University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

Ocean and Earth Science

The macroecology of globally-distributed deep-sea

by

Graihagh Hardinge

Thesis for the degree of Doctor of Philosophy

September 2019

Supervisors:

Prof Cathy Lucas (University of Southampton)

Prof Beth Okamura (Natural History Museum London)

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

Ocean and Earth Science

Thesis for the degree of Doctor of Philosophy

The macroecology of globally-distributed deep-sea jellyfish

By Graihagh Hardinge

Macroecology provides a framework for understanding how local- and regional-scale processes interact, allowing us to understand how the biological and ecological traits of individual species influence large-scale patterns in diversity. The majority of macroecological studies to date have been centred on the terrestrial environment where large databases on species ranges, body size and associated environmental variables are readily available. Due to the inaccessibility of the deep sea, coupled with its relatively recent exploration, deep sea macroecology is the least represented within marine macroecology as a whole. Jellyfish, a significant constituent of the zooplankton, form important and often conspicuous components of marine ecosystems. Jellyfish studies covering large spatial scales are mostly focused on the shallow-water, bloom-forming species that have more apparent anthropogenic interactions, such as Aurelia aurita. The structural simplicity of jellyfish permits the rapid adaptation to changing environments. Plasticity in traits such as feeding, physiology, reproductive output, somatic growth and size are common; and as such allow populations to persist. The coronate medusae Periphylla periphylla Péron and Lesueur, 1810 and spp. are the most recognised deep-sea jellyfish, and both have cosmopolitan distributions. Little remains known about these genera beyond the early descriptions of the species, particularly relating to their macroecology and the expression of plastic traits according to varying environments. This study presents a large volume of morphological data using museum collections genera in order to better describe morphological variation on a global scale and to examine what factors might drive such variation.

P. periphylla and Atolla spp. exhibit cosmopolitan distributions across the global dataset, found at depths ranging from 0 to 5486 m and 4900 m respectively. Across the global oceanic dataset and case study areas of the Iberian Basin and Porcupine Abyssal Plain, P. periphylla demonstrate no morphological plasticity across temporal or spatial scales, with variation in tentacle number observed within a number of Atolla species, A. gigantea, A. parva, A. vanhoffeni and A. russelli. This may be indicative of the gene