier De Clerck Phycology Research Group, Ghent University, Krijgslaan 281 ⁄ S8, B-9000 Ghent, Belgium An examination of a series of collections from Abbreviations: M., Martensia; rbcL, large subunit of the coast of Natal, South Africa, has revealed the the RUBISCO gene; subg., subgenus presence of two species of Martensia C. Hering nom. cons: M. elegans C. Hering 1841, the type spe- cies, and an undescribed species, M. natalensis sp. nov. The two are similar in gross morphology, with both having the network arranged in a single band, The genus Martensia was established with a brief and with reproductive thalli of M. elegans usually lar- diagnosis by Hering (1841) based on plants col- ger and more robust than those of M. natalensis. lected by Dr. Ferdinand Krauss on rocks at Port Molecular studies based on rbcL sequence analyses Natal (present-day Durban) in South Africa. Hering place the two in separate, strongly supported clades. (1844), published posthumously by Krauss, contains The first assemblage occurs primarily in the Indo- a more detailed description and illustrations of West Pacific Ocean, and the second is widely distrib- M. -
CERAMIALES, RHODOPHYTA) BASED on LARGE SUBUNIT Rdna and Rbcl SEQUENCES, INCLUDING the PHYCODRYOIDEAE, SUBFAM
J. Phycol. 37, 881–899 (2001) SYSTEMATICS OF THE DELESSERIACEAE (CERAMIALES, RHODOPHYTA) BASED ON LARGE SUBUNIT rDNA AND rbcL SEQUENCES, INCLUDING THE PHYCODRYOIDEAE, SUBFAM. NOV.1 Showe-Mei Lin,2 Suzanne Fredericq3 Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451 and Max H. Hommersand Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280 The present classification of the Delesseriaceae research promotes the correlation of molecular and retains the essential features of Kylin’s system, which morphological phylogenies. recognizes two subfamilies Delesserioideae and Ni- Key index words: Ceramiales; Delesseriaceae; LSU tophylloideae and a series of “groups” or tribes. In rDNA; rbcL; Phycodryoideae subfam. nov.; Deles- this study we test the Kylin system based on phyloge- serioideae; Nitophylloideae; Rhodophyta; systemat- netic parsimony and distance analyses inferred from ics; phylogeny two molecular data sets and morphological evidence. A set of 72 delesseriacean and 7 additional taxa in Abbreviations: LSU, large subunit the order Ceramiales was sequenced in the large sub- unit rDNA and rbcL analyses. Three large clades were identified in both the separate and combined The Delesseriaceae is a large family of nearly 100 data sets, one of which corresponds to the Deles- genera found in intertidal and subtidal environments serioideae, one to a narrowly circumscribed Nitophyl- around the world. Kylin (1924) originally recognized loideae, and one to the Phycodryoideae, subfam. nov., 11 groups in the Delesseriaceae that he assigned to two comprising the remainder of the Nitophylloideae subfamilies: Delesserioideae (as Delesserieae) and Ni- sensu Kylin. Two additional trees inferred from rbcL se- tophylloideae (as Nitophylleae) based on the location quences are included to provide broader coverage of of the procarps (whether restricted to primary cell rows relationships among some Delesserioideae and Phyco- or scattered over the thallus surface), the presence or dryoideae. -
Harvey Referred Two Species, Both New, to Pollex- Lia, P
446 BOTANY: G. F. PAPENFUSS PROC. N. A. S. 12 Andrews, J. S., Boyd, H. M., and Terry, D. E., Ind. Eng. Chem., Anal. Ed., 14, 271 (1942). 13 Wegner, M. I., Kemmerer, A. R., and Fraps, G. S., Jour. Biol. Chem., 144, 731 (1942). NOTES ON ALGAL NOMENCLATURE: I. POLLEXFENIA, JEANNERETTIA AND MESOTREMA By GEORGE F. PAPENFUSS DEPARTMENT OF BOTANY, UNIVERSITY OF CALIFORNIA Communicated September 1, 1942 Work on the marine algae of South Africa, carried on by the writer since 1935, has revealed a number of nomenclatural confusions. One of the most outstanding complexities centers around the usage of the generic name Pollexfenia Harvey. When describing Pollexfenia, Harvey (1844, p. 431) stated: "This genus, founded on a plant from the Cape of Good Hope, is inscribed to the Rev. John H. Pollexfen... ." Harvey referred two species, both new, to Pollex- fenia: P. pedicellata from Tasmania and P. laciniata from South Africa. Although giving P. kaciniata second place, it is clear that Harvey intended it to be the nomenclatural type of his new genus. The next reference to Pollexfenia in Harvey's publications is to be found in his Nereis Australis (1847). On page 22 he states: "This genus, named in honour of the Rev. J. H. Pollexfen, a successful explorer of the marine- botany of the Orkney Islands, contains two groups, which may hereafter be separated; perhaps they ought never to have been combined." Harvey accordingly split Pollexfenia into two subgenera: Subgenus 1, Pollexfenia in which he retained P. pedicellata; and subgenus 2, Rhodoseris in which he placed P. -
Upper Intertidal Zone of Magarizaki Locality
Supplementary Materials: Figure S1. Algal communities in different tidal zones of the Tomioka Peninsula (Amakusa- Shimoshima Island). (A) Monodominant community of the brown crust alga Neoralfsia expansa in the upper intertidal zone of Magarizaki locality. (B) Monodominant community of the green thin membranous alga Monostroma nitidum with the accompanying red alga Gloiopeltis furcata in the middle intertidal zone of Magarizaki locality. (C) Monodominant community of the brown alga Sargassum thunbergii in the low intertidal zone of Tomioka Harbor. (D) Polydominant mosaic community composed of the brown algae Ishige okamurae, I. foliacea and the red algae Caulacanthus ustulatus and Gloiopeltis furcata in the low intertidal zone of Tomioka Harbor. (E) Polydominant community of the brown alga Colpomenia sinuosa and the red algae Amphiroa beauvoisii and Centroceras clavulatum in the upper subtidal zone. (F) Monodominant community of the brown alga Dictyopteris prolifera in the upper subtidal zone of Shiraiwazaki locality. Table S1. Sampling location, sampling points, number and time of samplings and number of samples and species. Sampling Number and Number of Number of Sampling Number of Points Time of AT UGA Location Species (Figure 1) Samplings Samples Samples 4 (No. 12; Akaiwa 4, 5, 6 Ap. 13; Au. 144 72 108 13; Oc. 15) 5 (De. 12; Ap. 13; Au. 13; Magarizaki 7 60 30 106 Oc. 15; No. 17) 3 (Ap. 13; Shikizaki Bay 3 Au. 13; Oc. 36 18 122 15) 4 (Ap. 13; Shiraiwazaki 1, 2 Au. 13; No. 96 48 217 Bay 15; No. 17) 4 (Ap. 13; Tomioka 8, 9, 10, 11, Au. 13; No. 240 120 169 Harbor 12 15; No. -
A Historical Account of Biodiversity Studies on Philippine Seaweeds (1800–1999)
Coastal Marine Science 35(1): 182–201, 2012 A historical account of biodiversity studies on Philippine seaweeds (1800–1999) Edna T. GANZON-FORTES Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, Philippines *E-mail: [email protected] Received 8 September 2010; accepted 13 February 2011 Abstract — A historical account of seaweed biodiversity studies in the Philippines is reviewed starting from its early beginnings (1750) until the end of the 20th century (1999). It is said that the birth of Philippine phycology started with the publication of the book “Flora de Filipinas” by the resident Augustinian monk, Fr. Blanco. Oceanographic expeditions that passed by the Philip- pine archipelago during the latter half of the 19th century, in particular, the Dutch Siboga Expedition, contributed significantly to the country’s seaweed biodiversity data through the monographs and other comprehensive taxonomic and morphological liter- atures written on the marine algae that were collected. During the Commonwealth period, duplicate herbarium specimens of marine algae that were sent to herbaria abroad by two American botanists, E.D. Merrill and H.H. Bartlett, were later published on by noted phycologists, namely, M. A. Howe, W. R. Taylor, W. J. Gilbert, R. C.-Y. Chou, and C. K. Tseng. The “Father of Philip- pine Phycology”, G. T. Velasquez, is said to have catalysed studies on Philippine algae starting in the late 50’s especially for Fil- ipinos. The success brought about by seaweed farming in the Philippines heightened interest on the marine benthic algae, such that, in 1970–1989, there was a surge of taxonomic/floristic/monographic/morphological publications on seaweeds written mostly by Filipino authors. -
PJS Special Issue Ang Et Al.Indd
Philippine Journal of Science 142: 5-49, Special Issue ISSN 0031 - 7683 Date Received: 2 May 2013 A Verification of Reports of Marine Algal Species from the Philippines Put O. Ang, Jr., Sin Man Leung, and Mei Mei Choi Marine Science Laboratory School of Life Sciences, Chinese University of Hong Kong Shatin, N.T., Hong Kong SAR, CHINA Records of marine macroalgae reported from the Philippines were checked against AlgaeBase, the international database for algal nomenclatures, and Index Nominum Algarum (INA) Bibliographia Phycologica Universalis of the University of California at Berkeley Silva Center for Phycological Documentation to verify their present nomenclature, status of taxonomy and bibliographic reference. To date, 306 names of taxa (including species, varieties and forms) of greens (Chlorophyta), 234 names of taxa of browns (Ochrophyta, Phaeophyceae) and 751 names of taxa of reds (Rhodophyta), or a total of 1291 published names of taxa have been reported from the Philippines. Of these, 231 taxa representing 197 species in 20 families for green algae, 171 taxa representing 153 species in 10 families for brown algae, and 564 taxa representing 543 species in 52 families for red algae are considered valid records listed with their currently accepted names. All in all, 966 currently accepted taxa, representing 893 species in 82 families of marine macroalgae have been reported from the Philippines. Among the greens, 15 taxa have their type localities in the Philippines. This number is 40 for the browns and 33 for the reds. Proportionally, this is 6.5% of the total for the greens, 23.4% for the browns and 5.9% for the reds.