Occurrence of Panulirus Inflatus(Decapoda
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lobsters-Identification, World Distribution, and U.S. Trade
Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de temperature zones. From such partition food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob Nephropoidea), the squat lobsters the world because of species distribu ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con lobsters, Homarus americanus, caught the purpose of reporting fishery statis tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e. -
Factors Affecting Growth of the Spiny Lobsters Panulirus Gracilis and Panulirus Inflatus (Decapoda: Palinuridae) in Guerrero, México
Rev. Biol. Trop. 51(1): 165-174, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Factors affecting growth of the spiny lobsters Panulirus gracilis and Panulirus inflatus (Decapoda: Palinuridae) in Guerrero, México Patricia Briones-Fourzán and Enrique Lozano-Álvarez Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto Morelos. P. O. Box 1152, Cancún, Q. R. 77500 México. Fax: +52 (998) 871-0138; [email protected] Received 00-XX-2002. Corrected 00-XX-2002. Accepted 00-XX-2002. Abstract: The effects of sex, injuries, season and site on the growth of the spiny lobsters Panulirus gracilis, and P. inflatus, were studied through mark-recapture techniques in two sites with different ecological characteristics on the coast of Guerrero, México. Panulirus gracilis occurred in both sites, whereas P. inflatus occurred only in one site. All recaptured individuals were adults. Both species had similar intermolt periods, but P. gracilis had significantly higher growth rates (mm carapace length week-1) than P. inflatus as a result of a larger molt incre- ment. Growth rates of males were higher than those of females in both species owing to larger molt increments and shorter intermolt periods in males. Injuries had no effect on growth rates in either species. Individuals of P. gracilis grew faster in site 1 than in site 2. Therefore, the effect of season on growth of P. gracilis was analyzed separately in each site. In site 2, growth rates of P. gracilis were similar in summer and in winter, whereas in site 1 both species had higher growth rates in winter than in summer. -
Redalyc.Occurrence of Panulirus Inflatus (Decapoda: Palinuridae
Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Pérez-González, Raúl; Puga, Dagoberto; Valadez, Luis M.; Rodríguez-Domínguez, Guillermo Occurrence of Panulirus inflatus (Decapoda: Palinuridae) pueruli in the southeastern Gulf of California, Mexico Revista de Biología Marina y Oceanografía, vol. 51, núm. 1, abril, 2016, pp. 223-227 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47945599023 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 51, Nº1: 209-215, abril 2016 DOI 10.4067/S0718-19572016000100023 RESEARCH NOTE Occurrence of Panulirus inflatus (Decapoda: Palinuridae) pueruli in the southeastern Gulf of California, Mexico Presencia de puérulos de Panulirus inflatus (Bouvier, 1895) (Decapoda: Palinuridae) en el sureste del golfo de California, México Raúl Pérez-González1, Dagoberto Puga2, Luis M. Valadez1 and Guillermo Rodríguez-Domínguez1 1Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, C.P. 82000, Apdo. Postal 610, Mazatlán, Sinaloa, México. [email protected] 2Instituto Nacional de Pesca, Centro Regional de Investigación Pesquera de Bahía Banderas, Nayarit. Calle Tortuga No. 1, La Cruz de Huanacaxtle, C.P. 63732, Nayarit, México Abstract.- This study presents results on the collection of Panulirus inflatus pueruli in seaweed (GuSi; set at the surface) and crevice (Booth: set on the bottom) collectors from April to December 1998 in waters of the southeastern Gulf of California, Mexico. -
Growth Patterns and Exploitation Status of the Spiny Lobster Species Palinurus Mauritanicus (Gruvel 1911) in Mauritanian Coasts
International Journal of Agricultural Policy and Research Vol.7 (2), pp. 17-31, March 2019 Available online at https://www.journalissues.org/IJAPR/ https://doi.org/10.15739/IJAPR.19.003 Copyright © 2019 Author(s) retain the copyright of this article ISSN 2350-1561 Original Research Article Growth patterns and exploitation status of the spiny lobster species Palinurus mauritanicus (Gruvel 1911) in Mauritanian coasts Received 3 January, 2019 Revised 10 February, 2019 Accepted 15 February, 2019 Published 14 March, 2019 Amadou Sow1, In the Mauritanian coasts, fishing effort on Palinurus mauritanicus Bilassé Zongo*2 contributes in the decline of the stock. From February to August 2015, samplings were carried out monthly in order to study the growth patterns and and the stock status to provide further information for sustainable 2 T. Jean André Kabre management and exploitation of the species. A total of 12008 individuals were collected. Total length (Lt) and cephalothoracic length (Lc) were 1Institut Mauritanien des measured with a vernier caliper. The species were separately weighed on a Recherches Océanographiques et digital balance and their sex noted. The collected data were entered on excel des Pêches (IMROP), Mauritanie spreadsheet in order to analyse growth kinetics, exploitation kinetics and 2Université Nazi Boni, LaRFPF, estimate fish mortality using FISAT II software. Male of P. mauritanicus had Burkina Faso an average Lc = 130 mm and an average Lc = 111 mm. The annual length frequency distribution gave respectively 6 and 7 age-groups for females and *Corresponding Author males. Lc-Lt relationship and Lc-Wt relationship showed a minor allometry Email: [email protected] (b < 3 for both). -
Marine Ecology Progress Series 469:195
Vol. 469: 195–213, 2012 MARINE ECOLOGY PROGRESS SERIES Published November 26 doi: 10.3354/meps09862 Mar Ecol Prog Ser Contribution to the Theme Section ‘Effects of climate and predation on subarctic crustacean populations’ OPENPEN ACCESSCCESS Ecological role of large benthic decapods in marine ecosystems: a review Stephanie A. Boudreau*, Boris Worm Biology Department, Dalhousie University, 1355 Oxford Street, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada ABSTRACT: Large benthic decapods play an increasingly important role in commercial fisheries worldwide, yet their roles in the marine ecosystem are less well understood. A synthesis of exist- ing evidence for 4 infraorders of large benthic marine decapods, Brachyura (true crabs), Anomura (king crabs), Astacidea (clawed lobsters) and Achelata (clawless lobsters), is presented here to gain insight into their ecological roles and possible ecosystem effects of decapod fisheries. The reviewed species are prey items for a wide range of invertebrates and vertebrates. They are omnivorous but prefer molluscs and crustaceans as prey. Experimental studies have shown that decapods influence the structuring of benthic habitat, occasionally playing a keystone role by sup- pressing herbivores or space competitors. Indirectly, via trophic cascades, they can contribute to the maintenance of kelp forest, marsh grass, and algal turf habitats. Changes in the abundance of their predators can strongly affect decapod population trends. Commonly documented non- consumptive interactions include interference-competition for food or shelter, as well as habitat provision for other invertebrates. Anthropogenic factors such as exploitation, the creation of pro- tected areas, and species introductions influence these ecosystem roles by decreasing or increas- ing decapod densities, often with measurable effects on prey communities. -
Molecular Phylogeny and Seascape Genetics of the Panulirus Homarus Subspecies in the Western Indian Ocean
Molecular phylogeny and seascape genetics of the Panulirus homarus subspecies in the Western Indian Ocean By Sohana Singh (MSc Genetics) Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy in The School of Life Sciences University of KwaZulu-Natal Durban As the candidate’s supervisors we have approved this thesis/dissertation for submission. Signed: Name: Johan Groeneveld Date: 6 December 2017 Signed: Name: Sandi Willows-Munro Date: 5 December 2017 i Preface The work described in this dissertation was carried out at the Oceanographic Research Institute (ORI), which is affiliated with the School of Life Sciences at the University of KwaZulu-Natal, Westville. The study was undertaken between February 2015 and December 2017, under the supervision of Professor Johan Groeneveld and co-supervision of Dr Sandi Willows-Munro. It represents original work by the author and has not otherwise been submitted in any form for any degree or diploma to any tertiary institution. Where use has been made of the work of others it is duly acknowledge in the text. Sohana Singh Signed _________________ Date 7 December 2017 Prof. Johan Groeneveld Signed Date 6 December 2017 Dr. Sandi Willows-Munro Signed Date 5 December 2017 ii Declaration 1 - Plagiarism I, Sohana Singh, declare that: The research reported in this thesis, except where otherwise indicated, is my original research. This thesis has not been submitted for any degree or examination at any other university. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. -
Northwestern Hawaiian Islands Lobster Fishery
No. 9, October 2020 Northwestern Hawaiian Islands Lobster Fishery By Michael Markrich About the Author Michael Markrich is the former public information officer for the State of Hawai‘i Department of Land and Natural Resources; communications officer for State of Hawai‘i Department of Business, Economic Development and Tourism; columnists for the Honolulu Advertiser; socioeconomic analyst with John M. Knox and Associates; and consultant/owner of Markrich Research. He holds a bachelor of arts degree in history from the University of Washington and a master of science degree in agricultural and resource economics from the University of Hawai‘i. Disclaimer: The statements, findings and conclusions in this publication are those of the author and do not necessarily represent the views of the Western Pacific Regional Fishery Management Council or the National Marine Fisheries Service (NOAA). © Western Pacific Regional Fishery Management Council, 2020. All rights reserved, Published in the United States by the Western Pacific Regional Fishery Management Council under NOAA Award # NA20NMF4410013. ISBN 978-1-944827-73-1 Cover Art: NWHI lobster fishery. Photo: NOAA Contents List of Illustrations .................................................................................................................. i List of Tables .......................................................................................................................... i Acknowledgments ................................................................................................................ -
Reproduction in the Tropical Rock Lobster Panulirus Ornatus in Captivity
ResearchOnline@JCU This file is part of the following reference: Sachlikidis, Nikolas Graham (2010) Reproduction in the tropical rock lobster Panulirus ornatus in captivity. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/29308/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/29308/ Reproduction in the Tropical Rock Lobster Panulirus ornatus in Captivity Thesis submitted by Nikolas Graham Sachlikidis For the Degree of Doctor of Philosophy, School of Tropical Biology and Marine Biology, James Cook University, 2010. Statement of Access I, the undersigned, the author of this thesis, understand that James Cook University will make this thesis available for use within the university library and, by other means, allow access to other users in other approved libraries. Users of this thesis must first sign the following statement: I agree not to copy or closely paraphrase this thesis in whole or in part without the written consent of the author. I will make proper public written acknowledgment for any assistance which I have obtained from it. Beyond this, I do not place any restrictions on access to this thesis. _ _ _ _ _ _ _ _ _ _ _ _ _ _ Nikolas Graham Sachlikidis Statement of Sources I declare that this thesis is my own work and has not been submitted in any form for any other degree or diploma at any other university or other institution of tertiary education. -
S Pin Y Lobsters
?SI S pin y Lobsters UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES WASHINGTON 25, D.C. September 1961 Fishery Leaflet 523 CONTENTS Page Introduction.............................................................................. 1 Specie 8.................................................................................... 1 Life history.............................................................................. 1 Description........................................................................ 1 Sexe s .•....................... .... ...... ..................................•......... Z Food and feeding............ ..................................................... Z Habits ....•. •... .................. .. ....•... ... ....•........... ...... ...... ... ....... 3 Molting and growth .............................................................. 3 Reproduction...................................................................... 3 The young .......................................................................... 5 Migrations............................................................................... 5 Enemie s and protection against them ............................................ 5 Capture .......... ........ ... .....•..........•........ ...... ... ..•......... ....... ...... ... 5 Utilization....... ................................ ....... ...... ...... ... ...... ..... ... ..... 6 Culture... .. .............................................................................. -
Taxonomy of the Phyllosoma of Panulirus Inflatus (Bouvier, 1895) and P
Nauplius 22(1): 41-51, 2014 41 Taxonomy of the phyllosoma of Panulirus inflatus (Bouvier, 1895) and P. gracilis Streets, 1871, based on morphometry and molecular analysis Isabel Muñoz-García*, Francisco J. García-Rodríguez, Rogelio González-Armas, Ricardo Perez- Enriquez and Manuel Ayón-Parente (IMG) Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa (UAS-FACIMAR), Apdo. Postal 610, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected] *Corresponding author (IMG) (FJGR) (RGA) Centro Interdisciplinario de Ciencias Marinas–Instituto Politécnico Nacional, Avenida IPN s/n, La Paz, B.C.S. 23096, Mexico (RPE) Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN #195, La Paz, B.C.S. 23096, Mexico (MAP) Universidad de Guadalajara, Departamento de Ecología, CUCBA, Carretera a Nogales Km. 15.5, Las Agujas Nextipac, Zapopan, Jalisco 45110, Mexico ABSTRACT - Analysis of wild phyllosoma of Panulirus inflatus (Bouvier, 1895) and P. gracilis Streets, 1871 determined the morphological structures having taxonomic value for differentiation of the two species, in addition to the structures described previously. Of 54 phyllosoma, species identity was confirmed by PCR-restriction fragment length polymorphism (RFLP) on 42 P. inflatus and 4 P. gracilis, for which morphology and morphometric measurements were taken. Morphological analysis found subexopodal spines, spines at the base of pereopods 1 and 2, and the mandibles are structures of taxonomic value for differentiating the two species. Morphometric data did not allow differentiation. Key Words: Larvae, Pacific coast of Mexico, PCR-RFLP, spiny lobsters, taxonomy INTRODUCTION stock management. The taxonomic features The distribution of the blue spiny lobster of the long development (7¾ months for P. -
The Spiny Lobster (Panulirus Argus) in the Wider Caribbean: a Review of Life Cycle Dynamics and Implications for Responsible Fisheries Management
The Spiny Lobster (Panulirus argus) in the Wider Caribbean: A Review of Life Cycle Dynamics and Implications for Responsible Fisheries Management RAÚL CRUZ 1 and RODNEY D. BERTELSEN 2 1Centro de Investigaciones Marinas, Universidad de la Habana, Calle 16 #114 entre 1era y 3era, Playa, Miramar, Cuba. 2Florida Fish and Wildlife Conservation Commission, Florida Marine Research Institute, 2796 Overseas Highway, #119, Marathon, Florida 33050, USA ABSTRACT The spiny lobster Panulirus argus (Latreille, 1804) is the most important fishery resource in the western central Atlantic and north-eastern Brazil. The complex life cycle has been studied over the last 50 years in five locations in the wider Caribbean: Cuba archipelago, Florida Keys, Bermuda, Mexico and Brazil. Field studies have increased our understanding of variations in the reproductive season by location and depth, size at first maturity, fecundity, and relative magnitude of egg production as indicated by an index of reproductive potential. This review of the life cycle dynamics of spiny lobster suggests that new regulatory measures for the western Atlantic population should be adopted to increase the reproductive potential and ensure sustainable recruitment. A regional focus is therefore needed in investigations of the life cycle and the fisheries to assist in improving responsible fisheries management KEY WORDS: Panulirus argus, life cycle, reproduction, Caribbean La Langosta Espinosa (Panulirus argus) en el Gran Caribe: Una Revisión de la Dinámica del Ciclo de Vida e Implicaciones en el Manejo Responsable de la Pesquería La langosta espinosa Panulirus argus (Latreille, 1804) es el recurso pesquero más importante en el Atlántico centro occidental y en el nordeste del Brasil. -
Seafood Watch Seafood Report
Seafood Watch Seafood Report Caribbean Spiny Lobster (Panulirus argus) Image courtesy of ©Jim Mauerer, from http://www.nn.net/Jim/blackbeard/Night1.htm United States, Brazil, Bahamas Final Report April 15, 2004 Updated: December 15, 2005 Alice Cascorbi Fishery Research Analyst Monterey Bay Aquarium Caribbean Spiny Lobster Updated December 15, 2005 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices”, “Good Alternatives” or “Avoid”. The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability.