A Historical Account of Biodiversity Studies on Philippine Seaweeds (1800–1999)

Total Page:16

File Type:pdf, Size:1020Kb

A Historical Account of Biodiversity Studies on Philippine Seaweeds (1800–1999) Coastal Marine Science 35(1): 182–201, 2012 A historical account of biodiversity studies on Philippine seaweeds (1800–1999) Edna T. GANZON-FORTES Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City, Philippines *E-mail: [email protected] Received 8 September 2010; accepted 13 February 2011 Abstract — A historical account of seaweed biodiversity studies in the Philippines is reviewed starting from its early beginnings (1750) until the end of the 20th century (1999). It is said that the birth of Philippine phycology started with the publication of the book “Flora de Filipinas” by the resident Augustinian monk, Fr. Blanco. Oceanographic expeditions that passed by the Philip- pine archipelago during the latter half of the 19th century, in particular, the Dutch Siboga Expedition, contributed significantly to the country’s seaweed biodiversity data through the monographs and other comprehensive taxonomic and morphological liter- atures written on the marine algae that were collected. During the Commonwealth period, duplicate herbarium specimens of marine algae that were sent to herbaria abroad by two American botanists, E.D. Merrill and H.H. Bartlett, were later published on by noted phycologists, namely, M. A. Howe, W. R. Taylor, W. J. Gilbert, R. C.-Y. Chou, and C. K. Tseng. The “Father of Philip- pine Phycology”, G. T. Velasquez, is said to have catalysed studies on Philippine algae starting in the late 50’s especially for Fil- ipinos. The success brought about by seaweed farming in the Philippines heightened interest on the marine benthic algae, such that, in 1970–1989, there was a surge of taxonomic/floristic/monographic/morphological publications on seaweeds written mostly by Filipino authors. In 1987, 879 binomials of marine benthic algae was compiled by Silva et al. This number is updated to 949 in this paper and a checklist of the binomials is included, as well. During the last decade of the 20th century, seaweed re- search trend shifted to the more applied aspects. Most taxonomic studies not only focused on the commercial species but also included aspects of their population biology, seasonality, phycocolloid yield and quality. Key words: checklist, historical review, Philippine biodiversity, seaweeds ϳ Introduction 1800–1900 It is interesting to note that the specimen of the present Sources of information on the following account of the day species known as Gracilaria salicornia (C. Agardh) early history of Philippine phycology with emphasis on ma- Dawson is based on the very first reported collection of ma- rine algae until 1970 came primarily from Velasquez (1962), rine algae from the Philippine waters. Collection was done Velasquez et al. (1972), Cordero (1972) and Silva et al. by A. von Chamisso, a botanist of the Romanzoff Exploring (1987). Others details were obtained from the seaweed data- Expedition (1817–1818), when their Russian ship Rurik was base of SICEN (Seaweed Information Center) of the Marine forced to seek shelter in the Manila harbor during a heavy Science Institute, C.S., University of the Philippines), created storm in the Pacific. A. C. Agardh (1820) described and il- by this author though a grant from the International Develop- lustrated Chamisso’s collected material (type specimen) and ment Research Center of Canada (IDRC) in 1987–1994. named it Sphaerocococus salicornia, which was later re- The scope of this historical review focuses on published named by Greville (1830) as Corallopsis salicornia (C. information related to diversity studies on Philippine marine Agardh) Greville in his monographic treatment of the genus benthic algae with a cut-off date of 1999. The ‘Literature Corallopsis. Meanwhile, Ruprecht (1851) commented that cited’ section of this review includes, not only the cited liter- “Chamisso himself was not sure of the locality from which ature in the text but also, all published documents bearing in- he obtained the specimen”. This notion was verified more formation on the diversity of Philippine marine benthic algae than a century later, when Dawson, in 1953, collected a simi- (for instance, foreign studies include Philippine data). This lar material along the Manila Harbor. Internal examination of author wishes to apologize for the literature (on the topic the specimen led Dawson to conclude that his material was a mentioned) that may have been missed out in the compila- topotype of Chamiso’s material. He, then transferred Coral- tion. lopsis salicornia to Gracilaria salicornia (C. Agardh) Daw- son, as reported in his 1954 publication of the Pacific marine algae. 182 Ganzon-Fortes E. T: Seaweed research in Philippines The birth of Philippine phycology as a science is began after his arrival in Manila in October 1836. The mate- thought to have begun in 1837 through the pioneering work rials were deposited in Kew Herbarium in England. It was of the resident Augustinian monk, Father M. Blanco when he from this collection that Decaisne (1842) based his descrip- published his book, ‘Flora de Filipinas’. The book included tion of the species, Galaxaura fastigiata and Liagora caeno- descriptions and geographic distribution of the Philippine myce. vascular plants and algae. Two more editions of the book fol- Further knowledge on Philippine marine algae was pro- lowed: one in 1845, and another in 1877–1883; the latter edi- vided by collections of foreign oceanographic expeditions tion was completed through the efforts of Fathers Ignacio conducted during the last half of the 19th century. Table 1 Mercado and Antonio Llanos. Although considered signifi- summarizes relevant details about these expeditions and their cant contributions, there were no specimens extant represent- contributions to Philippine phycology. ing the described species and the published descriptions were The Dutch Siboga Expedition in 1899 (Table 1) is con- inadequate (Merrill 1918 in Robbins 1958). There were sidered to be the most important. In the beginning of the 20th many misidentifications and duplication of scientific names century, outputs from this expedition resulted in a surge of probably due to the dearth of botanical references and phyco- monographic and comprehensive taxonomic and morpholog- logical taxonomists, and unavailability of these to the authors ical literatures on the algae that were collected. Published at that time. were monographs on the genus Halimeda (Barton 1901), the In 1844, another noteworthy contribution to Philippine Codiaceae (A. and E. S. Gepp 1911), and the Corallinaceae algal diversity came out in a publication by Montagne. He (Weber van Bosse and Foslie 1904), and on all the other algal described the few, but important collection of marine algae taxa published in four parts by Weber van Bosse in the fol- made by the English naturalist, Hugh Cumming, during the lowing years: 1913, 1921, 1923, and 1928. latter’s 3-year exploration of the Philippine archipelago that Table 1. Listing of expeditions that included the Philippines in their itinerary for seaweed collection before 1900. Place of collection Outputs reported Year Expedition name Collector Remarks on the outputs of the expedition in the Philippines by 1851 U.S. Exploring Morongas Is.; Under the Bailey & Harvey Two listings came up: the first was a short Expedition Northeastern coast command of (1851) list of marine algae (which included of Jolo (southern Charles Wilkes Dictyota dichotoma), and a second and Philippines) longer list that included the diatoms. 1861 Preussische Manila, Edward von George von G. Martens made a comprehensive listing of Expedition nach Zamboanga Martens (zoologist) Martens 1868 all algal species so far reported from Tropical Ost-Asien (father of E. Asia and Tropical Pacific at that time and Martens) their corresponding geographic distribution. He also evaluated the identity of the algal species reported by Fr. Blanco. 1874– Challenger Gigantes Is. (Iloilo), H. N. Moseley Dickie 1874a, Dickie made listings of Philippine algae 1875 Expedition Mactan I. (Cebu), (naturalist) 1876a, b, 1877) collected by H. N. Moseley in the expedition. Zamboanga 1884 Vettor Pisani Ticao I.(Masbate), Cesare Marcacci Piccone 1886, Piccone reported new species collected (Italian Cavite (lieutenant on 1889 during the expedition. circumnavigation board) of the ship) 1899 Siboga Expedition Sulu Archipelago Phycologists on Barton 1901 The expedition produced significant and the (to the Indonesian board (Halimeda), Gepp most number of comprehensive and useful region) & Gepp 1911 taxonomic references: monographs of (Codiaceae), Foslie various taxonomic taxa (Halimeda, 1904, Weber van Codiaceae, Corallinaceae), as well as Bosse 1904 detailed taxonomic treatments of the (Corallinaceae), entire phycological harvest Weber van Bosse 1913, 1921, 1923, 1928 (all groups) 183 Coastal Marine Science 35 ϳ1900–1950 that had profound influence on his students, colleagues, During the Commonwealth period of Philippine history, friends, and other acquaintances. This earned him the title, two American botanists that were connected with the Depart- ‘Father of Philippine Phycology’, not formally or officially ment of Botany of the University of the Philippines played a given, but as a fitting tribute to a man for his significant con- major role in the advancement of Philippine phycology. One tribution to this field of science in the country. His publica- was the foremost botanist, Elmer D. Merrill, who was, then, tion, “Bluegreen Algae of the Philippines” (Velasquez 1962) appointed Botanist of the Bureau of Science
Recommended publications
  • Newsletter 4
    PHYCOLOGICAL NEWSLETTER A PUBLICATION OF THE PHYCOLOGICAL SOCIETY OF AMERICA WINTER INSIDE THIS ISSUE: 2008 PSA Meeting 1 SPRING 2008 Meetings and Symposia 2 Editor: Courses 5 Juan Lopez-Bautista VOLUME 44 Job Opportunities 11 Department of Biological Sciences Trailblazer 28: Sophie C. Ducker 12 University of Alabama Island to honor UAB scientists 18 Tuscaloosa, AL 35487 Books 19 [email protected] Deadline for contributions 23 ∗Dr. Karen Steidinger (Florida Fish and 1 2008 Meeting of Wildlife Research Institute) presenting The Phycological Society of America a plenary talk entitled “Harmful algal blooms in North America: Common risks.” New Orleand, Louisiana, USA NUMBER 27-30 July The associated mini-symposium speakers will be Dr. Leanne Flewelling (Florida Fish he Phycological Society of America (PSA) will and Wildlife Research Institute) present- hold its 2008 annual meeting on July 27-30, ing a talk entitled “Unexpected vectors of 1 T2008 in New Orleans, Louisiana, USA. The brevetoxins to marine mammals” and Dr. meeting will be held on the campus of Loyola Jonathan Deeds (US FDA Center for Food University and is being hosted by Prof. James Wee Safety and Applied Nutrition) present- (Loyola University). The meeting will kick-off with ing a talk entitled “The evolving story of an opening mixer on the evening of Sunday, 27 July Gyrodinium galatheanum = Karlodinium and the scientific program will be Monday through micrum = Karlodinium veneficum. A ten- Wednesday, 28-30 July. The PSA banquet will be year perspective.” Wednesday evening at the Louisiana Swamp Ex- hibit at the Audubon Zoo. Optional field trips are *Dr. John W.
    [Show full text]
  • Predicting Risks of Invasion of Caulerpa Species in Florida
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2006 Predicting Risks Of Invasion Of Caulerpa Species In Florida Christian Glardon University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Glardon, Christian, "Predicting Risks Of Invasion Of Caulerpa Species In Florida" (2006). Electronic Theses and Dissertations, 2004-2019. 840. https://stars.library.ucf.edu/etd/840 PREDICTING RISKS OF INVASION OF CAULERPA SPECIES IN FLORIDA by CHRISTIAN GEORGES GLARDON B.S. University of Lausanne, Switzerland A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biology in the College of Arts and Sciences at the University of Central Florida Orlando, Florida Spring Term 2006 ABSTRACT Invasions of exotic species are one of the primary causes of biodiversity loss on our planet (National Research Council 1995). In the marine environment, all habitat types including estuaries, coral reefs, mud flats, and rocky intertidal shorelines have been impacted (e.g. Bertness et al. 2001). Recently, the topic of invasive species has caught the public’s attention. In particular, there is worldwide concern about the aquarium strain of the green alga Caulerpa taxifolia (Vahl) C. Agardh that was introduced to the Mediterranean Sea in 1984 from the Monaco Oceanographic Museum.
    [Show full text]
  • Biodiversity and Distribution of Cyanobacteria at Dronning Maud Land, East Antarctica
    ACyctaan oBboatcatneriicaa eMasat lAacnittaarnctai c3a3. 17-28 Málaga, 201078 BIODIVERSITY AND DISTRIBUTION OF CYANOBACTERIA AT DRONNING MAUD LAND, EAST ANTARCTICA Shiv Mohan SINGH1, Purnima SINGH2 & Nooruddin THAJUDDIN3* 1National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India. 2Department of Biotechnology, Purvanchal University, Jaunpur, India. 3Department of Microbiology, Bharathidasan University, Tiruchirappalli – 620 024, Tamilnadu, India. *Author for correspondence: [email protected] Recibido el 20 febrero de 2008, aceptado para su publicación el 5 de junio de 2008 Publicado "on line" en junio de 2008 ABSTRACT. Biodiversity and distribution of cyanobacteria at Dronning Maud Land, East Antarctica.The current study describes the biodiversity and distribution of cyanobacteria from the natural habitats of Schirmacher land, East Antarctica surveyed during 23rd Indian Antarctic Expedition (2003–2004). Cyanobacteria were mapped using the Global Positioning System (GPS). A total of 109 species (91 species were non-heterocystous and 18 species were heterocystous) from 30 genera and 9 families were recorded; 67, 86 and 14 species of cyanobacteria were identified at altitudes of sea level >100 m, 101–150 m and 398–461 m, respectively. The relative frequency and relative density of cyanobacterial populations in the microbial mats showed that 11 species from 8 genera were abundant and 6 species (Phormidium angustissimum, P. tenue, P. uncinatum Schizothrix vaginata, Nostoc kihlmanii and Plectonema terebrans) could be considered as dominant species in the study area. Key words. Antarctic, cyanobacteria, biodiversity, blue-green algae, Schirmacher oasis, Species distribution. RESUMEN. Biodiversidad y distribución de las cianobacterias de Dronning Maud Land, Antártida Oriental. En este estudio se describe la biodiversidad y distribución de las cianobacterias presentes en los hábitats naturales de Schirmacher, Antártida Oriental, muestreados durante la 23ª Expedición India a la Antártida (2003-2004).
    [Show full text]
  • Dedicated the Memory ELMER DREW MERRILL
    Dedicated to the memory of ELMER DREW MERRILL Dedication The completion of the sixth volume of this Flora gives me the privilege to dedicate this to the memory of ELMER DREW MERRILL, a man who has achieved more for the knowledge of the Malesian flora than individual botanist. any other It is neither my intention to give nor is it the proper place for a full biography of this most distinguished American scientist, as it would for the greater part be duplication of his own ROBBINS and the vivid life sketch ‘Autobiographical’ (1953), the scholarly essay by (1958), by SCHULTES (1957), which together give the story of his life, his ambitions, his personality, his immense drive, his multiple interests, his capacity for establishing botanical periodicals as well as of successfully filling the posts of Dean of a Faculty of Agriculture, director the Bureau of Science at Manila, directorofthe New York BotanicalGardens, and administrator of Botanical Collections of Harvard University. It is my purpose to review MERRILL'S aims and vision, ambitions and achievements in the light of his time, to explain the value ofhispioneer works for Indo-Malesianbotany, how he used opportunities and had to bow to unforeseen events and circumstances which in no mean way influenced his career. Naturally MERRILL'S personality pervades the story, that of a straight- forward, righteous person, unbiassed in scientific matters, appreciating any progress in bio- logical science. It is of course especially his great achievements with regard to the knowledge of the Malesian florawhich are the main theme and I will try to elucidate several aspects which he pursued.
    [Show full text]
  • New Records of Benthic Marine Algae and Cyanobacteria for Costa Rica, and a Comparison with Other Central American Countries
    Helgol Mar Res (2009) 63:219–229 DOI 10.1007/s10152-009-0151-1 ORIGINAL ARTICLE New records of benthic marine algae and Cyanobacteria for Costa Rica, and a comparison with other Central American countries Andrea Bernecker Æ Ingo S. Wehrtmann Received: 27 August 2008 / Revised: 19 February 2009 / Accepted: 20 February 2009 / Published online: 11 March 2009 Ó Springer-Verlag and AWI 2009 Abstract We present the results of an intensive sampling Rica; we discuss this result in relation to the emergence of program carried out from 2000 to 2007 along both coasts of the Central American Isthmus. Costa Rica, Central America. The presence of 44 species of benthic marine algae is reported for the first time for Costa Keywords Marine macroalgae Á Cyanobacteria Á Rica. Most of the new records are Rhodophyta (27 spp.), Costa Rica Á Central America followed by Chlorophyta (15 spp.), and Heterokontophyta, Phaeophycea (2 spp.). Overall, the currently known marine flora of Costa Rica is comprised of 446 benthic marine Introduction algae and 24 Cyanobacteria. This species number is an under estimation, and will increase when species of benthic The marine benthic flora plays an important role in the marine algae from taxonomic groups where only limited marine environment. It forms the basis of many marine information is available (e.g., microfilamentous benthic food chains and harbors an impressive variety of organ- marine algae, Cyanobacteria) are included. The Caribbean isms. Fish, decapods and mollusks are among the most coast harbors considerably more benthic marine algae (318 prominent species associated with the marine flora, which spp.) than the Pacific coast (190 spp.); such a trend has serves these animals as a refuge and for alimentation (Hay been observed in all neighboring countries.
    [Show full text]
  • Some Algae from Clipperton Island and the Danger Islands
    Some Algae from Clipperton Island and the Danger Islands Item Type article Authors Dawson, E. Yale Download date 25/09/2021 22:34:01 Link to Item http://hdl.handle.net/1834/20635 SOME ALGAE FROM CLIPPERTON ISLAND AND THE DANGER ISLANDS By E. Yale Dawson Fig. 1. Rhizoclonium proftmdum sp. nov., from the type collection. A, Habit of a young plant attached to two filaments of older plants, shuwing rhizoids, altachment~ and branches, X 20. B, Detail of a single mature cell showing stratitied walls and reticu­ late chloroplast, X 75. SOME ALGAE FROM CLIPPERTON ISLAND AND THE DANGER ISLANDS By E. YALE DAwso:\, Through the cooperation of Dr. Carl L. Huhbs the writer has received through the Scripps Institution of Oceanography two interesting collection~ of tropical Paci fie benthic algae, one from remote Clipperton Island, the easternmost coral atoll in the Pacific, and one from a depth of about 200 feet at Pukapuka in the Danger Island~, l"nion Group, about 400 mile~ northea~t of Samoa. These are reported on helow in turn. I am grateful to Dr. Isabella Ahbott for reading and criticizing this paper. Clipperton Island The algal vegetation of this solitary atoll is known only from the papers of Taylor (1939) and Dawson (1957). These reports list only 17 entities, including 6 species of Cyanophyta and 3 unsatisfactorily identified species of other groups. The present collections, made principally hy Messrs. C. Limbaugh, T. Chess, A. Hambly and Miss M.·H. Sachet on the recent Scripps Institution Expedition (August.September, 1958), are more ample than any previously available, and permit us to add 30 marine species and 14 terrestrial and fresh water species, making a total of 61 known from the atoll.
    [Show full text]
  • SEAWEED in the TROPICAL SEASCAPE Stina Tano
    SEAWEED IN THE TROPICAL SEASCAPE Stina Tano Seaweed in the tropical seascape Importance, problems and potential Stina Tano ©Stina Tano, Stockholm University 2016 Cover photo: Eucheuma denticulatum and Ulva sp. All photos in the thesis by the author. ISBN 978-91-7649-396-0 Printed in Sweden by Holmbergs, Malmö 2016 Distributor: Department of Ecology, Environment and Plant Science To Johan I may not have gone where I intended to go, but I think I have ended up where I intended to be. Douglas Adams ABSTRACT The increasing demand for seaweed extracts has led to the introduction of non-native seaweeds for farming purposes in many tropical regions. Such intentional introductions can lead to spread of non-native seaweeds from farming areas, which can become established in and alter the dynamics of the recipient ecosystems. While tropical seaweeds are of great interest for aquaculture, and have received much attention as pests in the coral reef literature, little is known about the problems and potential of natural populations, or the role of natural seaweed beds in the tropical seascape. This thesis aims to investigate the spread of non-native genetic strains of the tropical macroalga Eucheuma denticulatum, which have been intentionally introduced for seaweed farming purposes in East Africa, and to evaluate the state of the genetically distinct but morphologically similar native populations. Additionally it aims to investigate the ecological role of seaweed beds in terms of the habitat utilization by fish and mobile invertebrate epifauna. The thesis also aims to evaluate the potential of native populations of eucheumoid seaweeds in regard to seaweed farming.
    [Show full text]
  • Marine Macroalgal Biodiversity of Northern Madagascar: Morpho‑Genetic Systematics and Implications of Anthropic Impacts for Conservation
    Biodiversity and Conservation https://doi.org/10.1007/s10531-021-02156-0 ORIGINAL PAPER Marine macroalgal biodiversity of northern Madagascar: morpho‑genetic systematics and implications of anthropic impacts for conservation Christophe Vieira1,2 · Antoine De Ramon N’Yeurt3 · Faravavy A. Rasoamanendrika4 · Sofe D’Hondt2 · Lan‑Anh Thi Tran2,5 · Didier Van den Spiegel6 · Hiroshi Kawai1 · Olivier De Clerck2 Received: 24 September 2020 / Revised: 29 January 2021 / Accepted: 9 March 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A foristic survey of the marine algal biodiversity of Antsiranana Bay, northern Madagas- car, was conducted during November 2018. This represents the frst inventory encompass- ing the three major macroalgal classes (Phaeophyceae, Florideophyceae and Ulvophyceae) for the little-known Malagasy marine fora. Combining morphological and DNA-based approaches, we report from our collection a total of 110 species from northern Madagas- car, including 30 species of Phaeophyceae, 50 Florideophyceae and 30 Ulvophyceae. Bar- coding of the chloroplast-encoded rbcL gene was used for the three algal classes, in addi- tion to tufA for the Ulvophyceae. This study signifcantly increases our knowledge of the Malagasy marine biodiversity while augmenting the rbcL and tufA algal reference libraries for DNA barcoding. These eforts resulted in a total of 72 new species records for Mada- gascar. Combining our own data with the literature, we also provide an updated catalogue of 442 taxa of marine benthic
    [Show full text]
  • Kimberley Marine Biota. Historical Data: Marine Plants
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 84 045–067 (2014) DOI: 10.18195/issn.0313-122x.84.2014.045-067 SUPPLEMENT Kimberley marine biota. Historical data: marine plants John M. Huisman1,2* and Alison Sampey3 1 Western Australian Herbarium, Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley DC, Western Australian 6983, Australia. 2 School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australian 6150, Australia. 3 Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australian 6986, Australia. * Email: [email protected] ABSTRACT – Here, we document 308 species of marine flora from the Kimberley region of Western Australia based on collections held in the Western Australian Herbarium and on reports on marine biodiversity surveys to the region. Included are 12 species of seagrasses, 18 species of mangrove and 278 species of marine algae. Seagrasses and mangroves in the region have been comparatively well surveyed and their taxonomy is stable, so it is unlikely that further species will be recorded. However, the marine algae have been collected and documented only more recently and it is estimated that further surveys will increase the number of recorded species to over 400. The bulk of the marine flora comprised widespread Indo-West Pacific species, but there were also many endemic species with more endemics reported from the inshore areas than the offshore atolls. This number also will increase with the description of new species from the region. Collecting across the region has been highly variable due to the remote location, logistical difficulties and resource limitations.
    [Show full text]
  • Sequencing Type Material Resolves the Identity and Distribution of the Generitype Lithophyllum Incrustans, and Related European Species L
    J. Phycol. 51, 791–807 (2015) © 2015 Phycological Society of America DOI: 10.1111/jpy.12319 SEQUENCING TYPE MATERIAL RESOLVES THE IDENTITY AND DISTRIBUTION OF THE GENERITYPE LITHOPHYLLUM INCRUSTANS, AND RELATED EUROPEAN SPECIES L. HIBERNICUM AND L. BATHYPORUM (CORALLINALES, RHODOPHYTA)1 Jazmin J. Hernandez-Kantun2 Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Fabio Rindi Dipartimento di Scienze della Vita e dell’Ambiente, Universita Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy Walter H. Adey Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Svenja Heesch Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Viviana Pena~ BIOCOST Research Group, Departamento de Bioloxıa Animal, Bioloxıa Vexetal e Ecoloxıa, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Coruna,~ A Coruna~ 15071, Spain Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, Ghent 9000, Belgium Line Le Gall Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France and Paul W. Gabrielson Department of Biology and Herbarium, University of North Carolina, Chapel Hill, Coker Hall CB 3280, Chapel Hill, North Carolina 27599-3280, USA DNA sequences from type material in the belonging in Lithophyllum.
    [Show full text]
  • (Hymenoptera: Chalcidoidea) De La Región Neotropical
    Biota Colombiana 4 (2) 123 - 145, 2003 Lista de los géneros y especies de la familia Chalcididae (Hymenoptera: Chalcidoidea) de la región Neotropical Diana C. Arias1 y Gerard Delvare2 1 Instituto de Investigación de Recursos Biológicos “Alexander von Humboldt”, AA 8693, Bogotá, D.C., Colombia. [email protected], [email protected] 2 Departamento de Faunística y Taxonomía del CIRAD, Montpellier, Francia. [email protected] Palabras Clave: Insecta, Hymenoptera, Chalcidoidea, Chalcididae, Parasitoide, Avispas Patonas, Neotrópico El orden Hymenoptera se ha dividido tradicional- La superfamilia Chalcidoidea se caracteriza por presentar mente en dos subórdenes “Symphyta” y Apocrita, este úl- en el ala anterior una venación reducida, tan solo están timo a su vez dividido en dos grupos con categoría de sec- presentes la vena submarginal, la vena marginal, la vena ción o infraorden dependiendo de los autores, denomina- estigmal y la vena postmarginal. Adicionalmente el pronoto dos “Parasitica” o también conocidos como Terebrantes y no se extiende hasta la tégula debido a que el prepecto Aculeata (Gauld & Bolton 1988). Gauld & Hanson (1995) (esclerito, en forma de sillín o herradura) se extiende hasta abandonan esta clasificación reconociendo únicamente la tégula y separa el mesopleurón del pronoto. Otra caracte- superfamilias dentro del orden. Sin embargo muchos auto- rística de este superfamilia es la presencia de un espiráculo res siguen utilizando la división tradicional porque consi- mesotorácico visible, además algunos especimenes presen- deran que es un medio práctico para separar grandes gru- tan estructuras sensoriales en uno o más de los pos de Hymenoptera en el aspecto biológico. flagelómeros. Finalmente algunas familias exhiben coloraciones metálicas (Gibson 1993).
    [Show full text]
  • Geologia Croaticacroatica
    View metadata, citationGeologia and similar Croatica papers at core.ac.uk 61/2–3 333–340 1 Fig. 1 Pl. Zagreb 2008 333brought to you by CORE The coralline fl ora of a Miocene maërl: the Croatian “Litavac” Daniela Basso1, Davor Vrsaljko2 and Tonći Grgasović3 1 Dipartamento di Scienze Geologiche e Geotecnologie, Università degli Studi di Milano – Bicocca, Piazza della Scienza 4, 20126 Milano, Italy; ([email protected]) 2 Croatian Natural History Museum, Demetrova 1, HR-10000 Zagreb, Croatia; ([email protected]) 3 Croatian Geological Survey, Sachsova 2, HR-10000 Zagreb, Croatia; ([email protected]) GeologiaGeologia CroaticaCroatica AB STRA CT The fossil coralline fl ora of the Badenian bioclastic limestone outcropping in Northern Croatia is known by the name “Litavac”, shortened from “Lithothamnium Limestone”. The name was given to indicate that unidentifi ed coralline algae are the major component. In this fi rst contribution to the knowledge of the coralline fl ora of the Litavac, Lithoth- amnion valens seems to be the most common species, with an unattached, branched growth-form. Small rhodoliths composed of Phymatolithon calcareum and Mesophyllum roveretoi also occur. The Badenian benthic association is dominated by melobesioid corallines, thus it can be compared with the modern maërl facies of the Atlantic Ocean and Mediterranean Sea. Since L. valens still survives in the present-day Mediterranean, an analogy between the Badenian Litavac and the living L. valens facies of the Mediterranean is suggested. Keywor ds: calcareous Rhodophyta, Corallinales, rhodoliths, maërl, Badenian, Croatia 1. INTRODUCTION an overlying facies of fi ne-graded clastics: fi ne-graded sands, marls, clayey limestones and calcsiltites (VRSALJKO et al., Since Roman times, a building stone named “Litavac” has 2006, 2007a).
    [Show full text]