PJS Special Issue Ang Et Al.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cruising Guide to the Philippines
Cruising Guide to the Philippines For Yachtsmen By Conant M. Webb Draft of 06/16/09 Webb - Cruising Guide to the Phillippines Page 2 INTRODUCTION The Philippines is the second largest archipelago in the world after Indonesia, with around 7,000 islands. Relatively few yachts cruise here, but there seem to be more every year. In most areas it is still rare to run across another yacht. There are pristine coral reefs, turquoise bays and snug anchorages, as well as more metropolitan delights. The Filipino people are very friendly and sometimes embarrassingly hospitable. Their culture is a unique mixture of indigenous, Spanish, Asian and American. Philippine charts are inexpensive and reasonably good. English is widely (although not universally) spoken. The cost of living is very reasonable. This book is intended to meet the particular needs of the cruising yachtsman with a boat in the 10-20 meter range. It supplements (but is not intended to replace) conventional navigational materials, a discussion of which can be found below on page 16. I have tried to make this book accurate, but responsibility for the safety of your vessel and its crew must remain yours alone. CONVENTIONS IN THIS BOOK Coordinates are given for various features to help you find them on a chart, not for uncritical use with GPS. In most cases the position is approximate, and is only given to the nearest whole minute. Where coordinates are expressed more exactly, in decimal minutes or minutes and seconds, the relevant chart is mentioned or WGS 84 is the datum used. See the References section (page 157) for specific details of the chart edition used. -
A Review with Special Focus on the Iberian Peninsula
Send Orders for Reprints to [email protected] Current Organic Chemistry, 2014, 18(7), 896-917 Bioproducts from Seaweeds: A Review With Special Focus On The Iberian Peninsula Susana M. Cardosoa,*, Loïc G. Carvalhob, Paulo J. Silvab, Mara S. Rodriguesc, Olívia R. Pereiraa,c and Leonel Pereirab aCERNAS, School of Agriculture, Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal; bIMAR (Institute of Marine Research), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Apartado 3046, 3001- 401 Coimbra, Portugal; cDTDT, School of Health Sciences, Polytechnic Institute of Bragança, Av. D. Afonso V, 5300-121 Bragança, Portugal Abstract: Seaweeds, i.e. macroalgae that occupy the littoral zone, are a great source of compounds with diverse applications; their types and content greatly determine the potential applications and commercial values. Algal polysaccharides, namely the hydrocolloids: agar, alginate and carrageenan, as well as other non-jellifying polysaccharides and oligosaccharides, are valuable bioproducts. Likewise, pig- ments, proteins, amino acids and phenolic compounds are also important, exploitable compounds. For the longest time the dominant market for macroalgae has been the food industry. More recently, several other industries have increased their interest in algal-derived products, e.g. cosmetics, pharmaceuticals and more recently, as a s ource of feedstock for biorefinery applications. This manuscript re- views the chemical composition of dominant macroalgae, as well as their potential added-value products and applications. Particular at- tention is devoted to the macroalgal species from the Iberian Peninsula. This is located in the Southwest of Europe and is influenced by the distinct climates of the Mediterranean Sea and the Atlantic Ocean, representing a rich spot of marine floral biodiversity. -
Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward. -
New Records of Benthic Marine Algae and Cyanobacteria for Costa Rica, and a Comparison with Other Central American Countries
Helgol Mar Res (2009) 63:219–229 DOI 10.1007/s10152-009-0151-1 ORIGINAL ARTICLE New records of benthic marine algae and Cyanobacteria for Costa Rica, and a comparison with other Central American countries Andrea Bernecker Æ Ingo S. Wehrtmann Received: 27 August 2008 / Revised: 19 February 2009 / Accepted: 20 February 2009 / Published online: 11 March 2009 Ó Springer-Verlag and AWI 2009 Abstract We present the results of an intensive sampling Rica; we discuss this result in relation to the emergence of program carried out from 2000 to 2007 along both coasts of the Central American Isthmus. Costa Rica, Central America. The presence of 44 species of benthic marine algae is reported for the first time for Costa Keywords Marine macroalgae Á Cyanobacteria Á Rica. Most of the new records are Rhodophyta (27 spp.), Costa Rica Á Central America followed by Chlorophyta (15 spp.), and Heterokontophyta, Phaeophycea (2 spp.). Overall, the currently known marine flora of Costa Rica is comprised of 446 benthic marine Introduction algae and 24 Cyanobacteria. This species number is an under estimation, and will increase when species of benthic The marine benthic flora plays an important role in the marine algae from taxonomic groups where only limited marine environment. It forms the basis of many marine information is available (e.g., microfilamentous benthic food chains and harbors an impressive variety of organ- marine algae, Cyanobacteria) are included. The Caribbean isms. Fish, decapods and mollusks are among the most coast harbors considerably more benthic marine algae (318 prominent species associated with the marine flora, which spp.) than the Pacific coast (190 spp.); such a trend has serves these animals as a refuge and for alimentation (Hay been observed in all neighboring countries. -
Plate. Acetabularia Schenckii
Training in Tropical Taxonomy 9-23 July, 2008 Tropical Field Phycology Workshop Field Guide to Common Marine Algae of the Bocas del Toro Area Margarita Rosa Albis Salas David Wilson Freshwater Jesse Alden Anna Fricke Olga Maria Camacho Hadad Kevin Miklasz Rachel Collin Andrea Eugenia Planas Orellana Martha Cecilia Díaz Ruiz Jimena Samper Villareal Amy Driskell Liz Sargent Cindy Fernández García Thomas Sauvage Ryan Fikes Samantha Schmitt Suzanne Fredericq Brian Wysor From July 9th-23rd, 2008, 11 graduate and 2 undergraduate students representing 6 countries (Colombia, Costa Rica, El Salvador, Germany, France and the US) participated in a 15-day Marine Science Network-sponsored workshop on Tropical Field Phycology. The students and instructors (Drs. Brian Wysor, Roger Williams University; Wilson Freshwater, University of North Carolina at Wilmington; Suzanne Fredericq, University of Louisiana at Lafayette) worked synergistically with the Smithsonian Institution's DNA Barcode initiative. As part of the Bocas Research Station's Training in Tropical Taxonomy program, lecture material included discussions of the current taxonomy of marine macroalgae; an overview and recent assessment of the diagnostic vegetative and reproductive morphological characters that differentiate orders, families, genera and species; and applications of molecular tools to pertinent questions in systematics. Instructors and students collected multiple samples of over 200 algal species by SCUBA diving, snorkeling and intertidal surveys. As part of the training in tropical taxonomy, many of these samples were used by the students to create a guide to the common seaweeds of the Bocas del Toro region. Herbarium specimens will be contributed to the Bocas station's reference collection and the University of Panama Herbarium. -
Marine Macroalgal Biodiversity of Northern Madagascar: Morpho‑Genetic Systematics and Implications of Anthropic Impacts for Conservation
Biodiversity and Conservation https://doi.org/10.1007/s10531-021-02156-0 ORIGINAL PAPER Marine macroalgal biodiversity of northern Madagascar: morpho‑genetic systematics and implications of anthropic impacts for conservation Christophe Vieira1,2 · Antoine De Ramon N’Yeurt3 · Faravavy A. Rasoamanendrika4 · Sofe D’Hondt2 · Lan‑Anh Thi Tran2,5 · Didier Van den Spiegel6 · Hiroshi Kawai1 · Olivier De Clerck2 Received: 24 September 2020 / Revised: 29 January 2021 / Accepted: 9 March 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A foristic survey of the marine algal biodiversity of Antsiranana Bay, northern Madagas- car, was conducted during November 2018. This represents the frst inventory encompass- ing the three major macroalgal classes (Phaeophyceae, Florideophyceae and Ulvophyceae) for the little-known Malagasy marine fora. Combining morphological and DNA-based approaches, we report from our collection a total of 110 species from northern Madagas- car, including 30 species of Phaeophyceae, 50 Florideophyceae and 30 Ulvophyceae. Bar- coding of the chloroplast-encoded rbcL gene was used for the three algal classes, in addi- tion to tufA for the Ulvophyceae. This study signifcantly increases our knowledge of the Malagasy marine biodiversity while augmenting the rbcL and tufA algal reference libraries for DNA barcoding. These eforts resulted in a total of 72 new species records for Mada- gascar. Combining our own data with the literature, we also provide an updated catalogue of 442 taxa of marine benthic -
Kimberley Marine Biota. Historical Data: Marine Plants
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 84 045–067 (2014) DOI: 10.18195/issn.0313-122x.84.2014.045-067 SUPPLEMENT Kimberley marine biota. Historical data: marine plants John M. Huisman1,2* and Alison Sampey3 1 Western Australian Herbarium, Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley DC, Western Australian 6983, Australia. 2 School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australian 6150, Australia. 3 Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australian 6986, Australia. * Email: [email protected] ABSTRACT – Here, we document 308 species of marine flora from the Kimberley region of Western Australia based on collections held in the Western Australian Herbarium and on reports on marine biodiversity surveys to the region. Included are 12 species of seagrasses, 18 species of mangrove and 278 species of marine algae. Seagrasses and mangroves in the region have been comparatively well surveyed and their taxonomy is stable, so it is unlikely that further species will be recorded. However, the marine algae have been collected and documented only more recently and it is estimated that further surveys will increase the number of recorded species to over 400. The bulk of the marine flora comprised widespread Indo-West Pacific species, but there were also many endemic species with more endemics reported from the inshore areas than the offshore atolls. This number also will increase with the description of new species from the region. Collecting across the region has been highly variable due to the remote location, logistical difficulties and resource limitations. -
2009-Fredericq-Et-Al-2009-S.Pdf
Fredericq, S., T. O. Cho, S. A. Earle, C. F. Gurgel, D. M. Krayesky, L. E. Mateo-Cid, A. C. Mendoza-González, J. N. Norris, and A. M. Suárez. 2009. Seaweeds of the Gulf of Mexico, Pp. 187–259 in Felder, D.L. and D.K. Camp (eds.), Gulf of Mexico–Origins, Waters, and Biota. Biodiversity. Texas A&M Press, College Station, Texas. •9 Seaweeds of the Gulf of Mexico Suzanne Fredericq, Tae Oh Cho, Sylvia A. Earle, Carlos Frederico Gurgel, David M. Krayesky, Luz Elena Mateo- Cid, A. Catalina Mendoza- González, James N. Norris, and Ana María Suárez The marine macroalgae, or seaweeds, are a heterogenous group historically lumped together as “Protists,” an assem- blage of taxa whose members typically lack true roots, shoots, leaves, seeds, or water- conducting tissues. They comprise the multicellular green algae (Chlorophyta), red algae (Rhodophyta), and brown algae (Phaeophyceae). Until very recently, the relationship among the Algae and other Protists remained inconclusive and often contradic- tory (Adl et al. 2005). Our understanding of algal phylogeny has dramatically increased with molecular evolutionary methods, and the latest research indicates that the Rhodophyta is a distinct A green seaweed, Acetabularia. After Taylor 1954. eukaryotic lineage that shares a most common ancestry with the Chlorophyta in the Plant lineage (Oliveira and The classification within the Rhodophyta at the ordi- Bhattacharya 2000). A second cluster, the Chromalveo- nal level is unstable and in a constant flux, more so than lata, comprises the Stramenopiles, in which the brown in the Chlorophyta and the Phaeophyceae, and it is cur- algae belong, in addition to diatoms, many zoosporic rently undergoing much taxonomic revision that has led fungi, and the opalinids, among others (Palmer 2000, Adl to proposals of new and recircumscribed orders (Adl et al. -
Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected]. -
Zamboanga Peninsula Regional Development
Contents List of Tables ix List of Figures xv List of Acronyms Used xix Message of the Secretary of Socioeconomic Planning xxv Message of the Regional Development Council IX xxvi Chairperson for the period 2016-2019 Message of the Regional Development Council IX xxvii Chairperson Preface message of the National Economic and xxviii Development Authority IX Regional Director Politico-Administrative Map of Zamboanga Peninsula xxix Part I: Introduction Chapter 1: The Long View 3 Chapter 2: Global and Regional Trends and Prospects 7 Chapter 3: Overlay of Economic Growth, Demographic Trends, 11 and Physical Characteristics Chapter 4: The Zamboanga Peninsula Development Framework 27 Part II: Enhancing the Social Fabric (“Malasakit”) Chapter 5: Ensuring People-Centered, Clean and Efficient 41 Governance Chapter 6: Pursuing Swift and Fair Administration of Justice 55 Chapter 7: Promoting Philippine Culture and Values 67 Part III: Inequality-Reducing Transformation (“Pagbabago”) Chapter 8: Expanding Economic Opportunities in Agriculture, 81 Forestry, and Fisheries Chapter 9: Expanding Economic Opportunities in Industry and 95 Services Through Trabaho at Negosyo Chapter 10: Accelerating Human Capital Development 113 Chapter 11: Reducing Vulnerability of Individuals and Families 129 Chapter 12: Building Safe and Secure Communities 143 Part IV: Increasing Growth Potential (“Patuloy na Pag-unlad”) Chapter 13: Reaching for the Demographic Dividend 153 Part V: Enabling and Supportive Economic Environment Chapter 15: Ensuring Sound Macroeconomic Policy -
Mayra García1, Santiago Gómez2 Y Nelson Gil3
Rodriguésia 62(1): 035-042. 2011 http://rodriguesia.jbrj.gov.br Adiciones a la ficoflora marina de Venezuela. II. Ceramiaceae, Wrangeliaceae y Callithamniaceae (Rhodophyta) Additions to the marine phycoflora of Venezuela. II. Ceramiaceae, Wrangeliaceae and Callithamniaceae (Rhodophyta) Mayra García1, Santiago Gómez2 y Nelson Gil3 Resumen Las siguientes cuatro especies: Balliella pseudocorticata, Perikladosporon percurrens, Monosporus indicus y Seirospora occidentalis, constituyen las primeras citas para la costa venezolana. Se mencionan sus caracteres diagnóstico y se establecen comparaciones con especies cercanas. Todas estas han sido mencionadas en arrecifes coralinos de aguas tropicales y se consideran comunes en el Mar Caribe. Palabras clave: Balliella, Monosporus, Perikladosporon, Seirospora, Rhodophyta. Abstract The following four species: Balliella pseudocorticata, Perikladosporon percurrens, Monosporus indicus and Seirospora occidentalis, represent the first report to the Venezuelan coast, of which mention their diagnostic features and making comparisons with its relatives. All these species have been identified in coral reefs of tropical waters and are considered common in the Caribbean Sea. Key words: Balliella, Monosporus, Perikladosporon, Seirospora, Rhodophyta. Introducción tropicales. Particularmente en Venezuela se hace Históricamente la familia Ceramiaceae sensu referencia a la existencia de dos (2) géneros y lato ha sido uno de los grupos taxonómicos más cinco (5) especies de la familia Callithamniaceae, complejos de la División Rhodophyta, cuyos nueve (9) géneros y quince (15) especies de integrantes son algas que forman talos pequeños, Wrangeliaceae, un (1) género y tres (3) especies filamentosos y delicados, con construcción de Spyridaceae y once (11) géneros y veintidós uniaxial con o sin corticación total o parcial y (22) especies de Ceramiaceae (Tab. 1) (Ganesan crecimiento mediante una célula apical 1989, García et al. -
ECONOMIC SEAWEEDS with Reference to Some Pacificspecies Volume IV
CU I MR-M- 91 003 C2 TAXONOMY OF ECONOMIC SEAWEEDS With reference to some Pacificspecies Volume IV Isabella A. Abbott, Editor A Publication of the California Sea Grant College CALI FOHN IA, SEA GRANT Rosemary Amidei Communications Coordi nator SeaGrant is a uniquepartnership of public andprivate sectors, combining research, education, and technologytransfer for public service.It is a nationalnetwork of universitiesmeeting changingenvironmental and economic needs of peoplein our coastal,ocean, and Great Lakes regions. Publishedby the California SeaGrant College, University of California, La Jolla, California, 1994.Publication No. T-CSGCP-031.Additional copiesare availablefor $10 U.S.! each, prepaid checkor moneyorder payable to "UC Regents"! from: California SeaGrant College, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0232.19! 534-4444. This work is fundedin part by a grantfrom the National SeaGrant College Program, National Oceanic and Atmospheric Administration, U.S. Departmentof Commerce,under grant number NA89AA-D-SG138, project number A/P-I, and in part by the California State ResourcesAgency. The views expressedherein are those of the authorsand do not necessarily reflect the views of NOAA, or any of its subagencies.The U.S. Governmentis authorizedto produceand distributereprints for governmentalpurposes. Published on recycled paper. Publication: February 1994 TAXONOMY OF ECONOMIC SEAWEEDS With reference to some Pacificspecies Volume IV isabella A. Abbott, Editor Results of an international workshop sponsored by the California Sea Grant College in cooperation with the Pacific Sea Grant College Programs of Alaska, Hawaii, Oregon, and Washington and hosted by Hokkaido University, Sapporo, Japan, July 1991. A Publication of the California Sea Grant College Report No.