Solar System Update (Springer Praxis Books / Geophysical Sciences)

Total Page:16

File Type:pdf, Size:1020Kb

Solar System Update (Springer Praxis Books / Geophysical Sciences) Solar System Update Philippe Blondel and John W. Mason (Editors) Solar System Update Published in association with PPraxisraxis PPublishiublishingng Chichester, UK Editors Dr Philippe Blondel, CGeol FGS PhD MSc Dr John W. Mason Senior Scientist Olympus Mons Department of Physics 51 Orchard Way University of Bath Barnham Bath West Sussex PO22 0HX UK UK SPRINGER–PRAXIS BOOKS IN ASTRONOMY AND PLANETARY SCIENCES SUBJECT ADVISORY EDITORS: Dr. Philippe Blondel, C.Geol., F.G.S., Ph.D., M.Sc., Senior Scientist, Department of Physics, University of Bath, Bath, UK; Dr. John Mason B.Sc., M.Sc., Ph.D. ISBN 3-540-26056-0 Springer-Verlag Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springeronline.com) Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available from the Internet at http://dnb.ddb.de Library of Congress Control Number: 2005936392 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Completed in LaTex: EDV-Beratung, Germany Printed on acid-free paper Latest Advances in Solar System Research Solar System science is advancing faster than ever before, and even professional re- searchers in the field find it hard to keep up with developments. As this volume goes to press, the MESSENGER spacecraft is en route to Mercury, the first spacecraft to visit the planet in over 30 years; Venus Express and Mars Reconnaissance Orbiter have re- cently entered orbit around Venus and Mars, respectively; the Cassini-Huygens mission continues to produce stunning scientific results at Saturn; New Horizons has begun its nine-and-a-half year journey to Pluto; and the Rosetta spacecraft is on its way to a ren- dezvous with Comet 67P/Churyumov-Gerasimenko in 2014. In addition, ground-based telescopes and the Hubble Space Telescope continue to make important discoveries, observing a wide range of Solar System objects, including those such as Uranus and Neptune where no spacecraft is currently active or planned. This first volume of Solar System Update comprises a collection of twelve topical reviews, each presented as a separate chapter, covering important areas of Solar System science. The contributions have been written by scientists at the forefront of research in the selected areas, in a style which, we hope, will be accessible not only to advanced undergraduate students and beginning graduate students, but also to professional as- tronomers, planetary scientists and physicists, helping them to keep abreast of the latest developments in related fields. We have attempted to highlight a diverse range of topics, from recent studies of the Sun and ’space weather’, to research on the major planets and planetary satellites, including the very latest results from the Cassini mission at Sat- urn, and extending to the recent exciting discoveries in the outer Solar System beyond Neptune. As the hub of our planetary system, it is appropriate that Chapter 1 of this volume should focus on the Sun. Volker Bothmer examines early ideas about the solar wind, influences of solar activity on the Earth’s magnetic field and geomagnetic storms. He shows how space-borne instruments, observing particularly in the EUV and soft X-ray regions of the EM-spectrum, have given us new insights into solar physics and revealed details of changing solar activity as never before. Observations of the dynamic solar atmosphere, acquired over many years, by the Yohkoh, SoHO and TRACE spacecraft are comprehensively presented. Taken in combination with observations from near-Earth satellites, these studies have revealed in detail how solar eruptions affect interplanetary and near-Earth space. Discoveries about the origin and evolution of the most intense solar eruptions, the coronal mass ejections, and of the slow and fast solar wind streams, have provided a firm basis for space weather forecasts in near-Earth space. The author also looks ahead to probable future developments in this field. VI Latest Advances in Solar System Research In many respects, Mercury has been the forgotten planet of the past three decades, having been visited by just one spacecraft, Mariner 10, in 1974/75. But as Robert Strom and Ann Sprague show in Chapter 2, Mercury may provide answers to many important questions regarding the formation and evolution of our Solar System. They carefully examine what has been learned about Mercury from the Mariner 10 flybys and from 30 years of ground-based telescopic observations. The authors describe the planet’s exosphere, the exciting discovery of possible water ice deposits near Mercury’s poles, the unique internal structure of the planet and models to explain its significant magnetic field. Only 45% percent of Mercury’s surface were imaged by Mariner 10, but Earth- based images show some features on the side not imaged by Mariner. Important features of Mercury’s surface geology, ground-based spectroscopic observations which have provided clues to Mercury’s surface composition, and features relating to the tectonic, thermal and geologic history of the planet are all reviewed. Some interesting aspects of Mercury’s origin and orbital history are described and the author’s complete their chapter with a discussion of the main objectives of the MESSENGER mission due to make its first flybys of Mercury in 2008 and to go into orbit around the planet in 2011. Although the surface of Venus was mapped in detail by the Magellan spacecraft in the early 1990s, the planet has been relatively neglected for the past 15 years, in spite of the fact that a great many questions remain about its atmosphere, surface and interior. Answering such questions is important in the context of the evolution and sta- bility of terrestrial planet environments and has a relevance to global change problems on the Earth. Now, some of these questions are set to be addressed by two new space missions, Europe’s Venus Express and Japan’s Planet-C. In Chapter 3, Dmitri Titov, Hakan Svedhem and Fred Taylor examine our current knowledge of the atmosphere of Venus, and highlight areas where our knowledge is incomplete or where there is con- tradictory evidence. They discuss the temperature structure, composition and chemistry, cloud layers, radiative effects and atmospheric dynamics, as well as interactions of the atmosphere with the solar wind flow and with the planet’s surface. The probable evo- lution of the planet’s atmosphere and climate are also examined. The authors conclude by describing important aspects of the Venus Express and Planet-C missions and make some predictions for the results which can be expected. A lively debate over the origin and evolution of the Moon continues more than 30 years after the departure of the last human visitors. It is therefore fitting that Chapter 4 has been provided by Apollo 17 astronaut-geologist Harrison Schmitt, the only author in this volume to have actually visited the body they are writing about! A sizeable consensus exists that a few tens of millions of years after the formation of the Earth, the Moon belatedly came into existence as a consequence of a “giant impact” between the very young Earth and a planetoid having about 11–14% of Earth’s mass. Harrison Schmitt reviews the main tenets of this giant impact hypothesis and its consequences. He then goes on to explain why, in his opinion, such ideas deserve intense questioning, since the giant impact scenario is based on computer modelling and simulations rather than also being objectively tested against all the geochemical data available from the collected lunar samples. The author subsequently describes the major problems with the giant impact hypothesis, which lie with geochemical and geophysical information we have about the interior of the Moon below about 500 km. The author subsequently provides Latest Advances in Solar System Research VII some alternative ideas about the origin of the Moon and its subsequent evolution, and he reviews the various episodes of large basin formation early in the Moon’s history. Mars has been the subject of intense scrutiny in recent years and it will come as no surprise that two chapters in this volume have been devoted to the Red Planet. In Chapter 5, Stephen Lewis and Peter Read discuss evidence for climate change on Mars. Although the atmosphere and surface of Mars are extremely dry at present, spacecraft imagery has revealed surface features apparently caused by flowing water on the surface in the past, leading to speculation that the planet was once relatively warm and wet. Recent space missions have provided a detailed picture of the present day climate of Mars, including the discovery of water ice in the permanent polar ice caps as well as in the upper layers of the surface across much of the planet. The Mars Exploration Rovers have also found in situ evidence for ancient water in the nearby rocks and landscape including, at the Opportunity site, rocks which appear to be a mixture of sediments formed during episodic events of shallow surface water.
Recommended publications
  • Festskrift Til Harald Føsker Ellen Ekhaugen, Egil Larsen Og Fredrik Sjøli (Red.)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives Festskrift til Harald Føsker Ellen Ekhaugen, Egil Larsen og Fredrik Sjøli (red.) Kriminalomsorgens utdanningssenter, april 2014 1 Utgitt av Kriminalomsorgens utdanningssenter KRUS, 2014. Manusbearbeidelse og layout: Ottar Evensen og Maja Sørnes, KRUS Alle fotografier er gjengitt med artikkelforfatternes samtykke. ISBN trykket: 978-82-8257-033-6 ISBN pdf: 978-82-8257-034-3 Trykket hos 07-gruppen 2 Harald Føsker født 24. mai 1944 på Hamar Foto: Sturlason 3 BIDRAGSYTERE Balder, Jørgen – fhv uddannelseschef, KUC, Danmark Brucker, Hans-Jørgen – direktør, KRUS Five, Suzanne – seniorrådgiver, Kriminalomsorgsdirektoratet (KDI) Fridhov, Inger Marie – seniorrådgiver, Justisdepartementet Gislason, Gudmundur – fengselsdirektør/skoleleder, Island Hammerlin, Yngve – forsker, KRUS Hornslien, Anders - venn Johnsen, Berit – forskningsleder, KRUS Kornienko, Gennadij – generaldirektør, Den føderale russiske kriminalomsorgstjeneste Kristoffersen, Ragnar – forsker, KRUS Kvernvik Nilsen, Arne fengselsleder, Kriminalomsorgen Region Sør Larsen, Egil dekan, KRUS Lund-Isaksen, Erik – fhv. ekspedisjonssjef Nor, Susanne – HR direktør, Kriminalomsorgsdirektoratet (KDI) Orban, Franck – forsker, KRUS Porporino, Frank – Ph.D. Board Member ICPA Rentzmann, William – fhv. generaldirektør Kriminalforsorgen i Danmark Råen, Tore – friomsorgsleder i Nordtrøndelag Storberget, Knut – stortingsrepresentant og tidl. justisminister Vollan, Marianne
    [Show full text]
  • Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy
    Barucci et al.: Surface Characteristics of TNOs and Centaurs 647 Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy M. A. Barucci and A. Doressoundiram Observatoire de Paris D. P. Cruikshank NASA Ames Research Center The external region of the solar system contains a vast population of small icy bodies, be- lieved to be remnants from the accretion of the planets. The transneptunian objects (TNOs) and Centaurs (located between Jupiter and Neptune) are probably made of the most primitive and thermally unprocessed materials of the known solar system. Although the study of these objects has rapidly evolved in the past few years, especially from dynamical and theoretical points of view, studies of the physical and chemical properties of the TNO population are still limited by the faintness of these objects. The basic properties of these objects, including infor- mation on their dimensions and rotation periods, are presented, with emphasis on their diver- sity and the possible characteristics of their surfaces. 1. INTRODUCTION cally with even the largest telescopes. The physical char- acteristics of Centaurs and TNOs are still in a rather early Transneptunian objects (TNOs), also known as Kuiper stage of investigation. Advances in instrumentation on tele- belt objects (KBOs) and Edgeworth-Kuiper belt objects scopes of 6- to 10-m aperture have enabled spectroscopic (EKBOs), are presumed to be remnants of the solar nebula studies of an increasing number of these objects, and signifi- that have survived over the age of the solar system. The cant progress is slowly being made. connection of the short-period comets (P < 200 yr) of low We describe here photometric and spectroscopic studies orbital inclination and the transneptunian population of pri- of TNOs and the emerging results.
    [Show full text]
  • A La Torre Aaker Aalbers Aaldert Aarmour Aaron
    A LA TORRE ABDIE ABLEMAN ABRAMOWITCH AAKER ABE ABLES ABRAMOWITZ AALBERS ABEE ABLETSON ABRAMOWSKY AALDERT ABEEL ABLETT ABRAMS AARMOUR ABEELS ABLEY ABRAMSEN AARON ABEKE ABLI ABRAMSKI AARONS ABEKEN ABLITT ABRAMSON AARONSON ABEKING ABLOTT ABRAMZON AASEN ABEL ABNER ABRASHKIN ABAD ABELA ABNETT ABRELL ABADAM ABELE ABNEY ABREU ABADIE ABELER ABORDEAN ABREY ABALOS ABELES ABORDENE ABRIANI ABARCA ABELI ABOT ABRIL ABATE ABELIN ABOTS ABRLI ABB ABELL ABOTSON ABRUZZO ABBA ABELLA ABOTT ABSALOM ABBARCROMBIE ABELLE ABOTTS ABSALON ABBAS ABELLS ABOTTSON ABSHALON ABBAT ABELMAN ABRAHAM ABSHER ABBATE ABELS ABRAHAMER ABSHIRE ABBATIELLO ABELSON ABRAHAMI ABSOLEM ABBATT ABEMA ABRAHAMIAN ABSOLOM ABBAY ABEN ABRAHAMOF ABSOLON ABBAYE ABENDROTH ABRAHAMOFF ABSON ABBAYS ABER ABRAHAMOV ABSTON ABBDIE ABERCROMBIE ABRAHAMOVITZ ABT ABBE ABERCROMBY ABRAHAMOWICZ ABTS ABBEKE ABERCRUMBIE ABRAHAMS ABURN ABBEL ABERCRUMBY ABRAHAMS ABY ABBELD ABERCRUMMY ABRAHAMSEN ABYRCRUMBIE ABBELL ABERDEAN ABRAHAMSOHN ABYRCRUMBY ABBELLS ABERDEEN ABRAHAMSON AC ABBELS ABERDEIN ABRAHAMSSON ACASTER ABBEMA ABERDENE ABRAHAMY ACCA ABBEN ABERG ABRAHM ACCARDI ABBERCROMBIE ABERLE ABRAHMOV ACCARDO ABBERCROMMIE ABERLI ABRAHMOVICI ACE ABBERCRUMBIE ABERLIN ABRAHMS ACERO ABBERDENE ABERNATHY ABRAHMSON ACESTER ABBERDINE ABERNETHY ABRAM ACETO ABBERLEY ABERT ABRAMCHIK ACEVEDO ABBETT ABEYTA ABRAMCIK ACEVES ABBEY ABHERCROMBIE ABRAMI ACHARD ABBIE ABHIRCROMBIE ABRAMIN ACHENBACH ABBING ABIRCOMBIE ABRAMINO ACHENSON ABBIRCROMBIE ABIRCROMBIE ABRAMO ACHERSON ABBIRCROMBY ABIRCROMBY ABRAMOF ACHESON ABBIRCRUMMY ABIRCROMMBIE ABRAMOFF
    [Show full text]
  • Arxiv:1512.00417V1 [Astro-Ph.EP] 1 Dec 2015 Velocity Surveys
    Draft version December 2, 2015 Preprint typeset using LATEX style emulateapj v. 5/2/11 THE LICK-CARNEGIE EXOPLANET SURVEY: HD 32963 { A NEW JUPITER ANALOG ORBITING A SUN-LIKE STAR Dominick Rowan 1, Stefano Meschiari 2, Gregory Laughlin3, Steven S. Vogt3, R. Paul Butler4,Jennifer Burt3, Songhu Wang3,5, Brad Holden3, Russell Hanson3, Pamela Arriagada4, Sandy Keiser4, Johanna Teske4, Matias Diaz6 Draft version December 2, 2015 ABSTRACT We present a set of 109 new, high-precision Keck/HIRES radial velocity (RV) observations for the solar-type star HD 32963. Our dataset reveals a candidate planetary signal with a period of 6.49 ± 0.07 years and a corresponding minimum mass of 0.7 ± 0.03 Jupiter masses. Given Jupiter's crucial role in shaping the evolution of the early Solar System, we emphasize the importance of long-term radial velocity surveys. Finally, using our complete set of Keck radial velocities and correcting for the relative detectability of synthetic planetary candidates orbiting each of the 1,122 stars in our sample, we estimate the frequency of Jupiter analogs across our survey at approximately 3%. Subject headings: Extrasolar Planets, Data Analysis and Techniques 1. INTRODUCTION which favors short-period planets. The past decade has witnessed an astounding acceler- Given the importance of Jupiter in the dynamical his- ation in the rate of exoplanet detections, thanks in large tory of our Solar System, the presence of a Jupiter ana- part to the advent of the Kepler mission. As of this writ- log is likely to be a crucial differentiator for exoplanetary ing, more than 1,500 confirmed planetary candidates are systems.
    [Show full text]
  • So, Has Voyager 1 Left the Solar System? Scientists Face Off Cosmic-Ray Fluctuations Could Mean the Craft Has Exited the Sun's Magnetic Field
    NATURE | NEWS So, has Voyager 1 left the Solar System? Scientists face off Cosmic-ray fluctuations could mean the craft has exited the Sun's magnetic field. Ron Cowen 21 March 2013 A space physicist this week suggests that NASA’s venerable Voyager 1 spacecraft has become the first vehicle to venture beyond the heliosphere — the magnetic bubble created by the Sun — but other mission scientists disagree. William Webber of New Mexico State University in Las Cruces bases the claim on signals recorded last August by the Voyager 1 cosmic-ray subsystem — a device that he helped to build — along with his late colleague and study co-author Francis McDonald. JPL-Caltech/NASA Voyager 1 recorded a sudden drop in cosmic rays The instrument recorded a dramatic drop in the intensity of the cosmic rays trapped last August, a possible sign that it had left the in the Sun’s magnetic field and a concomitant rise in that of rays generated by more Sun's sphere of influence. distant reaches of the Galaxy. That pattern indicates that Voyager 1 has travelled beyond the Sun’s magnetic influence and is no longer being shielded from galactic cosmic rays, the researchers report in a study published online this week in Geophysical Research Letters1. But if one is to believe a press release issued by NASA on 20 March (the same day the report was published), the two researchers jumped the gun. Other Voyager scientists who analysed the same data last autumn reiterate what they said then: the cosmic-ray data indicate that Voyager 1 is in a transition zone within the outer part of the heliosphere, but until a dramatic change in magnetic-field intensity and direction is detected, the craft remains firmly within the Sun’s magnetic sphere of influence.
    [Show full text]
  • Mapping the Martian Polar Ice Caps: Applications of Terrestrial Optical
    JOURNAL OF GEOPHYSICALRESEARCH, VOL. 103,NO. Ell, PAGES25,851-25,864, OCTOBER 25, 1998 Mapping the Martian polar ice caps' Applications of terrestrial optical remote sensing methods Anne W. Nolin National Snow and Ice Data Center, Universityof Colorado,Boulder Abstract. With improvementsin bothinstrumentation and algorithms,methods formapping terrestrial snow cover using optical remote sensing data have progressed significantlyover the past decade. Multispectral data can now be used to determine notonly the presence or absenceof snowbut the fraction of snowcover in a pixel. Radiativetransfer models have been used to quantifythe nonlinearrelationship betweensurface reflectance and grainsize thereby providing the basisfor mapping snowgrain size from surface reflectance images. Model-derived characterization of the bidirectionalreflectance distribution function provides the meansfor converting measuredbidirectional reflectance to directionM-hemisphericMalbedo. In recent work,this approach has allowed climatologists to examine the large scale seasonal variabilityof albedoon the Greenlandice sheet. This seasonal albedo variability resultsfrom increasesin snowgrain size and exposureof the underlyingice cap •s the se•sonMsnow cover •bl•tes •w•y. With the currentM•rs GlobM Surveyor and future missionsto Mars, it will soonbe possibleto apply someof these terrestrialmapping methods to learnmore about Martian ice properties,extent, andvariability. Distinct differences exist between Mars and Earth ice mapping conditions,including surface temperature,
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • Curt Teich Postcard Archives Towns and Cities
    Curt Teich Postcard Archives Towns and Cities Alaska Aialik Bay Alaska Highway Alcan Highway Anchorage Arctic Auk Lake Cape Prince of Wales Castle Rock Chilkoot Pass Columbia Glacier Cook Inlet Copper River Cordova Curry Dawson Denali Denali National Park Eagle Fairbanks Five Finger Rapids Gastineau Channel Glacier Bay Glenn Highway Haines Harding Gateway Homer Hoonah Hurricane Gulch Inland Passage Inside Passage Isabel Pass Juneau Katmai National Monument Kenai Kenai Lake Kenai Peninsula Kenai River Kechikan Ketchikan Creek Kodiak Kodiak Island Kotzebue Lake Atlin Lake Bennett Latouche Lynn Canal Matanuska Valley McKinley Park Mendenhall Glacier Miles Canyon Montgomery Mount Blackburn Mount Dewey Mount McKinley Mount McKinley Park Mount O’Neal Mount Sanford Muir Glacier Nome North Slope Noyes Island Nushagak Opelika Palmer Petersburg Pribilof Island Resurrection Bay Richardson Highway Rocy Point St. Michael Sawtooth Mountain Sentinal Island Seward Sitka Sitka National Park Skagway Southeastern Alaska Stikine Rier Sulzer Summit Swift Current Taku Glacier Taku Inlet Taku Lodge Tanana Tanana River Tok Tunnel Mountain Valdez White Pass Whitehorse Wrangell Wrangell Narrow Yukon Yukon River General Views—no specific location Alabama Albany Albertville Alexander City Andalusia Anniston Ashford Athens Attalla Auburn Batesville Bessemer Birmingham Blue Lake Blue Springs Boaz Bobler’s Creek Boyles Brewton Bridgeport Camden Camp Hill Camp Rucker Carbon Hill Castleberry Centerville Centre Chapman Chattahoochee Valley Cheaha State Park Choctaw County
    [Show full text]
  • First International Conference on Mars Polar Science and Exploration
    FIRST INTERNATIONAL CONFERENCE ON MARS POLAR SCIENCE AND EXPLORATION Held at The Episcopal Conference Center at Carnp Allen, Texas Sponsored by Geological Survey of Canada International Glaciological Society Lunar and Planetary Institute National Aeronautics and Space Administration Organizers Stephen Clifford, Lunar and Planetary Institute David Fisher, Geological Survey of Canada James Rice, NASA Ames Research Center LPI Contribution No. 953 Compiled in 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (1998) Title of abstract. In First International Conference on Mars Polar Science and Exploration, p. xx. LPI Contribution No. 953, Lunar and Planetary Institute, Houston. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1 113 Mail order requestors will be invoiced for the cost of shipping and handling. LPI Contribution No. 953 iii Preface This volume contains abstracts that have been accepted for presentation at the First International Conference on Mars Polar Science and Exploration, October 18-22? 1998. The Scientific Organizing Committee consisted of Terrestrial Members E. Blake (Icefield Instruments), G. Clow (U.S. Geologi- cal Survey, Denver), D. Dahl-Jensen (University of Copenhagen), K. Kuivinen (University of Nebraska), J.
    [Show full text]
  • Dust Dynamics Inside Mars' Polar Caps
    Dust dynamics inside Mars' polar caps Supervision team: Axel Hagermann, Erika Kaufmann and Matt Balme Lead contact: [email protected] Description: The Martian polar ice caps exhibit a remarkable complexity in terms of variability and morphology. Using images from Mars Global Surveyor, the carbon dioxide features of Mars’ south polar cap display considerable variability (e.g. Malin et al., 2002, Titus et al., 2004). The resulting surface features have been dubbed as “spiders” (Piqueux et al., 2003), “swiss cheese” terrain (Thomas et al., 2000), the choice of words reflecting the degree of bewilderment in the face of these features. The underlying processes remain puzzling and perplexing and the source of much research and speculation. What is clear is that atmospheric dust plays a central role in the dynamics of the Martian ice caps. Although solar energy density averaged over a year is the same at both poles, the two polar caps are distinctly different. While water ice deposits dominate Mars’ North Pole, its south pole has a CO2 ice cap. The temperature of the southern polar cap is controlled by its albedo, which is in turn controlled by dust on its surface (Paige and Ingersoll, 1985). Strangely, the albedo increases during the summer. Several self-cleansing mechanisms have been proposed for this phenomenon but none has been successfully simulated in the laboratory. In this project, we plan to investigate the dynamics of Mars’ southern polar cap using the planetary ices simulation facility at The Open University’s Department of Physical Sciences. In this facility, we can recreate the conditions on Mars’ surface and observe the behaviour of CO2 ice.
    [Show full text]
  • FROM the SUN to the STARS Narration & Sync Transcript FINAL
    FROM THE SUN TO THE STARS narration & sync transcript FINAL page 1 of 35 FROM THE SUN TO THE STARS Transcript including narration (in caps) and sync dialog (lower case.) Existing “open” captions (lower thirds and web icons and language sub-titles noted.) Underwriter announce: “FROM THE SUN TO THE STARS” IS MADE POSSIBLE, IN PART, BY NASA, THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. (Sputnik beep) Narration: IN JUST FIFTY YEARS, WE’VE GONE FROM ONE SIMPLE SATELLITE CIRCLING EARTH… …TO MANY THOUSANDS OF OBJECTS ORBITING OUR PLANET. THE FIRST DISCOVERY OF THE SPACE AGE WAS THAT BELTS OF RADIATION SURROUND US. NOW WE KNOW THAT FORCES ORIGINATING AT THE SUN EXTEND OUT ALMOST EIGHT BILLION MILES, TO THE VERY EDGE OF OUR SOLAR SYSTEM. (Music swells) …AND THAT OUR HIGH-TECH CIVILIZATION IS MIGHTILY IMPACTED BY “SPACE WEATHER” NICKY FOX: (no lower third here) We live in the atmosphere of the sun so when the Sun sneezes the Earth catches a cold. IT WAS THE “INTERNATIONAL GEOPHYSICAL YEAR” OF 1957 THAT LAUNCHED THE SPACE AGE. TWO THOUSAND SEVEN AND EIGHT HAVE BEEN WHAT’S KNOWN AS THE “INTERNATIONAL HELIOPHYSICAL YEAR” OR “IHY.” IT’S A TIME TO PLAN NEW SPACECRAFT… …AND TO RECRUIT A NEW GENERATION OF TEACHERS, STUDENTS, AND SCIENTISTS IN NATIONS ACROSS THE GLOBE TO WORK IN SPACE PHYSICS. (Segment titles – text over black – fly in rapidly) FROM THE SUN TO THE STARS narration & sync transcript FINAL page 2 of 35 EACH ACT IN OUR PROGRAM STANDS ALONE… BUT TOGETHER THEY’RE A COMPREHENSIVE OVERVIEW OF IHY… AND WHEN YOU SEE THIS ICON, THAT’S A SIGNAL THERE’S LOTS MORE INFORMATION ONLINE.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI DATE: May 15, 2003 I, James Gilbert Jenkins , hereby submit this as part of the requirements for the degree of: Master of Architecture in: The Department of Architecture of the College of DAAP It is entitled: New World Trade Approved by: Michael McInturf Arati Kanekar NEW WORLD TRADE A thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF ARCHITECTURE In the Department of Architecture Of the College of Design, Art, Architecture, and Planing 2003 by James G. Jenkins B.S., University of Cincinnati, 2001 Committee Chair : Michael Mcinturf Abstract In these Modern Times, “facts” and “proofs” seem necessary for achieving any credibility in a field where there is a client. To arrive at a “truth,” many architects quickly turn to a dictionary for the final “truth” of a word, such as “privacy” or to a road map to find the “truth” in site conditions, or to a census count for the “truth” of people migration. It is, of coarse, part of the Modern Crisis that many feel the need to go with the way of technology, for fear that Architecture might otherwise fall by the wayside because of its perceived irrelevancy or frivolousness. Following this action, with time, could very well reduce Architecture to a form of methodology and inevitably end with the replacement or removal of the profession from its importance- as creators of a “Truth.” The following thesis is a serious reclamation. The body of work moves to take back for Architecture its power, and specifically it holds up and praises the most important thing we have, but in modern times have been giving away: Life.
    [Show full text]